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ABSTRACT 

This paper examines general variance-covariance structures for the specific effects and the overall error term in a two- 
way random effects (RE) model. So far panel data literature has only considered these general structures in a one-way 
model and followed the approach of a Cholesky-type transformation to bring the model back to a “classical” one-way 
RE case. In this note, we first show that in a two-way setting it is impossible to find a Cholesky-type transformation 
when the error components have a general variance-covariance structure (which includes autocorrelation). Then we 
propose solutions for this general case using the spectral decomposition of the variance components and give a general 
transformation leading to a block-diagonal structure which can be easily handled. The results are obtained under some 
general conditions on the matrices involved which are satisfied by most commonly used structures. Thus our results 
provide a general framework for introducing new variance-covariance structures in a panel data model. We compare our 
results with [1] and [2] highlighting similarities and differences. 
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1. Introduction 

Panel data models are often characterised by a three 
component error structure consisting of an individual 
(time invariant) specific effect, a time specific (individ-
ual invariant) effect and an overall idiosyncratic error 
term varying in both the individual and time dimensions. 
This leads to a corresponding three component variance 
covariance structure for the combined error term of the 
model. Due to the potentially large dimension of this 
variance covariance matrix, its inverse is usually calcu-
lated using matrix decomposition results. In a seminal 
paper [3] derived the spectral decomposition of the vari-
ance-covariance matrix of a two-way (and a one-way) 
random effects (error component-EC) model when all the 
components are assumed to be i.i.d. and independent two 
by two. 

Several works have extended Nerlove’s result when 
non-i.i.d. structures are assumed for the error terms, 
namely, an MA(1) for the overall error term in [4], an 
AR(1) structure for the overall error term in [5], an 
ARMA structure for the overall error term in [6-8]. All 
these studies consider a one-way EC i.e. only individual 

effect in addition to the overall error term, and apply a 
first-stage Cholesky-type transformation in order to get 
back to a “classical” one-way EC setting in which both 
the individual effect and the idiosyncratic error are i.i.d. 
after the transformation. Once we get back to the “clas-
sical” setting, we can apply Nerlove’s spectral decompo-
sition for implementing the GLS procedure. Thus, all the 
studies so far have employed a combination of a first 
stage Cholesky and a second stage spectral decomposi-
tion. 

In this note, we first show that the Cholesky-spectral 
combination approach adopted by all the above-men- 
tioned articles is not possible in a two-way setting and 
there exists no transformation that will get us back to a 
“classical” EC structure. Then we propose a solution to 
the problem through a different first stage transformation 
based on a new spectral decomposition result which we 
present and prove. This new result is derived for two way 
EC models with general variance-covariance structures 
for all the error components. Our first stage transforma-
tion does not yield a classical two-way EC but a one-way 
EC with heteroscedastic errors and we show that the 
spectral decomposition and hence the determinant of the 
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variance covariance matrix of the transformed errors is 
easy to obtain, thus making GLS- and Maximum Likeli-
hood-type procedures operational. 

A recent article [1] provides a solution for the inverse 
and determinant of some general variance covariance 
structures in panel data models including a general 
one-way EC setting with a variance covariance matrix 

 of the form 2  where  is a 

A  matrix of full column rank,  is a 
Ω
T 

2   A BΓΓ ΔΔ
Δ

Γ
r BN r  ma-

trix of full column rank, A2 and B2 are positive definite 
matrices of order  and  respectively. They 
showed that a two-way EC of the form  

, where a is a T-vector, 
b is a N-vector, A is , and B is , is a special 
case of the above general one-way EC. However, the 
authors add that if one were to generalise the traditional 
three component structure, namely  

1 1 2 2 3 3 , where all the first ma-
trices of the Kronecker products are of order 

T T N N

2  bb A B
T T N

  B A B

  B A

  A B A

aaΩ

Ω

N

T T  and 
the second ones , then “the inverse is not easily 
computable in general”. The above general Kronecker 
structure is precisely what we consider in our note and 
we propose a general two-stage transformation for cal-
culating its inverse and determinant under some condi-
tions1 Thus our result represents a natural follow up to 
the note by [1]. Our note partially validates their conjec-
ture as our first stage spectral transformation yields a two 
component heteroscedastic structure and we do bring the 
model to a two component variance structure at an in-
termediate stage. However, we say only “partially” as we 
cannot rewrite our original variance matrix as a two 
component variance structure but apply a transformation 
to convert a general three component variance structure 
into a two component one. 

