
Journal of Software Engineering and Applications, 2013, 6, 207-220
http://dx.doi.org/10.4236/jsea.2013.64026 Published Online April 2013 (http://www.scirp.org/journal/jsea)

207

A Domain Engineering Approach to Increase Productivity
in the Development of a Service for Changes Notification of
the Configuration Management Database

Jose Ramon Coz Fernandez, Ruben Heradio-Gil, David Fernandez-Amoros,
Jose Antonio Cerrada-Somolinos

Departamento de Ingeniería de Software y Sistemas Informáticos, Universidad Nacional de Educación a Distancia, Madrid, Spain.
Email: jrcozf@gmail.com, rheradio@issi.uned.es, david@lsi.uned.es, jcerrada@issi.uned.es

Received January 29th, 2013; revised March 2nd, 2013; accepted March 13th, 2013

Copyright © 2013 Jose Ramon Coz Fernandez et al. This is an open access article distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

ABSTRACT

This paper presents a domain engineering approach to build a software product line that supports the change notification
service in a Configuration Management Database (CMDB) according to the Information Technology Infrastructure Li-
brary (ITIL) best practices. For the development of this product line, the proposed approach makes use of a construction
of products methodology by analogy: this is a new notation which reports the variability of the products, obtaining met-
rics as important as the number of products and uses a language that enables, by means of the flexibilization of a pro-
duct and the development of some generators, to build the rest of the product line. In addition the paper offers a stan-
dard for the analysis and design of the CMDB as well. Finally, the paper presents an economic model for the product
line, where the profitability and productivity of the proposed solution are analyzed.

Keywords: ITIL; CMDB; Databases; Change Management; Configuration Management; Domain Engineering;

Software Product Lines

1. Introduction

The importance of a proper operation and management,
cost-effective and targeted to users and to the continuous
improvement of services related to Information Tech-
nology and Communications (ICT), today, is crucial to
ensure the survival of businesses and organizations. The
standard Information Technology Infrastructure Library,
in its version 3.0 [1], (ITIL) and the new concepts that
support the operation of technological systems in or-
ganizations such as Configuration Management Database
(hereinafter CMDB) or the Configuration Management
Process are the core of technology management [2].

At present, there is a big challenge in organizations,
using several frameworks, standards and regulations for
the technology management. ITIL is one the most ac-
cepted framework in the organizations, including SME/
SITU’s companies [3]. The CMDB is established to re-
cord all stuffs, including assets, associated to IT depart-
ments in organizations. CMDB is widely used in many
organizations [4,5].

This framework and these concepts are presented in
this research project, which offers, within a domain en-
gineering approach, a series of innovative tools and tech-
niques for the development of a service for the notifica-
tion of the changes into the CMDB. The research study
includes standards for the lifecycle of a CMDB and a
notation to document the variability of a software pro-
duct line. This new notation allows for very important met-
rics for the development of SPLs as the number of pro-
ducts or commonality. It also presents a framework for
development based on generative programming that al-
lows us to get all the products that support the service for
changes notification. Furthermore, the paper describes an e-
conomic study that allows us to obtain return on invest-
ment. Our framework is able to get thousands of products
and the effort to carry it out is about a dozen products.

This article is structured as follows: Section 2 presents
several concepts related to the article: ITIL best practices,
the concept of CMDB and the notification of changes to
databases and their relationship with the CMDB. The
background investigation, as the variability in product

Copyright © 2013 SciRes. JSEA

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

208

lines, generative programming and domain engineering
are presented in Section 3. Section 4 describes the do-
main analysis and design. This section ends with a sum-
mary on the implementation of the domain. Section 5
presents an Economic Model for the solution, analyzing
the productivity. Finally, in Section 6, the main conclu-
sions are presented.

2. Preliminaries

2.1. About Information Technology
Infrastructure Library

ITIL is today the “de facto” standard in most organiza-
tions for some processes related to the management of
ICT services. Currently, the latest version 3.0 provides
best practices that can serve as a benchmark for organi-
zations to improve services.

First, about the design services including the manage-
ment process of the availability; delivery, design and
maintenance of service level agreements (SLA’s) and
catalog maintenance of ICT services provided by the
organization [6]. Secondly, there are the operational ser-
vices, which include event management processes, prob-
lems and incidents, Jan Van Bon [7]. Incident, according
to ITIL, is any event that causes or may cause service
interruption and problem is the underlying cause of one
or more incidents. Event includes any situation that
causes the service interruption.

Finally, there are transition services [8] that cover the
process of change management, testing and validating
systems, development, knowledge management and sys-
tem configuration management.

2.2. About the Configuration Management
Database

The Configuration Management, one of the main proc-
esses in the transition services, provides a logical model
of the infrastructure or service through the identification,
control, maintenance and verification of configuration
items. Configuration Items (CI’s) are the components of
an infrastructure that are or will be under configuration
control. CI’s are unique and identifiable, are subject to
change and can be managed. The CI has a set of standard
attributes such as category, relationships, status and his-
tory. To know if something is a configuration item (CI) is
necessary determining whether the organization has to
manage to deliver an IT service. Another way to identify
whether CI is an affirmative response test (USMC):
 Is it unique? (U)
 Is required to deliver an IT service? (S)
 Can you manage? (M)
 Do you have at least some features can change? (C)

The database containing all relevant data from each of

the CI’s, and details of the relationship between them is
called CMDB (Configuration Management Database). This
database is the only point of reference for all IT decisions
and operations in the organization and provides visibility
into the dependencies between business processes, users,
applications and underlying IT infrastructure; residence
and allows access to all CI. In general the CI’s managed
in the CMDB usually are at a very detailed level [9,10].

2.3. Changes Notification in Databases

The change notification service database is, very brief,
the implementation of an observer of the changes in the
database and a number of elements that subscribe to the
observer for changes that occur therein. In the real world
can give many examples of this type of scenario. Sam-
ples from [11]:
 A database supporting a university that offers courses.

The system manager receives notifications from course
subscriptions, depending on priorities and times that
are set by the university administration.

 A control system for air navigation that contains elec-
tronic controls that inform pilots of changes in dif-
ferent aspects of navigation. The control system is
supported by a database that receives information from
different areas: weather, air bases, command flight
and so on. When there is a change in certain parame-
ters is necessary to alert pilots in order to support the
decision making process during the flight and, in the
same way, allow the aircraft’s electronic systems run
certain critical processes.

