
Applied Mathematics, 2013, 4, 713-717 
http://dx.doi.org/10.4236/am.2013.44099 Published Online April 2013 (http://www.scirp.org/journal/am) 

Exact Solution of Terzaghi’s Consolidation Equation and 
Extension to Two/Three-Dimensional Cases 

Romolo Di Francesco 
Wizard Technology, Teramo, Italy 

Email: romolo.difrancesco@vodafone.it 
 

Received January 25, 2013; revised February 28, 2013; accepted March 5, 2013 
 

Copyright © 2013 Romolo Di Francesco. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

The differential equation by Terzaghi and Fröhlich, better known as Terzaghi’s one-dimensional consolidation equation, 
simulates the visco-elastic behaviour of soils depending on the loads applied as it happens, for example, when founda-
tions are laid and start carrying the weight of the structure. Its application is traditionally based on Taylor’s solution that 
approximates experimental results by introducing non-dimensional variables that, however, contradict the actual be-
haviour of soils. The proposal of this research is an exact solution consisting in a non-linear equation that can be con-
sidered correct as it meets both mathematical and experimental requirements. The solution proposed is extended to in-
clude differential equations relating to two/three dimensional consolidation by adopting a transversally isotropic model 
more consistent with the inner structure of soils. 
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1. Introduction 

The mechanical behaviour of soils was coded only after 
the introduction of the “concept of effective stresses” [1] 
which marked the birth of Soil Mechanics starting from 
the general structure of Continuum Mechanics from 
which it derives. This concept is based on the inner 
structure of soils that are composed of a solid skeleton 
and inter-particle gaps. These pores are more or less in-
terconnected and through them run fluids of different 
nature. Therefore, in view of a necessary simplification 
of the mathematics of associated phenomena, the concept 
of effective stresses requires the soils to be assimilated to 
bi-phasic systems composed of a solid skeleton saturated 
with water, i.e. two continuous means that act in parallel 
and share the stress status: 

0ij ij iju     .                (1) 

In Equation (1) there is the tensor of the total stresses 
exerted by the solid skeleton  ij , the hydrostatic pres-
sure exerted by the fluid (u0, known as interstitial pres-
sure) and Kronecker’s delta  ij ; furthermore, from a 
merely phenomenological point of view, Equation (1) 
attributes the soil shear resistance only to effective stress, 
independent of the presence of the fluid. 

It should be highlighted that the concept of effective 
stresses is valid only in stable conditions, when the fluid 

is in balance with the solid skeleton. In these conditions 
you can calculate the hydrostatic component in all points 
of the underground and in all moments through the ap-
plication of the laws of balance; vice-versa, i + n tran-
sient conditions, it is necessary to introduce other ele-
ments capable of accounting for the variation of the com- 
ponent u0 induced by stresses of various nature. 

At this point, the problem focus is on the permeability 
coefficient (K = m/sec) that, by expressing the capacity 
of a soil to transmit a fluid, takes on the character of a 
velocity and varies approximately in the range 10–1/10–10 
m/sec depending on the inner structure of the solid 
skeleton. As a direct consequence of this extreme vari-
ability, the soils with high permeability (such as sands) 
behave as open hydraulic systems where compression 
induced, for example, by the load of a foundation, causes 
simultaneous drainage of the fluid from the pores. In 
practice, the fluid does not take part in the mechanical 
response and the stress induced weighs only on the solid 
skeleton that, in turn, subsides in association with re-
duced porosity. On the contrary, soils with very low 
permeability (such as clays) exhibit hydraulic delay in 
reacting to stresses, with consequent development of an 
initial interstitial overpressure  that contradicts 
Equation (1), and participate in the mechanical response 
with the solid skeleton. A transient filtering motion fol-

 0eu  
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lows that comes to end only when the initial value of the 
interstitial pressure is reset .  0eu 

In practice, given that a deformation of the solid 
skeleton occurs together with the expulsion of water, 
sands develop elasto-plastic settlements synchronous 
with load application while clays exhibit time-dependent 
consolidation settlements typically characterized as re-
verse hyperbolic functions. 

Considering the above, the one-dimensional consoli-
dation equation [1,2] describes the hydraulic behaviour 
of soils in transient conditions by making it possible to 
simulate the variation in time of interstitial overpressures 
(ue), generated—for example—by the load induced by a 
foundation or by a road embankment (Figure 1), with 
consequent visco-elastic settlements to which corre-
sponds a structural reorganisation of the solid skeleton, 
with reduction of porosity and, concurrently, of the de-
grees of freedom. 

This formulation can be inferred from applying the 
continuity equation to supposedly saturated soils leading 
[3], with a few mathematical manipulations, to the fol-
lowing relationship that demonstrates how the transient 
filtering motion depends on the vertical permeability 
factor (Kv or Kz), on the compressibility factor (mv) and 
on the weight of the volume of water (w = 10 kN/m3) 
that in turn identifies the fluid: 
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z tz
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The next step consists in introducing the hypothesis (in 
contrast with experimental results) that the permeability 
factor does not change during consolidation: 
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Finally, denoting the consolidation coefficient as cv or 
cz: 
 

 

Figure 1. The load transmitted by a foundation always 
causes interstitial overpressures whose dissipation depends 
on soil permeability that in turn depends on porosity; con-
solidation may last from some minutes (loose sands) to tens 
of years (very stiff clays). 
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you come to write the classical one-dimensional con-
solidation equation: 
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.               (5) 

It should be noticed that Equation (5) is analogous to 
Fourier’s law on heat propagation to the point that you 
can define the theory of consolidation as the simulation 
of the propagation of stress-induced interstitial pressures 
in the subsoil. 

