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ABSTRACT 

We propose a software reliability growth model with testing-effort based on a continuous-state space stochastic process, 
such as a lognormal process, and conduct its goodness-of-fit evaluation. We also discuss a parameter estimation method 
of our model. Then, we derive several software reliability assessment measures by the probability distribution of its 
solution process, and compare our model with existing continuous-state space software reliability growth models in 
terms of the mean square error and the Akaike’s information criterion by using actual fault count data. 
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1. Introduction 

Quantitative software reliability assessment is one of the 
important activities to produce reliable software systems. 
A software reliability growth model (abbreviated as SRGM) 
[1,2] is known as a useful mathematical tool for assess- 
ing software reliability quantitatively. The SRGM can 
describe the software fault-detection phenomenon or the 
software failure-occurrence phenomenon in the testing or 
operational phase by applying stochastic and statistical 
theories. Especially, a nonhomogeneous Poisson process 
(abbreviated as NHPP) [3,4], which describes the fault- 
detection phenomenon as a discrete-state space, is often 
applied in software reliability growth modeling by sup- 
posing an appropriate mean value function of the NHPP. 
Accordingly, the NHPP model is utilized for quantitative 
software reliability assessment in many software houses 
and computer manufacturers from the view point of the 
high applicability and simplicity of the model structure 
of an NHPP.  

In contrast with discrete-state space SRGMs, such as 
well-known NHPP models [5], there are continuous- 
state space SRGMs to assess software reliability for large 
scale software systems. Specifically, Yamada et al. [6] 
discussed a framework for the continuous-state space 
software reliability growth modeling based on a stochas- 
tic differential equation of Itô type, and compared the 

continuous-state space SRGM with the NHPP models. 
Recently, Yamada et al. [7] and Lee et al. [8] proposed 
several type of the continuous-state space SRGMs based 
on stochastic differential equations of Itô type, such as 
exponential, delayed S-shaped, inflection S-shaped sto- 
chastic differential equation models, by characterizing 
the fault-detection rate per unit time per one fault, re- 
spectively. 

However, these continuous-state space SRGMs have 
not taken the effect of testing-effort into consideration in 
software reliability assessment. The testing-effort, such 
as the number of executed test-cases, testing-coverage, 
and CPU hours expended in the testing phase, is well 
known as one of the most important factors being related 
to the software reliability growth process [9]. Under the 
above background, there is necessity to discuss a testing- 
effort dependent SRGM on a continuous-state space for 
the purpose of developing a more plausible continu-
ous-state space SRGM. 

This paper proposes a continuous-state space software 
reliability growth model with the testing-effort factor by 
applying a mathematical technique of stochastic differ- 
rential equations of Itô type, and conducts goodness- 
of-fit comparisons of our model with existing continu- 
ous-state space SRGMs. Concretely, we extend a basic 
differential equation describing the behavior of the cu- 
mulative number of detected faults to a stochastic differ-  
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ential equation of Itô type by considering with the test-
ing-effort factor, and derive its solution process which 
represents the fault-detection process. Then, we discuss 
estimation methods for unknown parameters in our model. 
And we then compare our model with existing continu-
ous-state space SRGMs in terms of the mean square error 
(MSE) [5] and Akaike’s information criterion (AIC) [10]. 
Finally, we derive several software reliability assessment 
measures by the probability distribution of the solution 
process, and show numerical examples for software re- 
liability assessment measures derived from our model by 
using actual fault counting data. 

2. Basic Modeling Framework 

We discuss a framework of continuous-state space soft-
ware reliability growth modeling [6]. Letting  N t  be a 
random variable which represents the number of faults 
detected up to time t. From the common assumptions for 
software reliability growth modeling, that is, the instan-
taneous number of detected faults at time t depends on 
the residual number of undetected faults at time t [1,2,5], 
we have the following linear differential equation: 

         d
0, 0 ,

d

N t
b t a N t a b t

t
     (1) 

where b(t) indicates the fault-detection rate at test-
ing-time t and is assumed to be a non-negative function, 
and a the initial fault content in the software system. 
Equation (1) describes the behavior of the decrement of 
the fault content in the software system. 

