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ABSTRACT 

The present paper deals with thermoelastic pro- 
blems of finitely long hollow cylinder composed 
of two different materials with axial symmetry. 
The medium is traction-free, with negligible bo- 
dy forces and with internal and external heat 
generations. The governing equations for dif-
ferent theories of the generalized thermoelas-
ticity are written in terms of displacement and 
temperature increment. The exact solution of 
the problem, using different theories of gener-
alized thermoelasticity, has been deduced. The 
analytical expressions for displacements, tem-
perature and stresses are found in final forms, 
and a numerical example has been taken to 
discuss the effect of the relaxation times. Finally, 
the results have been illustrated graphically to 
find the responses of different theories. 
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1. INTRODUCTION 

The governing equations for displacement and tempe- 
rature fields in the linear dynamical theory of classical 
thermoelasticity consist of the coupled partial differen-
tial equation of motion and Fourier’s law of heat con-
duction equation. The equation for displacement field is 
controlled by a wave type hyperbolic equation, whereas 
that for the temperature field is a parabolic diffusion 
type equation. This amounts to the remark that the clas-
sical thermoelasticity predicts a finite speed for pre-
dominantly elastic disturbances but an infinite speed for 
predominantly thermal disturbances, which are coupled 
together. This means that a part of every solution of the 
equations extends to infinity. 

Biot [1] formulated the theory of coupled thermoelas-
ticity (named as C-D theory) to eliminate the paradox 
inherent in the classical uncoupled theory of thermoelas-
ticity that the elastic changes have no effect on the tem-
perature. But, the classical dynamical coupled theory of 
thermoelasticity still based on a parabolic heat equation, 
which predicts an infinite speed for the propagation of 
heat wave, contradicts the physical facts. Generalized 
theories of thermoelasticity have been developed that are 
free from this paradox. Lord and Shulman [2] (L-S the-
ory) introduced the theory of generalized thermoelastic-
ity based on a new law of heat conduction by incorpo-
rating a flux rate term and involved a hyperbolic type of 
heat transport equation (called the generalized thermoe-
lasticity with one relaxation time). The L-S theory was 
extended by Dhaliwal and Sherief [3] to the case of ani-
sotropic media. Uniqueness of the solution for the gen-
eralized thermoelasticity with one relaxation time under 
a variety of conditions was proved by Ignaczak [4] and 
Sherief and Dhaliwal [5] respectively. Generalized the-
ory of thermoelasticity with two relaxation time pa-
rameters has also been proposed. Based on a generalized 
inequality of thermodynamics, Green and Lindsay [6] 
developed the theory of thermoelasticity with two re-
laxation time parameters (named as G-L theory). The 
G-L theory doesn’t violate the Fourier’s law of heat con-
duction when the body under consideration has a center 
of symmetry. In this theory, both the equations of motion 
and heat conduction are hyperbolic but the equation of 
motion is modified and differs from that of the classical 
dynamical coupled theory of thermoelasticity. 

The axisymetric multilayered hollow cylinder prob-
lems have been discussed by some researchers in the un- 
coupled, coupled and generalized thermoelasticity in the 
recent years. Jane and Lee [7] considered the thermoe-
lasticity of multilayered cylinders subjected to known 
temperatures at traction-free boundaries by using Lap- 
lace transform and the finite difference method. Kandil 
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[8] studied the effect of steady-state temperature and 
pressure gradient on compound cylinders fitted together 
by shrink fit. Sherief and Anwar [9] discussed the prob-
lem of an infinitely long elastic circular cylinder whose 
inner and outer surfaces are subject to known tempera-
ture and traction free. Yang and Chen [10] discussed the 
transient response of one-dimensional quasi-static cou-
pled thermoelasticity problems of an infinitely long an-
nular cylinder composed of two different materials. Lee 
[11] solved the two-dimensional, quasi-static coupled, 
thermoelastic problem of finitely long hollow cylinder 
composed of two different materials with axial symmetry. 
Chen et al. [12,13] discussed also the transient response 
of one-dimensional quasi static coupled and uncoupled 
thermoelasticity problems of multilayered hollow cylin-
der. Allam et al. [14] solved the problem of an infinite 
body with a circular cylindrical hole in a harmonic field 
in the context of the generalized theory of thermoelastic-
ity. In a recent article, Zenkour et al. [15] presented the 
static bending response for a simply supported function-
ally graded rectangular plate subjected to a through-the- 
thickness temperature field under the effect of various 
theories of generalized thermoelasticity with relaxation 
times. 