N N

Another more recent study [2] presents a general ap-
proach for a two-way EC under double autocorrelation in 
both the time effect and the idiosyncratic error. They 
propose a transformation based on a mixture of Cholesky 
and spectral decompositions as a first stage (what we call 
a “hybrid” transformation in this note), and a spectral 
decomposition as a second stage. In our note, we use our 
methodology to extend their approach to more general 
structures at the cross-sectional level. We derive the 
spectral decomposition as well as the determinant of the 
resulting variance-covariance matrix whereas [2] only 
derives the inverse of the transformed variance-covari- 
ance matrix. 

The paper is organised as follows. Section 2 shows 
why Cholesky-type transformations do not work in the 
two-way EC model. In Section 3 we derive the new 

“spectral-spectral” combination result for general struc-
tures of variance-covariance matrices. The new trans-
formation is obtained under some conditions that are 
satisfied for most of the structures usually encountered in 
a panel data setting. Section 4 takes up some of these 
commonly used structures and describes how a solution 
can be found for these structures using our new decom-
position result. Section 5 presents a new transformation 
along the lines of [2]. Finally, we conclude by pointing 
out some interesting aspects of our approach that may be 
worth investigating further. 

2. On the Impossibility of Cholesky  
Decomposition in a Two-Way Error  
Component Context 

Consider the following panel data model:  

, 1, , , 1, ,it it ity i N t T    x β      (1) 

where  

it i t it       

with i  denoting the individual specific random effect, 

t  denoting the time specific random effect, it  the 
overall idiosyncratic error term, and where β  is a 1k   
vector of coefficients including the intercept, i and t de-
note the individual and the time period respectively, it  
is a 

x
1k   vector of observations on k strictly exogenous 

explanatory variables. it  is assumed to follow a sta-
tionary process t  independent over , and 
parameterised by a vector . Writing  

1,i , N
θ

   1 2 1 2, , , , , , ,N T        μ λ ,  

 11 12 1 21, , , , , ,T N       ε T ,  

let us assume that:  

       2 2, ,T N NV V V     Ωλ I μ I ε I θ  

where  Ω θ  is any non-iid variance covariance struc-
ture and the disturbance components are independent two 
by two. Under these assumptions, the variance-covari- 
ance matrix of the linear model can be expressed as fol-
lows:  

    
 

2 2 N T T N N T

N

V  



     

  Ω

I ι ι ι ι I

I θ V


     (2) 

In the case of a one-way EC model, the structure typi-
cally proposed in the literature for  is an auto-
correlated structure and a Cholesky decomposition is 
used to get back to a “classical” one-way EC setting. In 
the following lemma, we establish that in a two-way EC 
model it is impossible to find a Cholesky decomposition 
that diagonalises 

 Ω θ

 Ω θ  and gets us back to a “classi-
cal” setting. A solution to this problem is proposed in the 

1We show that these conditions are satisfied in almost all usually as-
sumed structures and these conditions do not imply a rewriting of the 
three component variance matrix as a two component one. Thus we do 
go beyond a two component structure. 
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next section. 
Lemma 1. Let N  T I T  be a transformation ma-

trix, where T
  1
θ

 is  matrix such that  

    with T

 a T T
  ΩT T Ω θ I . Then, there is no 

matrix with the above-mentioned properties that allows 
us to get back to a classical two-way EC model.  

Proof: See Appendix A. 

3. Spectral Decompositions, an Alternative 

This section shows that two-stage spectral decomposi-
tions can be applied to solve the problem of an analytical 
inverse of V for the general variance-covariance structure 
(2) presented in the previous section. Before deriving the 
main result in the form of a theorem, we illustrate our 
idea in the case of a two-way EC model with autocorre-
lation in the overall error term, a case that may be com-
monly encountered in practice (for which there is no ex-
plicit solution so far). 

Assume that we are dealing with a panel data model 
with the following variance-covariance matrix (EC with 
MA structure for the idiosyncratic error):  

      2 2
, , N T N T NV        Ωω I J J I I b T (3) 

where 

2

2
, ,

2

1 0 0

0 0

0 0 1

b T

T T

b b

b

b

b b

 



 
 
 
 


 

Λ

Ο Ο Ο Μ

Ο Ο Ο

Μ Ο Ο Ο

Λ

Ω




 

As the inverse of the above variance-covariance matrix 
is rather difficult to compute, if we want to apply a GLS 
or Maximum Likelihood procedure we need to find a 
transformation which will yield a variance-covariance 
matrix with a tractable inverse. In Section 2, we proved 
that it was not possible to get to the classical structure 
through the Cholesky decomposition. Nor is it possible to 
rewrite the model as a one-way EC structure. Here we 
show that by using the spectral decomposition, we can 
provide an explicit transformation that allows us to get to 
a model with a variance-covariance matrix that is easy to 
handle. 