 A database is active from Monday to Friday, except
weekends and holidays. Saturday’s maintenance tasks
are performed. It is necessary to have control over
any change after hours or maintenance. For example,
if a connection is made to the database during a holi-
day, this requires that a delegate is informed.

Each of these scenarios describes a situation in which
messages are exchanged among multiple clients (nodes)
in a distributed environment. Messages not only inter-
communicate between the client and the server, but also
between processes on the server itself.

If we focus on these scenarios in terms of messages,
applications can be viewed as processes in which each
step is caused by one or more messages, and results in
one or more messages. Another way of saying this is that
the messages are events that cause other events of mes-
sage. Databases have several mechanisms that respond to
these scenarios: pipes management, systems and signal
alerts or advanced queue management, are the most
common. For Pipes and Management Systems and Signal
warning messages are transmitted in real time and there
is no persistence or delayed notifications. In the case of
advanced queue management, provides persistence and

Copyright © 2013 SciRes. JSEA

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

209

ability to delayed notifications.
For the development of these features databases also

have programming languages that extend the functional-
ity of Structure Query Language (SQL) as PL-SQL or
Transact SQL. These programming languages support all
queries and data manipulation used in SQL, but includes
new features such as handling variables, modular struc-
tures, exception handling, incorporating triggers, cursors
advanced management and structures flow control and
decision making.

Moreover, the databases have set libraries that allow
extending the language by incorporating various mecha-
nisms, including those for notification of changes. All
these tools allow the development of services for notify-
cation of changes to databases; however, these products
must be manually developed and customized as needed.

2.4. The Notification Change Service into a
CMDB

In the case of a CMDB, the Notification of Changes has
a very relevant as we shall discuss. Following the best
practices offered by the ITIL framework, the CMDB is a
federated database, which means that not all configure-
tion data must reside in one physical database [12].

The primary systems and data repositories are an au-
thoritative source of information, while the CMDB be-
comes the reference where this information lives and
how to access it. ITIL v3 now recognizes the importance
of this approach and recommends as a fundamental part
of the structure of a CMS (System Configuration Man-
agement). With federation, the basic data are stored in
the CMDB, which is linked to other stores, with more
detailed data. The federation allows access, through the
CMDB, to all the configuration items (CI’s).

From this source of information, which is the CMDB,
whenever a change occurs in a configuration item (CI),
this change may have an impact on the organization and
other processes related to the CMDB. Section four of the
paper, the analysis of the domain, shows the relationship
between the CMDB and some of the main processes in
the technological management of organizations. The proc-
esses will be supported by a number of information sys-
tems, such as asset management system or the system
management of incidents and problems.

These systems may act as subscribers for notification
of changes to the CMDB. This would allow the neces-
sary changes in the CI are notified to the relevant sys-
tems. Section 4 mentions some of the potential subscrib-
ers to the CMDB.

3. Background in Existing Research

3.1. Software Product Lines and the Variability

The benefits of taking a Software Product Line (SPL)

approach to develop similar software systems, in matter
of quality, productivity and time-to-market, have been
well documented by [13]. Key to the SPL approach is to
exploit the commonalities and variabilities (i.e., the dif-
ferences) of the systems that belong to a SPL. At the
moment, there is a wide variety of languages to docu-
ment variability in SPLs.

The aim of building SPLs is to get an effective reuse
of software. [14] summarizes the benefits of software
reuse in the next points: increased dependability, reduced
process risk, effective use of specialists, standards com-
pliance, and accelerated development. On the eighties,
some authors [15] estimated that the 60% of the software
applications would be developed assembling reusable
components. However, we are far from this forecast. For
example, a report published on 2005 [16] revealed that
the reuse level in 25 projects of the NASA with a size of
3000 - 112,000 lines of code was only the 32%.

According to many researchers, the development of
single systems tends to produce an opportunistic reuse of
software. On contrast, when multiple similar but distinct
systems are produced collectively it is possible to reach a
systematic reuse of software. Therefore, software engi-
neering should move its focus from single systems to
families of systems.

This approach was firstly proposed by D. Parnas [17]
and nowadays is followed by different paradigms for
building SPLs, such as generative programming [18],
software factories [19] and software product line engi-
neering [20], characterized to undertake the development
of a set of products as a single and coherent development
activity.

Clements, P. and Northrop, L. [13] define SPL as “a
set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of
a particular market segment or mission and that are de-
veloped from a common set of core assets in a prescribed
way”. This definition can be considered from two per-
spectives:
 Looking at the problem space, a SPL is a set of sys-

tems scoped to satisfy a given market. From this point
of view, it is essential to identify the common and
variable requirements of the systems.

 Looking at the solution space, a SPL is a set of sys-
tems sharing enough properties to be built from a core
asset base.

From this second perspective, it is fundamental to de-
cide how to implement the variability of the core assets;
i.e., the ability of the core assets to adapt to usages in the
different product contexts that are within the SPL scope.
Key to the SPL approach is to exploit the commonalities
and variabilities (i.e., the differences) of the systems that
belong to a SPL. The terms feature and variation point/

Copyright © 2013 SciRes. JSEA

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

210

variant are typically used to refer to the commonalities
and variabilities in SPLs.

For convenience, in this paper we will talk about fea-
tures in a general sense, according to the next definition:
“a feature is a distinguishable characteristic of a concept
that, from the perspective of the solution or the problem
spaces, is relevant to some stakeholder of the concept”.

Software reuse within an application domain depends
on the discovery of the common elements of the domain
products. There is a change of development oriented to a
single software product development focused on several
products that share some characteristics, forming a fam-
ily.

There are two different processes: domain engineering,
which focuses on the development of reusable compo-
nents that will form the domain; and application engi-
neering, that is oriented towards the development of in-
dividual products that satisfy a set of requirements and
constraints expressed by a specific user. In our case, we
opted for domain engineering.

One of the main objectives of the domain engineering
process is to define the commonality and the variability
of the SPL. This task is decomposed in:
 Domain Analysis, whose purpose is to scope the SPL

domain, collect the relevant domain information and
integrate it into a coherent model.

 Domain Design, whose goal is to develop architecture
and a detailed design for the SPL and to devise a
production plan.

 Domain Implementation, where the core assets are
implemented.