Especially, in the large-scale software development, a 
fault-detection process in an actual testing phase is in-
fluenced by several uncertain testing-factors, such as test- 
ing-skill, debugging-environment. Accordingly, we should 
take these factors into consideration in software reliabi- 
lity growth modeling. Therefore, we extend Equation (1) 
to the following equation: 

        d

d

N t
b t t a N t

t
    ,      (2) 

where  t  is a noise that exhibits an irregular fluctua-
tion. For the purpose of making its solution a Markov 
process, we assume that  t  in Equation (2) has 

     0t t   　  ,          (3) 

where   indicates a positive constant representing ma- 
gnitude of the irregular fluctuation and   a standard-
ized Gaussian white noise. 

We transform Equation (2) into the following stochas-
tic differential equation of Itô type: 

    

    

21
d

2

d ,

N b t a N t

a N t W t





    
 
 

where W(t) is a one-dimensional Wiener process which is 
formally defined as an integration of the white noise 
 t  with respect to time t. The Wiener process W(t) is 

called a Gaussian process, and has the following proper-
ties: 

 Pr 0 0 1W                  (a) 

 E W t    0                (b) 

     E mW t W t t t    in ,          (c) 

where Pr[A] and E[·] represent the probability of the 
event A and the expectation, respectively. Next, we de-
rive a solution process N(t) by using the Itô’s formula. 
The solution process N(t) can be derived as 

      0
1 exp d .

t
N t a b W t             (5) 

Equation (5) implies that the solution process N(t) 
obeys a geometric Brownian motion or a lognormal 
process [11]. And the transition probability distribution 
of the solution process N(t) is derived as 

   
 

0
log d

Pr | 0 0 ,

ta
b

a nN t n N
t

 



         
 
 


(6) 

consequently, by the properties (a)-(c) and the assump-
tion that W(t) is a Gaussian process.  in Equation 
(6) indicates a standard normal distribution defined as 

  

 
21

exp d .
22π

x y
x y



 
   

 
          (7) 

By giving an appropriate function b(t) in Equation (5), 
we can derive several SRGM’s. Yamada et al. [7] and 
Lee et al. [8] proposed several lognormal process models, 
in which the fault-detection rates b(t) follow the basic 
modeling assumptions of the well-known NHPP model, 
such as the delayed S-shaped [12] and inflection S- 
shaped [13] SRGMs, based on the modeling framework 
[6] mentioned in this section 

3. Lognormal Process SRGM with  
Testing-Effort 

dt
      (4) 

We develop a continuous-state space SRGM with the 
effect of testing-effort factor based on stochastic differ-
ential equations which follow the lognormal process. The 
testing-effort, such as the number of executed test-cases, 
testing-coverage, and CPU hours, is one of the important 
factors influencing on the software reliability growth 
process in an actual testing-phase. Therefore, the test-
ing-effort should be taken into consideration in continu-
ous-state space software reliability growth modeling. 
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3.1. Modeling 

For developing a continuous-state space SRGM with the 
effect of the testing-effort factor, we characterize b(t) in 
Equation (5) as follows: 

       0Tb t b t r s t r    1

t 



,      (8) 

where r represents the fault-detection rate per expended 
testing-effort at testing time t and s(t)(  dS(t)/dt) is the 
amount of the testing-effort expended at arbitrary testing 
time t. In Equation (8), we assume that the fault-detection 
rate at testing-time t depends on the instantaneous test-
ing-effort expenditures [9]. That means, the testing-team 
can detect or remove more software faults when the 
software development manager decides to expend more 
testing-effort to detect or remove software fault. Based 
on the framework of continuous-state space software 
reliability growth modeling [6], we can obtain the fol-
lowing solution process: 

   

   
    

0
1 exp d

1 exp ,

T

t

N t N t

a r s W

a rS t W t

  





     
   

    (9) 

The transition probability distribution function of the 
solution process in Equation (9) can be derived as 

   
 log

Pr | 0 0 .T T

a
rS t

a nN t n N
t

        

 




(10) 

We should specify the testing-effort function s(t) in 
Equation (8) to utilize the solution process  TN t  in 
Equation (9) as an SRGM. 