First we note that [9] has given the orthogonal matrix 
 such that , where  , ,b TQ


, , , , , , , ,b T b T b T b T    Q QΩ 

 , , , , 1, ,
diagb T b t t  


ΛT

, is the matrix of eigenvalues of  

, ,b TΩ , with 2
, ,

π
1 2 cos

1b t

t
b b

T
      

. The t-th col- 

umn of  is given by:  , ,b TQ

1, ,
, ,

2 π 2 π π
sin ,sin , ,sin

1 1 1

t T
b T

t t Tt

T T T T




  

                    

Q




Next we derive another result (Lemma 2 below) which 
gives the diagonalisation of a unit matrix and shows that 
the same orthogonal matrix also diagonalises an equicor-
relation matrix as well. This can be particularly useful in 
panel data models with both individual and time specific 
effects. In fact, one of the main problems for getting the 
spectral decomposition of the full variance-covariance 
matrix in the presence of a time effect is the cross-sec- 
tional dependence induced by the latter. Indeed, in the 
presence of a time effect we lose the block-diagonal 
structure which is found in one-way models. This lemma 
is useful as it allows us to obtain a transformation leading 
to a block-diagonal structure. 

Lemma 2. Let Nι  be a  vector of ones. Let 1N 
N N NJ ι ι  and2 

, ,

1

1

1

N

N N

 

 



  

 
 
 
 
 
 


 

  


Ω . 

Then the same matrix ,NQ  diagonalises both NJ  
and , ,N Ω  i.e.  

, , ,

, , , , , ,

N N N N

N N N N

  

     

 

 

Q J Q

Q QΩ




 

where ,N  represents the orthogonal matrix of eigen- 
vectors of both 

Q

NJ  and , ,N   (its expression is given 
in the lemma’s proof in the Appendix), and ,

Ω

N  and 

, ,N   represent the matrices of eigenvalues of NJ  
and , ,N 

Proof: See Appendix A. 
Ω  respectively. 

Now combining [9]’s result and Lemma 2, we can 
give a transformation, 1 , , ,N b T  S Q Q  which when ap- 
plied to (3) will lead to a block-diagonal structure whose 
spectral decomposition is easily obtained (see Theorem 1 
and Special Case 1). Thus GLS and ML methods become 
much easier to operationalise in presence of complex 
variance covariance structures. 

The method presented above fits in a more general ap-
proach that provides a way out for obtaining the inverse 
of any general variance-covariance structure for the spe-
cific effects as well as the idiosyncratic error in a 
two-way EC setting. We derive the solution under certain 
assumptions which may seem restrictive at first sight but 
which we show to be satisfied by many general structures 
frequently found in the literature. In fact we also show 
that this theorem enables us to introduce some new and 
possibly relevant structures in panel data models. 

1





  (4) 

Let us now consider general processes for ,i t   and 

it  such that    , ,V V  Ω Ωμ λ  and  V ε Ω . 

2Note that  given in this lemma represents the variance-co-, ,N Ω

variance matrix of an equicorrelated error structure. 

Copyright © 2013 SciRes.                                                                                  AM 



C. DE PORRES, J. KRISHNAKUMAR 

Copyright © 2013 SciRes.                                                                                  AM 

617

 

, ,

, ,

, ,

, ,

N

V

     

    

     

     

 

 

 

 

 

  

Ω

Ω

Ω



Q Q D

Q J Q D

Q Q D

Q Q D

Q ω D dd D

         (6) 

In other words we have individual (cross-sectional) de-
pendence through Ω , cross-sectional dependence and 
time dependence through Ω  and time dependence in 

Ω . 
Theorem 1. Given a general variance covariance 

structure  

  ,NV T N    Ω Ωω I  J J Ω  

where 1N

N


 

  
   

I D
D

D D

0

0
% , , Q  and , Q  are  where N N NJ ι ι , if  

;N N    Ω Ω ΩJ JΩ Ω

,

Ω          (5) 
orthogonal matrices, , T d Q ι , and , , , ,   D D D D D%  
are diagonal matrices. then the following results hold3: 