The aim of the domain engineering process is to derive
specific products by exploiting the variability of the SPL.

3.2. Generative Programming for Domain
Engineering

Generative programming and model driven development
consider the productivity gains in the performance of
software needs to raise the level of abstraction of pro-
gramming languages through the use of specifications
and models.

Key to the success of these two paradigms is the auto-
matic translation of models into executable code. For that
machine translation is feasible the application domain
models should decrease the variability between products
that may be generated is significantly less than the com-
monalities.

One approach used is to apply transformations on the
specification. Although there are specific languages for
expressing transformations, require overcoming a sig-
nificant learning curve and lack of some typical features
of programming languages. Exemplar Driven Develop-
ment (EDD) [21] is a Software Product Line method

which takes advantage of the similarities among domain
products to build them by analogy.

The EDD starting point is whatever domain product
built using conventional software engineering. The prod-
uct that must exist as the start point of EDD is called
exemplar. It is assumed that this exemplar implements
implicitly the intersection of all the domain product re-
quirements.

To satisfy the domain variable requirements that are
out of the intersection, EDD uses the concept of exem-
plar flexibilization. The flexibilization is the mechanism
that allows establishing an analogy relation (in a formal
way) between the exemplar and the new product, so the
new products can be derived automatically from the ex-
emplar.

The tool that performs the flexibilization is a Domain
Specific Compiler (DSC), which is used during applica-
tion engineering phase to derive automatically new prod-
ucts. The Figure 1 illustrates a summary of EDD.

4. Overview of the Proposal

4.1. Domain Analysis

First, for a full domain analysis we begin by studying the
main processes related to CMDB. About the incident
management process, the CMDB provides a rich source
of information to incident management [22].

Incident managers can quickly access CI status, de-
termine impact by reviewing the relationships between
CIs and the business applications they support and iden-
tify related CIs to restore service. For the problem man-
agement process, the CMDB gives a rich source of data
for proactive problem management, accelerating and
simplifying root-cause analysis and problem resolution.
It can provide the immediate status of CIs affected by the
problem. The CMDB can link incidents to problems, and
help to visualize the problem and related CIs and their
dependencies. It also can show the history of changes
that may have caused the problem. CMDB data could
automatically populate incident or problem records.

By respect the configuration and assets management
process, the CMDB is key to configuration management,
enabling the consistent, accurate, and cost-effective iden-
tification, control, status accounting, and verification of
all CIs in the CMDB, Mohammad Sharifi, Masarat Ayat
[23].

Release management process. CMDB information sup-
ports automated rollout across distributed locations by
providing accurate, detailed information about hardware,
software, and current configurations and their compati-
bility with changes that are incorporated in a release. The
CMDB can keep version details for software, verifies
tested configurations, and enables project scheduling.

Copyright © 2013 SciRes. JSEA

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

Copyright © 2013 SciRes. JSEA

211

Figure 1. Exemplar driven development.

Service desk process. The CMDB can enable signifi-
cant improvement in a range of service desk functions by
providing detailed information about CIs related to ser-
vice requests. Information about CI status, current con-
figuration, configuration baseline, dependencies to other
CIs and to business services, and planned changes all can
help service desk managers meet service requests. The
CMDB can also provide the data the service desk needs
to notify users of outages and the status of problem reso-
lution.

Service level management. The CMDB can allow end-
to-end service level management, providing detailed data
about CIs, their relationships to each other, and their re-
lationships to the underlying IT infrastructure. It provides
CI relationship data that links service level agreements
(SLAs) to customers and to all related CIs that enable the

service. It allows dynamic referencing of SLA compo-
nents. Also, we can detail the interface with the financial
management process. The CMDB provides information
that is critical to the effective financial management of IT.
It contains a complete list of CIs, from which easily can
be produced expected maintenance costs and license fees,
maintenance contracts, license renewal dates, and CI
replacement costs.

Another process relevant is the business continuity
management. The CMDB can store information about
the information technology infrastructure components,
their configurations and their dependencies to each other
and key business processes. It also identifies the priority
and the agreed-upon minimum level of business opera-
tion following a major service disruption.

The availability management process is as well an-

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

212

other interface for the CMDB. The CMDB can provide a
central information repository that links availability, re-
liability, and maintainability of services to the underlying
IT components. The CMDB can provide important busi-
ness impact data, shows related components in an avail-
ability string, provides risk-analysis data, and helps iso-
late which CIs are the root cause of availability failures.
The CMDB is essential for comprehensive business ca-
pacity management process. Information about CIs, their
relationships with each other, and their relationships to
business functions is necessary for automated capacity
management.

About the project management process, the CMDB,
along with a change and release management process,
can provide the mechanism to identify, plan, track, up-
date, and monitor the projects that create new CIs, mod-
ify CIs, or deploy instances of CIs. Having change and
configuration management integrated into the project
management lifecycle is critical to ensuring a smooth
project-to-production transition and accurate CI status.

Other processes that can interact with a CMDB can be
service performance and quality management process [24],
contract management, human resource management and
training. Finally, for the audit, governance, compliance,
and control processes, the CMDB provides an essential
repository of control-related data useful for both internal
and external audits.

The Control Objectives for Information and related
Technology framework, COBIT, recommends IT controls
that can effectively leverage information from a CMDB.
Each time a change occurs in a CMDB all these proc-
esses may be affected and in this scenario the changes
notification service becomes a powerful and useful tool.

Another issue discussed in our research is the potential
targets to subscribe to changes in the CMDB. Some of
them are: the Asset Management System, Incident/Prob-
lem/Change Management Systems, Event Monitoring
Systems, Directory Systems (user details, locations, as-
sociation of hardware location to user consumption, etc.),
Definitive Media Library (physical license store, archive
of all in-house developed code, licenses, master copy of
commercial off-the-shelf (COTS), software packages, etc.),
Document Management System or Human Resource and
Financial systems.

For clarity, the following is a small example. Service
Desk is the single point of contact for the users who need
help for running their IT systems. Customers contact the
service desk for various purposes such as information,
configuration change, problems, etc.

Customers can report problems using an Incident
Management System (IMS). Service Desk tries to satisfy
the customer requests to facilitate the restoration of nor-
mal operational service with minimal business impact.

The IMS may be a subscriber to the service. This service
might report, for example, when a web server is down.
Thus, if the client asks for internet access, service desk
can report the problem to the customers.