2. Exact Solution of Terzaghi’s  
Consolidation Equation 

2.1. Assumptions 

Let’s assume that  are two positive constants 
assigned and that: 

,e zu k  0

   : 0, 0,eu                (6) 

is the regular function given by: 

   2, e cos 2zk z
e e v zu z t u c k t k z z



.       (7) 

Now, you can easily notice that  solves the 
differential Equation (5); indeed, given the validity of the 
following: 
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you obtain: 

 
2

2 2
2

2 e sin 2zk ze e
v v z e v z z

u u
c c k u c k t k z

tz
 

   


, (11) 

which is the differential equation given. 
If you analyse function (7), you will find out that it 

simulates the time variation of interstitial overpressures 
in the subsoil through the consolidation constant kz— 
starting from the point where they are triggered—by 
dampening their width as depth increases through a re-
verse hyperbolic function. 

2.2. Connection with Experimental Data 

Now, since function (7) is a solution of Equation (5), it 
should be necessarily extended also to experimental 
methods—oedometrically considered—in order to de-

Copyright © 2013 SciRes.                                                                                  AM 



R. DI FRANCESCO 715

termine the parameters that govern it correctly. In this 
sense, it may be useful to analyse an important property 
of the function ue. 

Given H > 0 (Figure 2), it can be useful to identify the 
in

H 2) 

As a first passage, you should notice that equation 



stant tH > 0 to which the following conditions apply: 

   , 0, , 0, if 0  .   (1e H eu H t u H t t t  

 , 0e H t   reduces to the form: 

 2cos 2

u

0v z zc k t k H            (13) 

which has infinite solutions like: 

2 π
2 π upon var. of 

2v z zc k t k H h h       (14) 

or like: 
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The next passage consists in selecting the positive 
value t closest to zero from among those determined by 
setting the condition t > 0 that provides: 

2 2

2 π πzk H 
0

4 4v z v z

h
c k c k
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from which we obtain: 

2 π

2π
zk H

h


  .               17) 

The last passage includes that, if you set also the fol- 
lowing condition: 

2 π
min :

2π
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H
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you obtain the formulation of the consolidation comple- 
tion time: 

2
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Finally, from Equation (19) you can extract the con- 
solidation coefficient: 

2
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v
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H is from Figure 2, hH  H100 and tH  t50 from Figure 
3 

3. Extension to the Two/Three-Dimensional 

Le  to be positive constants 

while kz depends on the boundary conditions (unique- 
ness theorem). 

Cases 

t’s put , , , , 0e x z x zu c c k k 
d be: assigned an

 

Figure 2. Details of an oedometric cell and indication of the 
drainage paths [4-7]. 
 

 

Figure 3. Example of interpretation of a consolidation rve cu
[4-7]. 
 

   2
: 0, 0,eu             (21) 

the regular function given by: 
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 (22) 

Going through the same passages as in Equations (8) 
to (11), you can easily notice that  , ,u x z t  solves the 
differential equation:  
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Similarly, if  are positive , , , , , , 0e x y z x y zu c c c k k k 
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co  and: 

        (24) 

the regular function given, then: 




 (25) 

solves the differential equation: 

nstants assigned
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4. Conclusions 

at the theory of monodimensional 

by Biot’s the
[1

nd the
st

ry have come to 
lig

that the uniqueness theorem will be proved later on the 

uca Lussari, Department of 
“University of Sacro Cuore 

[1] K. Terzaghi, “ rchlassigkeitsziffer 
des Tones aus dynamichen Span- 

Deuticke, Leipzig/Wien, 1936. 

 News-Record, 

f Boston Society of 

 C.E., No. 109, 1944. 

ano, 2002.  

4.  

plied Physics, Vol. 12, No. 2, 

 to Surface,” Journal of Ap- 

MFE, London, 1957. 

ectan- 

i Infi- 

 

Notwithstanding th
consolidation was first presented in 1936, it is still today 
taught in all geotechnical engineering courses (for exam- 
ple in Italy: The University of Naples Federico II [8]; 
The Polytechnic University of Milan [9]; The Polytech- 
nic University of Turin [10]) and is also the only theory 
used in the professional procedures of engineers and ge- 
ologists (to predict viscoelastic settlement of ground 
subjected to loads) and is likewise the only instrument 
applied in geotechnical laboratories to derive experimen- 
tal data using oedometric tests. 

The only valid alternative is provided ory [7] P. C. Rutledge, “Relation of Undisturbed Sampling in 
Laboratory Testing,” Tr. Am. Soc.

1] which is derived from the union of the equation of 
continuity (3), extended into three dimensions, with Na- 
vier’s Equations to produce a system of 4 equations with 
4 unknown variables relating to the interstitial pressure 
and movement along three directions. However owing to 
its complexity it is only applicable in simple cases, for 
which a precise solution exists [12-21] or when the solu- 
tion is arrived at using numeric methods—for example— 
the finite elements method implemented in modern pro- 
fessional and research software [22,23].  

With in mind the entire Mechanics of Soils, a  

1941

udy of the soil visco-elastic behaviour [1,2] in particu- 
lar, the application of Terzaghi’s differential equation is 
historically based on Taylor’s solution [24] that approxi- 
mates experimental results—limited to the one-dimen- 
sional case only—through the introduction of arbitrary 
and fixed non-dimensional variables, independent of the 
geological history of the means. This research work 
makes a proposal for an exact solution that can be con- 
sidered correct as it solves the differential equation and, 
at the same time, allow correct interpretation of experi- 
mental data; then, solution has been fruitfully extended to 
the two- and three-dimensional cases.  

To conclude, results even satisfacto
ht from the analysis of data. At the same time, they 

have opened additional research channels, considering 

basin of the oedometric boundary conditions.  
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