1) There exists a transformation matrix given by 

,

2) The spectral decomposition of the transformed 
variance-covariance matrix is given by:        Q Q Q  such that:  

 

 
 

1

2 2

, 1

N Tr r
r

Q
r

N T

V

d





 


 



    
       
      

     

0

0

   
 

      
 

dd' dd'
D I I

ω D D
dd' dd'

I

              (7) 

 

  d d     and  
1

2N  
 d D Dwhere , r  , ,1, , 1

1 ,
r

i ii N
d ddiag  

 
 D


  is the i-th 

element of the diagonal matrix D ,   , d d 
1

2



d D d , 

d . 

3) The determinant of the transformed variance-co- 
variance matrix can be written as:   

 

      
1

1
, , , , ,

1 1 1

1 1
T T N

N
j k k i N

j k i

V d Nd d d d      




  

     Q ω                        (8) 

roof: See

ovariance matrices of a 

 

ge

P  Appendix B. 
Remarks: 

ming variance-c1) By assu
neral form for the three components in the random 

effects model, denoted as , Ω Ω  and Ω , we go fur-
ther than any other article t dealt w  finding ap-
propriate transformations for non i.i.d. error structures in 
a panel data framework. All explicit transformations that 
exist in the literature are given for 2,

hat has ith

N    IΩ 0 Ω  

or  2
, 1, ,

diag i i N  
 and 

 

Ω  issued     an AR(1)from

and ss. All these features can be seen as /or MA(1) pro

lation which can be particularly relevant for individual 

ce
special cases of the result stated in Theorem 1 (see Sec-
tion 4). 

2) Our results are derived under the double commuta-
tivity constraint (5). Though this condition looks rather 
restrictive, it turns out to be quite general in the panel 
data framework. In fact, not only all the structures stud-
ied so far in the panel econometric literature satisfy this 
condition but also there are other possibly interesting 
structures which have not yet been considered that can be 
included in this setting. One such structure is equicorre-

effects in certain empirical contexts. It can even be 
modified to reflect block dependence among individuals 
(correlation within clusters). 

3) We show different ways of taking cross-sectional 
dependence into account, i.e., through Ω Ω . 

 be

 and/or 
The presence of the time effect is already a source of 
cross-sectional dependence in our mod nd it can  
further generalised to have a fuller variance-covariance 
structure through 

el a

Ω . This feature can be linked to the 
more recent strand of literature that deals with cross- 
sectional dependence through factor analysis. 

4) Although our result is general, it may present some 
operational difficulties. Our transformation matrix re-
quires the knowledge of eigenvectors and eigenvalues of 
the different matrices involved and it may be cumber-
some to actually determine these for some structures. 
Unlike the MA case that we saw earlier, in the case of an 
AR structure for   or  , there are no general analyti-
cal expressions available for the eigenvectors of the re-
sulting variance co ariance matrix for any dimension T. 
These expressions crucially depend on the size of T. Plus 
there is no recursive way of finding the roots of charac-
teristic polynomials of size T + 1 given those of size T 

v

3We will come back to the commutativity condition in a remark fol-
lowing the theorem (see Remark 2). 
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and one has to calculate them separately for each T. 
These are practical obstacles to be overcome before im-
plementing our transformation. In spite of this, we be-
lieve that our transformation is highly useful as it defi-
nitely reduces the size of the problem in all circum-
stances i.e. instead of finding the eigenvalues/eigenvec- 
tors of a matrix of size NT (i.e. of the full variance-co- 
variance matrix of the model), one only needs to find 
them for a matrix of size T (i.e. of the AR structure over 
just the time dimension). In the worst case scenario, one 
can compute these eigenvalues and eigenvectors numeri- 
cally in the first stage. 

4. Some Special Cases 

In this section we will examine some special cases that 
way models and show how 
 them to the two-way case 

are commonly used for one 
our result enables to extend
and obtain the spectral decomposition of the variance 
covariance matrix of the model in a rather straightfor-
ward manner. In addition, we also introduce some new 
structures that have not been considered so far in this 
context. 