4.2. Domain Requirements

Whatever the solution chosen for the construction of the
CMDB (integrated multiple data repositories, one single
centralized data repository federated data repositories or
with one central data repository), within our domain is
necessary to consider a multitude of requirements that
must be analyzed. The purpose of this section is not to
expose all of them, only give an overview of the most
relevant:
 Time management.
 Subscribers management.
 Granularity.
 Priorities management.
 Navigational management.
 Searches management.
 Visibility management.
 Queues management.

The initial set of requirements is related to time man-
agement. This set of requirements includes, in turn, sev-
eral components. The first component is management of
retentions. In the case of using a mechanism such as
queue management, and reported the messages remain in
the queue during the time that is determined by the reten-
tion. Another aspect that includes time management is
the management of delays. Delays down the length of
time since the CMDB know a change until it is notified
from the CMDB to the corresponding subscribers.

Another component of time management is the man-
agement of timeouts. The timeouts are the time elapsed
since the CMDB know a change until it is considered
expired and is no longer notifies to the subscribers. The
last key aspect of time management is to manage the
waits. This requirement is related to mechanisms that
provide persistence, and queue management, and refers
to the waiting time of messages to be placed in the queue
of notifications.

The second set of requirements is the management of
subscribers to the notification mechanism. There may be
a single subscriber as a messaging system, or there may
be multiple subscribers to be notified about changes in
the CMDB. As discussed in the section on the change
notification service into a CMDB, in our proposal, we
analyzed a set of candidate systems to be the mechanism
for notifying subscribers of changes to the CMDB and
included systems such as the Asset Management System,
Incident/Problem/Change Management Systems and others.
It is necessary to identify all such systems will be eligible
for this service for our organization.

Copyright © 2013 SciRes. JSEA

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

213

The third group of requirements is the granularity of
the solution. We may find different solutions as a coarse
granularity, where change management is done at data-
base level. That means that only general operations on
the database will be notified. For example, when starting
the CMDB, when there is a change in it, when the CMDB
falls and others. We can meet with a medium grain
granularity where change notification is made at the en-
tity level. For example, when there is a change of soft-
ware in a financial system notifies to the helpdesk system.
And finally, we can have a fine-grained solution where
change management can be performed at the level of data
of the CMDB. Any data changed could be notified.

The fourth group of requirements to be analyzed is the
management of priorities. Different priorities among the
messages to be notified can be set. Events with more
level of priority could be notified first and events with
less level could be notified last. For example, a change in
a software component of the financial system can be
considered very critical and will be notified first, while a
change of system hardware purchasing department can
be considered less critical and will be notified last.

A fifth group of requirements relates to the navigation.
This group establishes how to navigate through the mes-
sages in the case of choosing a queuing mechanism.
When scrolling through the queue, it can set this re-
quirement as “first message”, so it always go to the first
message from the queue, or “next message”, to move to
the next or “next transaction”, to move to the message
that corresponds to the next transaction.

Another group of requirements is the management of
searches. This group of requirements sets the “standard”
search messages in queues notification. For example, we
have in our organization a CMDB that contains all con-
figuration items related to the system of the corporate
website. This system is a subscriber to the service changes
notification. The corporate website want to be notified
only those software changes the text in the comments
displayed the word “Web”.

There are other more detailed sets of requirements as
the management visibility. This set of requirements de-
termines the manner in which the messages queued or
dequeued. Overall, we have a transactional or immediate
type. In the first case, until the transaction is not com-
pleted, the message is not queued/dequeued. In the sec-
ond, is queued/dequeued before the transaction occurs.

Another group of requirements is the management of
the queues. These are related to how to dequeue mes-
sages. There is a navigational model, where the notifica-
tions do not affect the messages, a lock mode, where
messages that are reported are blocked and a deleted
mode, where messages that will notify subscribers are
removed from the queue.

4.3. Domain Design and Documenting
Variability

Since the first Feature Diagrams notation was proposed
by the FODA methodology in 1990, a number of exten-
sions and alternative languages have been devised to
model variability in families of related systems [25].

Several authors propose the Varied Feature Diagram+
(VFD+) as the language for documenting variability [26].
VFD+ introduces unnecessary complexity for automatic
variability management of diagrams. For instance, as
recognized by the authors themselves in [27] diagram
satisfiability can be faster evaluated in trees.

To overcome these objections, we propose the Neutral
Feature Tree Easy (NFTE) notation, derived from NFT
[28]. NFTE is an extension of NFT. NFT has the same
expressiveness, embed ability and succinctness as VFD+.
In fact, NFT is a VFD+ subset where diagrams are re-
stricted to be trees. We propose to use NFTE. NFTE uses
more comfortable serialization syntax of NFT, where
nodes of the diagram are specified as:

node(“node_name”,[list_of_children],low,high)

where low and high are 1 by default and list_of_children
is optional for leaf nodes. Constraints are written in
Conjunctive Normal Form as:

constraint(“node_1”|neg(“node_1”),..,
“node_n”|neg(“node_n”))

Comments may be written by starting a line with the #
symbol. A simple example is shown on Figure 2 (Signals
and Alerts Control Mechanism, SACM), which includes
three requirements (Waits, Granularity and Subscribers)
and one restriction: With No Waits (represented by DSE)
is only possible Coarse Grain (represented by GG):

node(“SACM”,[“Subscribers”, “Granularity”,
“Waits”],3,3)
node(“Subscribers”,[“SU”, “SM”],1,1)
node(“Granularity”,[“GG”, “GM”, “GF”],1,1)
node(“Waits”,[“DSE”, “DECV”],1,1)
constraint(“DSE => GG”)

This is a simplified example of one of the mechanisms
for managing notifications with a handful of requirements.

Figure 2. Graphical representation of NFTE.

Copyright © 2013 SciRes. JSEA

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

214

When handling a large set of requirements, graphical
diagrams become too unwieldy. In some of our examples
we have to handle more than 100 requirements.

To avoid these problems and have a graphical repre-
sentation, we have implemented an Interface Develop-
ment Environment (IDE) that allow the transformation
from NFTE notation diagrams to input format of graphi-
cal tools that allow us to view and manipulate the dia-
grams in a much automated form.