3.2. Testing-Effort Function 

We need to specify a suitable function for the s(t) in 
Equation (8). In this paper we describe the time-depen- 
dent behavior of testing-effort expenditures in the test- 
ing-phase by using a Weibull curve function, that is, 

     1 exp 0, 0, 0 .m ms t mt t m       

,

 (11) 

Then, we have 

     
0

d 1 exp
t mS t s t            (12) 

where   is the total amount of testing-effort expendi-
tures,   the scale parameter, and m the shape parame-
ter characterizing the shape of the testing-effort function. 
The Weibull curve function has a useful property to de-
scribe the time-dependent behavior of the expended test-
ing-effort expenditures in the testing-phase approxi-
mately because of its flexibility. For examples, we can 
obtain the exponential curves when m = 1 in Equations 

(11) and (12). And when m = 2, we can derive Rayleigh 
curves. That is, the Weibull curve function is a general 
type model, which includes the exponential and Rayleigh 
curve functions. 

4. Parameter Estimation 

We discuss estimation methods of unknown parameters 
of the testing-effort function in Equation (11) and the 
solution process in Equation (9), respectively. Now we 
suppose that K data pairs  , ,j j jt y n  0,1,2, ,j K 

,
 

with respect to the total number of faults, jn  detected 
during the time-interval 0, ,jt   and the amount of 
testing-effort expenditures, jy , expended at jt  are 
observed. 

4.1. For the Testing-Effort Function 

Regarding a parameter estimation method for the test-
ing-effort function in Equation (11), we use a method of 
least squares. First we can obtain the following equation 
by taking the natural logarithm of Equation (11): 

   log log log log 1 log .ms t m m t t        (13) 

Then, the sum of the squares of vertical distances from 
the data points to the estimated values is derived as 

    2

1

, , log log ,
K

j j
j

S m y s t 


      (14) 

by using Equation (13). The estimations ˆˆ , ,   and  
for the parameters 

m̂
, ,   and  minimizing  m

 , ,S   m  in Equation (14) can be obtained by solving 
the following simultaneous equations: 

0.
S S S

m 
  

  
  

            (15) 

4.2. For the Solution Process 

Next we discuss a parameter estimation method for the 
solution process in Equation (9) by using the method of 
maximum-likelihood. Let us denote the joint probability 
distribution function of the process  as  TN t
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and also denote its density as 
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      (17) 

Then, we can derive the likelihood function l for the 
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observed data pairs  as follows:   , 0,1,2, ,j jt n j K 

 1 1 2 2, ; , ; ; , .K Kl p t n t n t n          (18) 

For convenience in the mathematical manipulations, 
we use the following logarithmic likelihood function: 

log .L  l

,



               (19) 

The likelihood function l in Equation (18) can be writ-
ten as the following equation by using the Bayes’ for-
mula and a Markov property: 

 1 1
1

, | ,
K

j j j j
j

l p t n t n 


           (20) 

where  is the conditional probability density 
under the condition of 0.T  The transition den-
sity 1 1j in Equation (20) can be obtained 
by partially differentiating the following transition prob-
ability of  under the condition  

 0 0| ,p t n
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with respect to .jn  Consequently, the likelihood func-
tion l in Equation (20) can be rewritten as 
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and the logarithmic likelihood function is derived as 
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(23) 

Then, we can obtain the maximum likelihood estima-
tions  and ˆ ˆ, ,a r ̂  for the parameters  and , ,a r   in 
Equation (9) by solving the following simultaneous like-
lihood equations numerically: 

0.
L L L

a r 
  

  
  

          (24) 

5. Software Reliability Assessment Measures 

We derive several software reliability assessment meas-
ures, which are useful for quantitative assessment of 
software reliability. Especially, we derive instantaneous 
and cumulative MTBF’s in this paper. 