1) Independent i ’s, independent t ’s, and MA(1) 

it ’s with the same parameter b for all i’s. In other words 
2 2,N TI IΩ Ω  , , 

ocess. This is the case that we already considered in the 
ginning of Section 3. 

 that th tivity condition 
is satisfied in this case i.e. N N

  and  of an MA(1) 

be
One can easily verify e commuta

b TΩ Ω
pr

 J JΩ Ω  and  

   Ω Ω Ω Ω 4. 
Then, the variance-covariance of the whole model 

writes:  

     2 2
1 , ,N T N T N b T        V I J J I I Ω   (9) 

Using Theorem 1, the transformation to be applied to 
get a block diagonal structure is given by 1 ,N   S Q

, ,b T ,NQ , with Q  

 can

given in the Appendix and the matrix 

sance pa-
of

ramete

 eigenvectors of , ,b TΩ  previously defined. Note that 
this transformation does not depend on any nui

r, so it  be applied as a first stage transforma-
tion without any pr timation. The variance-covari- 
ance matrix of the transformed error, 1V  then becomes:  

   2 2
1 1 1 , , ,

ior es

N N T N b T         V I d d I I   (10) 

with 1 , ,b T Td Q ι . 
One hat can be written in the can easily see t 1V   form 

  D dd D  denoting 2
N I  as D  and the diago-

nal m ,atrix 2   , ,N T N b T    I I    as D . Then the 

rrelated 

sp
using the resul

ectral decomposition of 1  can be easily computed 
t in point 2 o eorem

2) Equico

 V
f Th  1. 

i ’s, independent t ’s nd MA(1) 

it

, a

 ’s with the same paramete b for all i’s. In other words, 
2

, , T      IΩ Ω Ω  and , ,b T Ω Ω
r 

.  

 2
2 , , ,T N T N b T        V J J I IΩ Ω    (11) 

e sam atioHere one can use th
vious point (due to

e transform
a 2), i.e., 

n as in the 
 Lemmpre 2 ,N b  , ,T Q . S Q

covariance ma- The
tri

 corresponding transformed variance-
x is:  

 2
2 , , 1 1 , , ,N N T N b T         V d d I I    (12) 

As in case 1, the sp
ed variance-cova
puted using the resul

ectral de of the trans-
rian be exp

t i Theorem 

composition 
ce matrix can 

n point 2 of 
form
com
no

licitly 
1 de-

ting , ,N   as D  and the diagonal matrix  
 2

, , ,N T N b T     I I   as D . 
Note that the transformation for the above 2 cases does 

not exist in the literature. It is the first time, 
eal w h 

to our 
n d ss-sectional de-knowledge, that one ca it cro

pendence and autocorrelated errors over time in the same 
transformation in panel data models. 

3) Equicorrelated i ’s, MA(1) t ’s, and independent 

it ’s. In other words, , , ,, b T     Ω Ω Ω Ω  and  
2

T  IΩ . 
This case is symm ic to the pre us one and hence, 
 transformation rem , ,N b 

etr
a

vio
ins the same, the 3 ,T Q Q , S

riance being:  



h

the original variance-c

odel is:  

ova

e transformed 

 2
3 , , ,T N b T        V J J I IΩ Ω    (13) 

The variance-covariance matrix of t

N T

m

3 , , 1 1 , , ,N N b T N T        V d d I I      (14) 

Once again noting that the 
 

first term of 3V%  is of the 
form D dd  and 

onal matrix of the

Equicorre

the second t t
 form gets t e spectral 

plus the 
 D% , one 

hird 
h

erm is a 
diag
decomposition of 3V%  from Theorem 1. 

4) lated i ’s, equicorrelated t ’s, and 
equicorrelated it ’s. That is , , , ,,N T      Ω Ω Ω  
and , ,T

Ω

  Ω Ω . 
Here we assume bo cross-sectional and time equi-

correlation. The ansformation
t

 tr
h 

 matrix is given 4 Sby  

,N ,T  Q rQ . The o iginal varia variance mance-co trix is:  

4 , , 5 , , , ,N N T N T          V J J IΩ Ω Ω    (15) 

sformed variance-covariance matrix is:  and the tran

4 , , 1 1 , , ,, ,N N T  

 cases. 