In addition, this IDE offers support for some of the
features we need as the total number of products, the
homogeneity of the SPL or the degree of reuse (com-
monality).

Figures 3 and 4 show some graphs obtained with data
received from our IDE for the previous example: the
number of products of every requirement and their com-
monality.

Figure 3. Number of products in our sample.

Figure 4. Commonality in our sample.

4.4. CMDB Standardization

When considering the development of product families
one of the key issues is the standardization of design and
analysis. To this end, we propose the standardization of
the CMDB. First, we made a proposal for standardization
of the major components of life cycle of the CMDB:
 The categorization of configuration items.
 Conceptual Design.
 Logical Design.
 Physical Design.

About the categorization in our proposal the IT com-
ponents should fall into predefined, standardized catego-
ries, each one containing like-CIs. In the infrastructure
configuration structure, categories encompass similar CIs
that are then further detailed through parent-child rela-
tionships, where children are specializations of their parent.
Categories can help how much detail is required in each
group of similar CIs. For example, consider the category
of hardware. The next level down could contain generic
categories of hardware, such as servers, workstations,
and routers. Table 1 provides examples starting point for
each component categories. Secondly, we proceed to
standardize the attributes of each configuration item. In
Table 2 it can be seen a selection of attributes for each of
the categorized items.

According to our proposed, conceptual model of a
CMDB is used in the early stages of the life cycle, and it
identifies the main entities and attributes, candidate keys,
domains and the CMDB, which may be multiple, recur-
sive generalizations, aggregations and others. The main
objective of such models is to establish the scope of in-
formation to manage the CMDB. Will be accompanied
by a description of the business rules of the CMDB and
should not be taken into account the needs of existing
technology, or other restrictions, as established by the
methodologies for this purpose.

This standard is based on writing the names of data
elements (attributes, columns) using three basic terms: an
entity (class), an attribute (property) and the representa-
tion, in line with other standards as ISO 11179, Informa-
tion Technology-Specification and Standardization of Data
Elements. Some of these rules will be extended to logical
and physical models of the CMDB and our proposal are
identified as common standards. As an example we pre-
sent some of them:
 All objects in the CMDB (entities, attributes, rela-

tionships, etc.) must have a dossier containing: name,
definition, comments and, if necessary, units of meas-
urement.

 It will use a restricted character set, to ensure port-
ability in environments where the character is reduced.
The proposed set of characters allowed is based on
using those admitted to name tags in an XML docu-

Copyright © 2013 SciRes. JSEA

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

Copyright © 2013 SciRes. JSEA

215

Table 1. CMDB categories.

Infrastructure CIs and categories Examples

Application Software Code, language, build, compiler.

Support Software Operating system, build image version.

Hardware Manufacturer, Serial number, mac address, IP address, firmware.

Data Client, Location ID.

Service Unit Bandwidth threshold, cost per month.

Process Name, owner.

Standard Date, name.

Documentation Version, author, editor.

Facilities Location, contact.

Table 2. Configuration items attributes.

Infrastructure CIs and Categories Attributes

Application Software Presentation layer module, Presentation logic layer, Business logic layer, Data access layer module.

Support Software Operating system, virtual server, antivirus, backup sw, server base image, workstation base image.

Hardware Desktop, Laptop, printers, network devices (router).

Data Client data, location.

Service Unit Network, desktop units.

Process Service request, work instruction, procedure.

Standard Policy, procurement, security standard.

Documentation Service blueprint, service agreement, support documentation.

Facilities Data center, remote office.

ment, considering it a de facto standard platform-in-
dependent.

 The table of characters allowed in the CMDB will be:
Numeric: 0 - 9 ASCII codes (48 - 57), alphabetical:
AZ, az ASCII codes (65 - 90) and (97 - 122) or un-
derline, ASCII code (95).

 The character set for definitions and comments con-
tained in the CMDB must be compatible with ISO-
8859 standard.

 Establishing a set of very detailed rules on abbrevia-
tions and acronyms.

 Regarding the name of each object is defined a series
of criteria relating to maximum size, the number of
uses, separation of words, prepositions, articles and
conjunctions, the compound names to the use of verbs,
the use of proper names or organizations, standards,
systems, interfaces and others.

 Should apply the principle of uniqueness of names
within the same level of abstraction (in the case of
conceptual models within the same model and the
same applied to the rest).

 While the CMDB model consists of several sub-
models, are not permitted relationships of an entity
(or table in the case of other models) with entities (or
tables or table in the case of other models) that are not
included in the same model, to avoid the complexity
of the changes control. This includes the attributes

necessary to identify the model and criteria for change
control and versioning.

 It identifies a set of criteria for the domains, defined
as a data type defined from one of the basic data types
of the methodology, technique or tool used, which has
a functional meaning in the context that applies to one
or more attributes of the model.

 Subsequently, we propose to define a set of rules spe-
cific to the conceptual model of the CMDB. Some
samples of these rules are:

 As far as possible primary keys must be identified, at
least for major institutions.

 Include the attributes considered most significant func-
tional context.

 Use, where necessary, hierarchies of super types and
subtypes to represent certain real-world structures
(generalization, specialization, categorization, inheri-
ance, etc.).

 IDEF1X [29] use is recommended as notation for the
conceptual model of the CMDB.

 Establishing a series of very specific rules and look
details for the appointment of entities, attributes and
relationships.

The logical data model of the CMDB is obtained from
solving the conceptual model complex relationships, elimi-
nating redundancies and ambiguities, identifying depend-
ency relationships, completing entities and attributes, iden-

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

216

tifying the keys of each entity and specifying cardinality.
Associated with the logic model should estimate the
growth of the institution, the type and frequency of ac-
cess as well as those features relating to security, confi-
dentiality, availability, etc., considered relevant. This type
of model is linked to technology, relational databases. In
our proposal, the following rules apply to the logical
model of the CMDB; also will include general rules es-
tablished earlier:
 The logical model is derived from the conceptual

model.
 Should include all entities and all the attributes, not

only the most significant.
 Relations are not allowed “many to many” must be

resolved with partners involved.
 The foreign keys (FK’s) must be migrated and identi-

fied.
 The alternatives keys must be defined and identified.
 When necessary, recommend the use of numerical

surrogate keys (or auto number), which must be de-
fined and identified.

 Not required to solve the hierarchy of super types and
subtypes. It is recommended not to do at this level of
abstraction.