5.1. Instantaneous MTBF 

We discuss an instantaneous MTBF (mean time between 
software failures or fault-detections) which has been used 
as one of the substitution for the usual MTBF. An in-
stantaneous MTBF is approximately derived by 

 
 

d
MTBF .

d
I

T

t
t

N t

   

            (25) 

We need to derive  d TN t    , which represents the 
expected number of faults detected up to arbitrary testing 
time t, to obtain  d TN t     in Equation (25). By the 
Wiener process W(t) ~ N(0,t), the expected number of 
faults detected up to arbitrary testing time t is obtained as 

    21
1 exp .

2TN t a rS t t
                 

  (26) 

Since the Wiener process has the independent incre-
ment property W(t) and dW(t) are statistically independ-
ent with each other, and E[dW(t)] = 0,  d TN t     in 
Equation (25) is finally derived as 

     2 21 1
d exp

2 2T dN t a rs t rS t t 
         t


         

 (27) 

The instantaneous MTBF in Equation (25) can be cal-
culated by substituting Equation (27) into Equation (25). 

5.2. Cumulative MTBF 

A cumulative MTBF is also the substitution for the usual 
MTBF. The cumulative MTBF is approximately derived 
as 

   
MTBF .C

T

t
t

N t

   

         (28) 

If the instantaneous MTBF in Equation (25) and the 
cumulative MTBF in Equation (28) take on a large value, 
respectively, then it enables us to decide that the software 
system becomes more reliable. 

6. Model Comparisons 

We show results of goodness-of-fit comparisons of our 
model with other continuous-state space SRGMs [6-8], 
such as exponential, delayed S-shaped, and inflection 
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S-shaped stochastic differential equations, in terms of the 
mean square errors (MSE) [5] and Akaike’s Information 
Criterion (AIC) [10]. Regarding the goodness-of-fit com- 
parisons, we use two actual data sets [14] named as DS1 
and DS2, respectively. DS1 and DS2 indicate an S- 
shaped and exponential reliability growth curves, respec- 
tively. 

The MSE [5] is obtained by dividing the sum of 
squared errors between the observed and estimated cu-
mulative numbers of detected faults, k  and y  ˆ ky t  
during  0, ,kt  respectively, by the sample number of 
observed data. Assuming that K data pairs  ,k kt y  

 are observed, we can formulate the 
MSE as 
 2, , K1,k 

  2

1

1
ˆMSE ,

K

k k
k

y y t
K 

          (29) 

where 
k

 denotes the estimated value of the expected 
cumulative number of faults by arbitrary testing time 

k . Accordingly, the model which indi-
cates the smallest MSE fits best to the observed data set 
than other models. 

)(ˆ ty

 1,2,k t K




,

The AIC [10] is known as a goodness-of-fit evaluation 
criterion considering the number of model parameter. 
The AIC is given by 




AIC 2 the logarithmic maximum-likelihood

2 the number of free model-parameters

  

 
, (30)  

We should note that the AIC values themselves are not 
significant. The absolute value of difference among their 
values is significant. We can judge that the model indi-
cating the smallest AIC fits best to the actual data set if 
their differences are greater than or equal to 1. If the dif-
ferences are less than 1, there are no significant. 

Table 1 shows the results of model comparisons based 
on the MSE and the AIC, respectively. The model com-
parisons based on the AIC is not significant only for DS2, 
however, we can see that our model improves a per- 
formance of the MSE and the AIC respectively, com- 
pared with other continuous-state space SRGMs dis- 
cussed in this paper. 