N   d I T   (16)    V d 

Theorem 1, as in the a
5) Equicorrelated or 



 
bove
i.i.d 

The spectral decomposition of 4V%  follows from point
2, 

i ’s, i.i.d. ’s and t AR(1) 

it ’s. 
Referring to our Remark 4 of Section 3, the eigenvec-

to ar i
fo rent T’s and cumbersome to calculate. Although 

rs of an AR(1) variance cov iance matr x are different 
r diffe

4All the special cases discussed below satisfy this condition and hence 
we will not mention it each time. 
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w  
 

e fact that the commutativity constraint is 
e, 
e 

ations are characterised by  

e have them for T = 5 for example, we do not pre- 
sent them here as the expressions of the eigenvectors 
are indeed long. One can also calculate them numeri- 
cally. Once the first stage decomposition is obtained 
(perhaps numerically for the third AR component), the 
procedure in Theorem 1 can be implemented as in the 
above cases. 

5. Extension to “Hybrid” Transformations 

In spite of th

a mixture of Cholesky and spectral decompositions (what 
we call “hybrid” transformations) in the first stage and a 
spectral decomposition in the second stage. The follow-
ing theorem provides a new transformation in this gen-
eral setting that allows us to obtain the spectral decom-
position of the resulting variance-covariance matrix. 

Theorem 2. Given a general variance-covariance 
structure 

  ,T N NV        Ω Ωω J J I Ω  

if  
verified in many panel data models of practical relevanc
one could argue that it is stringent and may exclude som N N J JΩ Ω               (17) 
potentially important situations. For instance, assume 
that the researcher expects to have an autocorrelated 
process not only in the idiosyncratic error but also in the 
time effect. In general, the variance-covariance matrices 
of the two autocorrelated processes do not commute. [2] 
proposes a 3-stage transformation that circumvents the 
double autocorrelation problem. They successively apply 
the Cholesky and the spectral transformations to obtain a 
simpler structure for which they are able to give the in-
verse. Thus their first two stages are equivalent to our 
first stage in the sense that after two transformations they 
provide a way to calculate the inverse of the resulting 
variance-covariance matrix. However, they do not pro-
vide the spectral decomposition of the Cholesky trans-
formed variance-covariance matrix in the first stage as it 
cannot be explicitly derived. 

In this section we examine these more general cases 
and give appropriate transformations based on our pre-
vious results. These transform

then the following results hold: 
1) There exists a transformation matrix of the form 

 , , ,c       H Q Q C  such that: 

 
 

, ,

, ,

, , , , , ,

, ,

N

T

c c

c c HV

     

    

  

c        

  

 

 

 

  

  

Q Q D

Q J Q D

C C I

Q C C Q D

H D d d D

Ω

Ω

Ω

     (18) 

where 1 , ,

, ,

N c
H

T cN
 

 

  
   

I D
D

I D

0

0
, , Q  and 

, ,c Q  are orthogonal matrices, , and , ,c  d Q

, ,c

, ,  c C ιT
, ,   DD D  and HD  are diagonal matrices.  

2) The spectral decomposition of the transformed 
variance-covariance matrix is given by:  

 

 
 

, , , , , ,
, 1

c c cr
H N T

, ,

, , , ,
2 2

, , , , , , , ,
, , , ,

, , , ,

1

c

r rc c
r

H H
r c c c c

c N H T
c c

V

 

   

       
  

   


 


    

 
   
    
    

0

0
      


 

Hω

     
  

   
        

   
 d d d d

D I I

D D
d d d d

d I
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where ,   

 the i-th element of the diagonal matrix 

r ,  , , , , 1, , 1
diag 1H c i H i N

d  
 

 D



1, ,i Hd  

1

2
, , , , , ,c T cN c   


 d I D d%% . 

is D ,  

, , ,c c, , ,c     d d  , 
1

2
, , , , , ,c c c    


d D d , c , , , ,c c, ,      d d   



and  

3) The determinant of the transformed variance-co- 
nce matrix is given by: varia   

 

   
N

N




 
1

1
, , , ,

1 1 1

T T

j H i H
j k i

V d N d


  

  Hω                   (20) 

Proof: See Appendix C. 
Remarks: 
1) Note that Theorem 2 considers a slightly more gen-

er troducing cross-sectional de-

pendence through 

, , , , , , , ,1 1c i H c N Hd d       

 

Ω  in add
time effect. 

2) The transformations given in point 1 of the theorem 
ar d” since they use both spectral, 

ition to that induced by the 

, Q  e called “hybrial structure than [2] by in
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and , ,c Q , and Cholesky, C , decompositions in the 
first stage in order to arrive at a tractable variance-co- 
variance matrix. 