 IDEF1X notation must be used.
 It is mandatory that the model is, at least in 2nd nor-

mal form (FN), and highly recommended, in 3rd NF.
 Establishing a series of very specific rules and look

details for the appointment of tables, columns, rela-
tionships, key partners and migrated keys.

The physical model of the CMDB is obtained from the
normalized logical data model, analyzing the technical
characteristics of the database manager to use, estimating
volumes and setting rates and other operator-dependent
as sample blocking, compression data or clusters. During
the implementation of a system will be necessary to im-
plement the objects of the logical data model, adapting to
the limitations of a particular software system (relational
database management system, operating system, language,
etc.). It also tends to cause a de-normalization process,
because of which there are new objects of data models
physical level. Finally it is the need to identify specific
objects of physical models such as indexes, sequences,
constraints and others.

One of the usual limitations on the way to the physical
data model refers to the maximum size of the names of
the tables, columns, fields, etc. This shortening of names
is also usually due to practical reasons that make writing
code, but should not be misused, as it makes it more dif-
ficult to understand. Therefore, the designer will be forced
to shorten the names of data objects of the logical model,
usually through the use of abbreviations. In our proposal,
the following rules apply to the physical model of the

CMDB; also will include general rules established ear-
lier.
 The physical model is derived from the logical model.
 Alternatives should include keys and inverse input

(inversion entries).
 The hierarchy of super types and subtypes should be

resolved having applied the necessary changes.
 IDEF1X notation must be used.
 Establishing a series of very specific rules and look

details for the appointment of tables, columns, rela-
tionships, triggers, names of data objects, instances,
primary key constraints, unique keys and shortening
the logical names.

4.5. Domain Implementation

When developing our service for notification of changes
we can find two types of situations: our organization has
a CMDB or is necessary to develop a CMDB from
scratch. In the case that we had to develop a CMDB, we
recommend to follow our guidelines and make use of
Common Information Model, CIM [30]. This model is a
de facto standard to represent and organize all the infor-
mation management of a technological environment in an
organization.

Once developed the CMDB, our initiative is designed
to take advantage of the proximity of the products that
can be generated within a domain, suggesting that the
implementation of changes not only on the specification,
but on any of the products. The translator is defined as a
program that takes a product previously developed do-
main, which is identified as exemplar, and transforms it
to fit a specification. That is, in order to take advantage
of the proximity of the products that can be generated
within a domain, it is proposed that the changes to be
implemented on any of the products. We use an adapta-
tion of Exemplar Driven Development (EDD) [21], where
the NFTE diagrams are built specifying the user features
and using the necessary information from the database.

This database information is contained in metatables
and it is obtained automatically. Once the domain spe-
cific language exist (in this case, the NFTE diagrams),
the Domain Specific Compiler (DSC) for this language is
implemented. A summary of the EDD adaptation is illus-
trated in the Figure 5.

To develop the products is used the Exemplar Flexibi-
lization Language (EFL). EFL is an external flexibiliza-
tion technique that supports noninvasive exemplar trans-
formations and crosscutting flexibilization. It is applica-
ble to whatever kind of software artifact and provides an
efficient generative variant construction. EFL is used to
build the DSC that deal with the specification variability
and also with the implementation variability in our do-
main case study.

Copyright © 2013 SciRes. JSEA

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

217

Figure 5. Adaptation of EDD to build the CMDB notifica-
tion change mechanism.

Figure 6 illustrates a typical DSC written in EFL,

made of an analyzer which takes as input a specification,
and a generator which is responsible for generating the
new product. The generator as showed in the figure could
be made of other generators. EFL is currently imple-
mented as a library of the Ruby object oriented language.

This implementation is distributed as Lesser GNU
General Public License and it is available in different
repositories as Ruby Forge or RAA (Ruby Application
Archive).

The most important part is that generators are respon-
sible for analyzing the exemplar and adapt it in order to
generate the new product according to the given specifi-
cation. Decomposing the generators in other generators
helps to implement the flexibilization, since each gen-
erator will dealt with different artifacts fragments in
which changes has to be done. On these artifacts frag-
ments different specific analysis capabilities are required.
Modularization of changes and traceability are also rea-
sons that drive us to decompose in different generators.

Generators are also responsible for detecting depend-
encies and inconsistencies in the configuration model.
This capability, in the SPL presented in this paper, is
considered essential because the user might have selected
wrong requirement or the requirements could contain
among them incompatibilities, as combinations not al-
lowed. This could drive to an invalid product for the SPL.
In case of miss configurations generators provide a de-
tailed report about the incompatible features. The user
can use this report to review the selected features. Finally,
generators can analyze the internal elements of the data-
base to obtain all the necessary information of the do-
main.

5. Economic Study

Our mathematical model for calculating the benefits pro-
vided by our proposal is based on the standard COP-
LIMO [31]. COPLIMO is a COCOMOII [32] extension.
According to this standard and having to:

Figure 6. Domain Specific Compiler in EFL.

 PLS(N) is the Product Line Savings for a Software
Product Line (SPL) with N products.

 PMR(N) is the cost in PM (person/months) for build-
ing N products in a Software Product Line (SPL).

 PMNR(N) is the cost in PM for building N products
without reusing components (outside of the SPL).

We obtain the first Equation (1) of our economic
model:

 PLS N PMNR N PMR(N) (1)

where PMNR(N) is estimated using the standard CO-
COMO II:

1

PM Size EM
n

E
i

i

A

 (2)

 A is an organization-depend constant.
 E is the “scaling parameter”. It reflects the dispropor-

tionate effort for large projects, due to the growth of
interpersonal communications overhead and growth
of large-system integration overhead.

 EMi are Effort Multipliers (required software reliabil-
ity, database size, product complexity, required reus-
ability).

Then, we have:

1

PMNR N Size EM
n

E
i

i

N A

 (3)

If we have the COPLIMO assumptions, PMR(N) is es-
timated by:

PMR 1 PMNR 1

PFRACRCWR RFRAC AFRAC

(4)

PMR N

PMR 1 N 1 PMNR 1

PFRAC RFRAC AA 100 AFRAC AAM

(5)

where:

Copyright © 2013 SciRes. JSEA

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

Copyright © 2013 SciRes. JSEA

218

 1 1

PMR N

PMR 1 N 1

AA

100 A gsize gEM
nG E

ii i

 (10)

 PFRAC, RFRAC and AFRAC are the unique, back-
box and white-box reused parts of our products.