 
Table 1. Results of model comparisons. 

MSE AIC 
 

DS1 DS2 DS1 DS2 

Proposed model 1367.63 1370.8 306.15 125.51

Exponential SDE 
model 

22528 1332.34 325.32 125.18

Delayed S-shaped 
SDE model 

6018.65 36549 315.98 131.65

Inflection S-shaped 
SDE model 

6550.37 1986.8 318.57 126.47

(SDE: stochastic differential equation). 

7. Numerical Examples 

We show numerical examples by using testing-effort data 
recorded along with detected fault counting data col- 
lected from the actual testing. In this testing, 1301 fault 
are totally detected and 1846.92 (testing hours) are to- 
tally expended as the testing-effort within 35 months 
[14]. 

Figure 1 shows the estimated testing-effort function 
 ŝ t

ˆ
 in Equation (11), in which the parameter estimates 

as 2253.2  , , and . As 
we can see, the actual time-dependent behaviour of the 

4ˆ 4.5343 10   ˆ 2.2580m 

instantaneous testing-effort expenditures is observed on 
the discrete-time, and is quite oscillatory. Although it is 
very difficult to describe completely such behaviour by a 
mathematical model, the Weibull curve function in 
Equation (11) enables us to describe the time-dependent 
behaviour approximately and smoothly on the continu- 
ous-time function. Figure 2 shows the estimated ex- 
pected number of detected faults in Equation (26), where 
the parameter estimates in  are obtained as  ˆ

TN t  
ˆ 1435.3a  , , and 3 ̂ˆ 1.4122 10r  23.4524 10  . 

Furthermore, Figure 3 shows the time-dependent behav- 
ior of the estimated two types of the substitutions of the 
MTBF, such as instantaneous and cumulative MTBFs in 
Equations (25) and (28), respectively. We should note 
that getting larger instantaneous or cumulative MTBF 
indicates growing the software reliability. From Figure 3, 
we can see that the software reliability decreases in the 
early testing period because the estimated software 
fault-detection rate is getting larger in the early testing 
period due to the model structure. And then, the software 
reliability grows as the testing procedures go on because 
the fault-detection rate is getting decrease and the resid- 
ual fault content is also getting decrease. We note that the 
time-dependent behaviour of the instantaneous and cu- 
mulative MTBFs are different each other due to ap- 
proximation methods. The instantaneous MTBF responds 
sensitively to the number of software faults detected at 
testing-time t because the instantaneous MTBF does not  
 

 

Figure 1. Estimated testing-effort function. 
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Figure 2. Estimated expected number of detected faults. 
 

 

Figure 3. Estimated instantaneous and cumulative MTBFs. 
 
incorporate information of the past software reliability 
growth process as shown in Equation (25). We can esti-
mate the instantaneous MTBF at the termination time of 
the testing, , to be about 0.1297 (about 4.5 
months), and also, the cumulative MTBF, 

 MTBF 35I

 MTBF 35C , 
to be about 0.0269 (about 0.9 months).  

8. Concluding Remarks 

We have discussed a continuous-state space SRGM with 
the effect of testing-effort by using a mathematical tech- 
nique of stochastic differential equations and its parame- 
ters estimation methods. Then, we have compared per- 
formance in software reliability measurement of our model 
with existing continuous-state space SRGMs in terms of 
the MSE and the AIC by using actual data, respectively. 
Finally, we have also shown numerical illustrations for 
the software reliability assessment measures, such as the 
instantaneous and cumulative MTBFs. 

We believe that software developing managers can get 
information on a relationship between the attained soft- 
ware reliability and the testing-effort expenditures by us- 
ing our software reliability growth model. And our model 

also enables software development managers to decide 
how much testing-effort are expended to attain a reliabi- 
lity objective. Further studies are needed to examine the 
validity of our model for practical applications by using 
many observed data. 
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