3) These transformations ore general than those 
of

 are m
 Theorem 1 in the sense that they can handle more 

complex structures in Ω  and Ω , in particular a -
correlation of the AR type. However, the problem of 
finding such transformations becomes even more diffi-
cult than in Sectio

uto

n 3. we have an idea of 
th

Indeed, even if 
e Cholesky decomposition of the variance-covariance 

matrix of a particular stochastic process, say Ω , such 
knowledge is not, in gen l, info tive for the spectral 
decomposition of the variance-covariance matrix of an-
other stochastic process, 

era rma

Ω , nor for a linear transfor-
mation of the latter,   C CΩ . Yet, we require all these 
decompositions to implement the procedure. 

4) The results of this section are only theoret  as we 
cannot provide any explicit transformation, especially in 
the first stage, as mentioned above. However, our earlier 
Theorem 1 provides an expl it solution under the com-
mutativity constraint. 

5) We still have the commutativity constra

ical

int between

ic

 

Ω  and NJ  in our case that extends [2]’s model to 
cover general variance covariance structures at the cross- 
sectional level5. We conjecture that in the two-way EC 
this is the maximum generality that one can afford in 
order to get back to a heteroscedastic 

 trans
 

one-way case a
th

ype formations and propose 
spectral decomposition,
-sectional dependence

neral structures at the cross-sectional level using 
ou

[1] J. R. Magnus and C. Muris, “Specification of Variance 
Matrices for P onometric Theory, 
Vol. 26, No. 1

fter 
e first transformation. 

6. Concluding Remarks 

In this paper, we examine general variance-covariance 
structures for the specific effects and the overall error 
term in a two-way error component model. We show the 
limitations of Cholesky-t
a different approach, based on
for dealing with time and cross

 
. 

Our transformation can be applied to any general vari-
ance-covariance setting, under the commutativity con-
straint, and we show how this transformation works in 
many interesting special cases. We also connect our re-
sult to [1] and their conjecture for a two-way EC which 
seems to be verified albeit only after an initial transfor-
mation. 

As our transformation is based on eigenvalues and ei-
genvectors of the variance-covariance matrix of the 
combined disturbance term, we believe that it is strongly 
linked to the more recent approach of taking cross-sec- 
tional dependence into account by means of factor mod-

els. We conjecture that our approach is equivalent to the 
factor approach under some assumptions and we hope to 
investigate the link between these two approaches in the 
future. 

Finally, we show how the result derived in [2] for the 
double autocorrelation structure can be extended to cover 
more ge

r method. We provide the spectral decomposition as 
well as the determinant of the variance-covariance matrix 
of the transformed model. 
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Appendix A 

Proof of Lemma 1. It is straightforward that,  

    
 

2 2
N T T N N

N

V      

  

     

  Ω

Tω I T ι ι T ι ι T T

I T θ T



I

  (21) 

In order to get back to a classical EC structure we 
would need two conditions: 

1)     T   ΩT T
 T T I2)   T 

However, condition 1 implies . This in 
turn implies . Hence the only matrix 

 that satisfies both conditions in a two-EC is the  

 1
  

 ΩT T θ
 1

T
 Ω θ I

 Ω θ

identity matrix meaning i.i.d. errors. In this case there is 
no need for implementing any transformation since we 
are already in the classical two-way-EC case6.      ■   

Proof of Lemma 2. 
1) Diagonalization of NJ  
Since NJ  is symmetric, there exists an orthogonal 

matrix, ,N , such that , ,Q ,N N N N   Q Q J , where ,N , 
the matrix of eigenvalues, is  

     

 

1 1 1 1

,
1 1

N N N

N
N N

    

 

 
  
  

0 0

0
  

It can be easily verified that the solution for  is 
given by 

,NQ

, ,N N ,N  Q P O  with 
 

,

1 0 0 1

1
1

1
1

2 ,
1

0
3

1 1

1 1 1 1
1

1 2 3 2

N

N

N

N

N N N
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,

1
0 0 0

2
0 0

1
,3

2

1
0 0

N

N

N

N

N

N

N

N



 
 
 
 
 

 
   

 
 
 
 
  

O





   

    

 

0

 

 
2) Diagonalization of , ,N 
Same reasoning as in the previous point. , ,

Ω  

N   is 
symmetric, therefore there exists an orthogonal matrix 
such that , , , ,

Ω

, ,N N N N      Q QΩ   where , ,N  , the 
matrix of eigenvalues, is  

   

   
( 1) ( 1) 1 1

, ,

1 1

1

1 1

N N N

N

N N 




    

 

 
 

 

I 0

0



 

Direct calculation shows that ,NQ  of point 1 satisfies 
the above condition.                        ■  

Appendix B 

Proof of Theorem 1. The variance-covariance of the 
transformed error term can be written as:  

  , , , ,

, , ,

, , , ,

N

T T

N

V







,

         

       

        

   

  

  







dD

DD

DI

Q ω Q Ω Q Q ι ι Q

Q J Q Q Ω Q

Q Q Q Ω Q

        (22) 

Proof of point 1. 