 RCWR (Relative Cost of Writing for Reuse) is a mul-
tiplier to estimate the effort of making sw reusable
across the SPL. If RUSE is the development for reuse,
DOCU is the degree of documentation and RELY is
the required software Reliability: where gsize is the size of the generators, G is the number

of generators and eEM are the Efforts Multipliers of the
generators. Our interest is to obtain the Return On In-
vestment (ROI):

RWCR RUSE DOCU RELY (6)

 A (Assessment and Assimilation) is the effort required
to assess the candidate reusable components and choose
the most appropriate one, plus the effort to assimilate
the component code and documentation into the new
product. Table 3 shows the values.

For our Software Product Line (SPL) we have:

PLS Ncost savings
ROI N

cost investiment PLS 1
 (11)

We get all the parameters of our CMDB Notification
Service Economic Model (CMDB NS EM). Some of
them are listed in the Table 4.

1

PMNR N esize eEM
n

E
i

i

N A

 (7)

Substituting all parameters into the formulas and
where N is the number of products in our SPL we obtain
that the number N of products necessary for our product
line has benefits is:

where esize is the size of the exemplar and eEM are the
Efforts Multipliers of the exemplar. The “scaling pa-
rameter” is:

 0 1N

1

0.01 SF
n

i
i

E B a

 (8) 1 ROI N

where B is the “scaling base exponent for the effort” and
SFi are the scale factors: precedentedness, development
flexibility, architecture, risk resolution, team cohesion
and process maturity.

The cost for building n products in our SPL is:

1 1

PMR 1

PMNR 1 A gsize gEM
nG

E
i

i i

 (9)

That is, with only 11 products, our SPL will be pro-
ductive. The number of products obtained with our SPL
varies depending on the requirements, the number of
subscribers, requirements and the size of the CMDB,
mainly. In reference to the size of the CMDB, in the case
of opting for a fine-grained granularity, the notification
changes service will be able to report changes at the en-
tity level of the CMDB. The scope of our SPL and the
number of products will grow with the number of enti-
ties.

Table 3. Assessment and assimilation.

AA increment Description

0 None

2 Basic module search and documentation

4 Some module Test and Evaluation (T & E), documentation

6 Considerable module Test and Evaluation (T & E), documentation

8 Extensive module Test and Evaluation (T & E), documentation

Table 4. Parameters for our model.

Parameter Description Value

A Effort coefficient 2.94

B Scaling base-exponent for effort 0.91

∑SFj (gen) Sum of all Scale Factors for the Generators 6.32

∏Emj (gen) Product of 17 Effort Multipliers for the Generators 2.33

E (gen) Scaling exponent for effort (Generators) 0.97

Size (ex) Size of the Exemplar in PM (person/months) 0.25

Size (gen) Size of the Generators in PM (person/months) 2.00

AA Assessment and Assimilation 4.00

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

219

Using the algorithms described in [28] we obtain the

relationship between the number of entities and the
number of products. As we can see, the number of possi-
ble products of our SPL grows exponentially with the
number of entities considered in our service, as shown in
Figure 7. In reference to the subscribers, we obtain the
relationship between the number of subscribers and the
number of products.

As we can see, the number of possible products of our
SPL grows exponentially with the number of subscribers
considered in our service, as shown in Figure 8.

In our analysis we identified a number of requirements
and features and managing a case of fine-grained with a
CMDB with 8 entities and 5 subscribers, we get the
number of products shown in Figure 9.

6. Conclusions

We have presented a framework for building a product
line that enables us to implement the change notification
service in a CMDB (Configuration Management Data-
base), according to ITIL (Technology Infrastructure Li-
brary) best practices. Both ITIL and CMDB as the

Figure 7. Number of Products and Entities.

Figure 8. Number of Products and Subscribers.

Figure 9. Number of Products.

mechanism for notification of changes to the multiple
and potential subscribers are crucial elements in the cur-
rent workings of all modern IT organizations.

The framework presented, located under the umbrella
of the engineering domain, makes use of innovative tech-
niques and tools such as EDD (Exemplar Driven Devel-
opment) methodology aimed at developing product lines
built by the analogy of a product, NFTE (Neutral Feature
Tree Easy) as a notation for documentation of the vari-
ability of the product line, EFL (Exemplar Flexibilization
Language) that allows us, through the construction of
generators, from the specification of a product of the SPL,
to get the rest of the products, or the calculation of the
number of products by SPL using algorithms from the
NFTE notations.

In addition, the work presented is offered for a CMDB
standard. This standardization, really useful in develop-
ing our product line, can be extended and generalized to
any standard of design and specification of a CMDB.
Finally, we presented an economic model to our line of
products based on COPLIMO, where we have obtained,
as a most important conclusion: the great profitability
and productivity of our product line. Our framework is
able to get thousands of products and the effort to carry it
out is about a dozen products.

REFERENCES
[1] S. Adams, “ITIL V3 Foundation Handbook,” TSO, 2009,

pp. 7-11.

[2] G. Blokdijk, “CMDB and Configuration Management
Process, Software Tools Creation and Maintenance, Plan-
ning, Implementation Guide,” Lulu.com, 2009, pp. 63-68.

[3] M. Ayat, M. Sharifi, S. Ibrahim and S. Sahibudin,
“CMDB Implementation Approaches and Considerations
in SME/SITU’s Companies,” 3rd Asia International
Conference on Modeling & Simulation, Bali, 25-29 May
2009, pp. 381-385. doi:10.1109/AMS.2009.113

[4] M. X. Atherton, “Deploying CMDB Technology Pragma-
tism and Realism Will Deliver the Benefits,” Freeform
Dynamics Ltd., 2009.
http://www.freeformdynamics.com/

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1109/AMS.2009.113

A Domain Engineering Approach to Increase Productivity in the Development of a Service for
Changes Notification of the Configuration Management Database

220

[5] R. A. Steinberg, “Implementing ITIL: Adapting Your IT
Organization to the Coming Revolution in IT Service
Management,” Trafford Publishing, Trafford, 2005, pp.
50-54.