From Lemma 2 we have  
     

 

1 1 1 1

1 1

N N N

N qN
    

 

 
  
  

D
0 0

0

6One can show that the only possibility that a Cholesky type transfor-
mation will allow us to get back to a classical EC will be when λt and εit

follow the same stochastic process. As this hypothesis is very stringent, 
one needs to find new transformations in the general case. 
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where . Hence,  q

1 .

N

N

qN

  



 



  

 
   

D D I D

I D
D

D D
%0

0

 

This completes the proof of the first point. 

Proof of point 2.  

   
1 1 1

2 2 2

D

NTV  

  
    

 
   


V

Q ω
1

2D D D dd D I D    (23) 

where  
 

  

   

   

1 1

2 2
, 1

1 1

2 2
,

1, 1
, 1

,
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D NT
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N TN
N

NT

N
N T

d qN qN

d d

 

    












 



 



 
 

 
  
  
 
 

 
    

    
      
 

d

d

D D d d D

V I
D D d d D D

dd
D I ID dd

I
dddd I






 
 

      


0

0

00

0 0

           (24) 

 
with      . VD is a block diagonal 
matrix. Hence we can compute the spectral decomposi-
tion for each block and this will give rise to the spectral 
decomposition of the whole matrix. For the first 

1, , 1 ,diagi N id , 1N D

1N   
blocks, we have:  

   , , 1

1,

,

.

T i Ti
d d  

, 1

D i

i N
  
  

     
dd dd dd

V I I
     

 
  (25) 

and similarly for  

   , 1D N TN
d

 
 

   
dd dd

V I
      
   

As 

dd 

 and T 



dd

I
 

 are idempotent, orthogonal to  

each other and their sum is equal to the identity matrix, 
the last two expressions give the spectral decompositions 
for each block with  , 1id 

1, , 1i N
 and 1 being the eigen-

values for blocks   , and  , 1Nd   and 1 
the eigenvalues for block N. Hence,  

 

 

 

, 11, , 1

,

diag 1

1

r

i N Ti N
r

D

r

N T

d

d






 


 

 

   
      

    
      

dd dd
I I

V
dd dd

I



   

      
 

0

0

            (26) 

 
Therefore we have  

  2

r r
r r

DV    Q ω 2D V D             (27) 

Proof of point 3. 

 
1 1
2 2

D DV     Q ω D V D D V        (28) 

where 

 
T T

1 1
, ,

1 1

N N
,j k k

j k

N d Nd    
 

 

    D D D D d  (29) 

For DV , we know that the determinant of a block- 
diagonal matrix is equal to the product of the determinant 
of each block. Since the eigenvalues for each block are 
given in point 2 (spectral decomposition), the determi-
nant of each block is equal to the product of the eigen-

values. Hence,  

  
1

,
1

1
N

D N i
i

d d  



, 1  V          (30) 

This completes the proof of Theorem 1. 

Appendix C 

Proof of Theorem 2. The variance-covariance of the 
transformed error term is:  

 
,

, ,

, , , , , ,
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dD

ID

DI

Hω Q Ω Q Q C ι ι C Q

Q J Q Q C Ω C Q

Q Q Q C Ω C Q

   (31) 
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Proof of point 1. 
As in point 1 of Theorem 1 we have  

, ,

1 , ,

, ,

.

T N c

N c
H

T cN

  

 

 



  

 
   

D I I D

I D
D

I D

0

0

 

This completes the proof of point 1. 
Proof of point 2. 
We proceed in the same way as in point 2 of Theorem 1. 
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Applying the same argument as in the previous theorem, we get: 
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Hence,  

  2

r r
r 2

H H HV  H D V D            (35) 

Proof of point 3. 

  H HV Hω D V            (36) 

where  

 1
, , , ,

1 1

T
N

H j H
j k

d N d 


 

  D k H  

and  

  
1

, , , , , , , ,
1

1 1
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H c i H c N H
i
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  V   

This completes the proof of Theorem 2. 
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