[6] J. Van Bon, “Service Design. Service Design Based on
ITIL V3: A Management Guide Best Practice,” Van
Haren Publishing, 2009. http://www.vanharen.net/

[7] J. Van Bon, “Service Operation. Service Operation Based
on ITIL V3: A Management Guide Best Practice,” Van
Haren Publishing, 2008. http://www.vanharen.net/

[8] J. Van Bon and M. Pieper, “Service Transition Based on
ITIL V3: A Management Guide Best Practice,” Mike
Pieper, 2008. http://www.vanharen.net/

[9] R. J. Colville, “Gartner RAS Core Research Note
G00137125,” Gartner on CMDB, 2006.

[10] M. Corp, “Microsoft Operations Framework: Capacity
Management Service Management Function,” 2005.

[11] J. R. Coz, R. Heradio, J. A. Cerrada and J. C. Lopez, “A
Generative Approach to Improve the Abstraction Level to
Build Applications Based on the Notification of Changes
in Databases,” 10th International Conference on Enter-
prise Information Systems, Barcelona, 2008.

[12] D. Clark, et al., “The Federated CMDB Vision: A Joint
White Paper from BMC,” Technical Report, CA, Fujitsu,
HP, IBM, and Microsoft, Version 1.0., 2007.

[13] P. Clements and L. Northrop, “Software Product Lines:
Practices and Patterns,” Addison-Wesley, Boston, 2001.

[14] I. Sommerville, “Software Engineering,” 9th Edition,
Addison-Wesley, 2010.

[15] L. G. Lanergan and C. A. Grasso, “Software Engineering
with Reusable Designs and Code,” IEEE Transaction on
Software Engineering, Vol. 10, No. 5, 1984, pp. 498-501.
doi:10.1109/TSE.1984.5010273

[16] R.W. Selby, “Enabling Reuse-Based Software Develop-
ment of Large-Scale Systems,” IEEE Transactions on
Software Engineering, Vol. 31, No. 6, 2005, pp. 495-510.
doi:10.1109/TSE.2005.69

[17] D. Parnas, “On the Design and Development of Program
Families,” IEEE Transactions on Software Engineering,
Vol. SE-2, No. 1, 1976, pp. 1-9.
doi:10.1109/TSE.1976.233797

[18] K. Czarnecki and U. Eisenecker, “Generative Program-
ming: Methods, Tools, and Applications,” Addison-
Wesley, 2000.

[19] J. Greenfield and K. Short, “Software Factories: Assem-
bling Applications with Patterns, Models, Frameworks,
and Tools,” 1st Edition, Wiley, 2004.

[20] K. Pohl, G. Böckle and F. Linden, “Software Product
Line Engineering: Foundations, Principles and Tech-
niques,” Springer, 2005.

[21] R. H. Gil, J. F. E. López, I. A. Cardiel and J. A. C. So-
molinos, “Translation from Abstract Specifications to

Executable Code via Exemplar Transformations,” V Jor-
nadas sobre Programación y Lenguajes (PROLE’05),
2005, pp. 185-191.

[22] R. Gupta, J. H. Prasad and M. Mohanla, “Automating
ITSM Incident Management Process,” International Con-
ference on Autonomic Computing, Chicago, 2-6 June 2008,
pp. 141-150. doi:10.1109/ICAC.2008.22

[23] M. Sharifi, M. Ayat, S. Ibrahim and S. Sahibudin, “A
Novel ITSM-based Implementation Method to Maintain
Software Assets in Order to Sustain Organizational Ac-
tivities,” 3rd UKSim European Symposium on Computer
Modeling and Simulation, Athens, 25-27 November 2009,
pp. 274-280. doi:10.1109/EMS.2009.73

[24] M. Sharifi, M. Ayat and S. Sahibudin, “Implementing
ITIL-Based CMDB in the Organizations to Minimize or
Remove Service Quality Gaps,” 2nd Asia International
Conference on Modeling & Simulation, Kuala Lumpur,
13-15 May 2008, pp.734-737.
doi:10.1109/AMS.2008.144

[25] P. Schobbens, P. Heymans and J. Trigaux, “Feature Dia-
grams: A Survey and a Formal Semantics,” 14th IEEE
International Conference on Requirements Engineering,
Minneapolis, 11-15 September 2006, pp. 139-148.
doi:10.1109/RE.2006.23

[26] P. Heymans, P. Schobbens, J. Trigaux, Y. Bontemps, R.
Matulevicius and A. Classen, “Evaluating Formal Proper-
ties of Feature Diagram Languages,” Software, IET, Vol.
2, No. 3, 2008, pp. 281-302.
doi:10.1049/iet-sen:20070055

[27] P. Schobbens, P. Heymans, J. Trigaux and Y. Bontemps,
“Generic Semantics of Feature Diagrams,” Computer Net-
works, Vol. 51, No. 2, 2007, pp. 456-479.
doi:10.1016/j.comnet.2006.08.008

[28] D. Fernández-Amorós, R. H. Gil and J. C. Somolinos,
“Inferring Information from Feature Diagrams to Product
Line Economic Models,” Proceedings of the 13th Inter-
national Software Product Line Conference, Vol. 446,
2009, pp. 41-50.

[29] T. Bruce, “Designing Quality Databases with IDEF1X
Information Models,” Dorset House Publishing Company,
1991.

[30] “Common Information Model (CIM),” Version 2.26.0.,
DMTF Application Working Group, 2011.

[31] B. Boehm, et al., “Software Cost Estimation with CO-
COMO II,” Prentice Hall, Upper Saddle River, 2000.

[32] B. Boehm, A. W. Brown, R. Madachy and Y. Yang, “A
Software Product Line Life Cycle Cost Estimation Mo-
del,” International Symposium on Empirical Software
Engineering, 19-20 August 2004, pp. 156-164.
doi:10.1109/ISESE.2004.1334903

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1109/TSE.1984.5010273
http://dx.doi.org/10.1109/TSE.2005.69
http://dx.doi.org/10.1109/TSE.1976.233797
http://dx.doi.org/10.1109/ICAC.2008.22
http://dx.doi.org/10.1109/EMS.2009.73
http://dx.doi.org/10.1109/AMS.2008.144
http://dx.doi.org/10.1109/RE.2006.23
http://dx.doi.org/10.1049/iet-sen:20070055
http://dx.doi.org/10.1016/j.comnet.2006.08.008
http://dx.doi.org/10.1109/ISESE.2004.1334903