In the present article, the analytical expressions for 
displacements, temperature and stresses of finitely long 
hollow cylinder composed of two different materials 
with axial symmetry are found in final forms. Numerical 
examples have been taken to discuss the effect of the 
relaxation times. Finally, the results have been illustrated 

graphically to find the differences between the different 
generalized theories of thermoelasticity. 

2. FORMULATION OF THE PROBLEM 

Through this area of research, we consider the fol-
lowing boundary value problem. We deal with a problem 
of finitely long hollow cylinder composed of three lay-
ered of two different materials with axial symmetry. The 
length of the multilayered hollow cylinder is L, and the 
inner and outer radii of the cylinder are denoted by ir  
and or , respectively (see Figure 1). 

We assume that, the hollow cylinder is taken to be 
heated suddenly at the inner and outer surface under 
temperature i  and o , respectively. We take into ac-
count that the body forces are absent, and then the fun-
damental equations of the boundary value problem in the 
context of the different theories of generalized thermoe-
lasticity, in the case of quasi-static, can be written as: 

1) Equilibrium equations for the cylinder along r and z 
directions: 
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where ij  are the components of stress tensor and 
),,( zr   are the cylindrical coordinate system. 

2) General heat conduction equation in the context of 
generalized thermo-elasticity theories: 
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in which 0  is the temperature and 0  is the 
reference temperature; i  are the components of strain 
tensor; 2t  and 3t  are the second and third thermal 
relaxation times;  ,r  and z  are the thermal con-

ductivity;   is the density; and c  is the specific heat 
at constant deformation. The components of the ther-
moelastic tensor are given by 
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where  rrz ,  and z  are Poisson’s ratios; EEr ,  
and zE  are Young’s moduli; and  ,r  and z  are 
linear thermal expansion coefficients. 

3) Duhamel-Neumann’s relations for layer number k: 
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Figure 1. The three-layer hollow cylinder and its coordinate 
system.
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where 1t  is the first thermal relaxation time and iU  
are the components of displacement vector. The elastic 
constants ijc  are given by 
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The full system equations for the different theories of 
generalized thermoelasticity will appear by the following 
instructions: 

1) ,0321  ttt  C-D theory,  
2) 1 2 30, 0,t t t    L-S theory, 
3) 1 2 30, 0, 0,t t t    G-L theory. 

3. SOLUTION OF THE PROBLEM 

Substituting Eqs.5-8 into Eqs.1-3, we get the follow-
ing system of partial differential equations: 
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Eqs.10 and 11 represent the equations of equilibrium 
for the hollow cylinder along the r and z directions, re-
spectively, while Eq.12 represents the coupled transient 
heat conduction equation for the kth layer of the axi-
symmetric hollow cylinder. The boundary and interface 
conditions of the present composite hollow cylinder are 
given by: 

3.1. Boundary Conditions 
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3.2. Interface Conditions 
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3.3. Initial Conditions 
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To solve the above equations, we introduce the fol-
lowing dimensionless quantities: 
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Note that, the index “1” represents the thermome-
chanical properties of layer 1. Substituting the above 
dimensionless quantities into Eqs.10-12, we get  
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The dimensionless stresses are also given by 

,1 1131211



 



















 Tt
Z

U

L

r
c

R

U
c

R

U
c r

zorr
r 

                       (19)
 

,1 1232212



 



















 Tt
Z

U

L

r
c

R

U
c

R

U
c zorr


                  (20)

 
,1 1332313




 


















 Tt
Z

U

L

r
c

R

U
c

R

U
c z

zorr
z 

                  (21)

 

,55 



















Z

U

L

r

R

U
c roz

rz           (22) 

where 

.
1

2
0












r

ij
ij

cc
c


             (23) 

The solution of Eqs.16-18 may be given by using the 
following substitutions of 

rUT ,  and 
zU  that satisfy 

the boundary conditions given in Eq.13: 
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where the functions 1f  and 2f  are given, respectively, 
by: 
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Using Eq.23 into Eqs.15-17, one can get 
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The solution of the above system of first-order differ-

ential equations may be easily given for all theories. The 
corresponding solutions for C-D, L-S and G-L theories 
are also obtained from the general one. 

4. NUMERICAL EXAMPLES 

In order to illustrate the results graphically, the ge-
ometry and thermoelastic constants for the two materials 
of the hollow cylinder are given in Table 1. The cylinder 
is composed of three layers of two distinct materials 
with the same thickness of each layer. Layers 1 and 3 
have properties of the same material. So, the two inter-
faces are given at R = 0.5 and R = 0.75, respectively. The 
various non-dimensional parameters used are: 
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The numerical results are plotted in Figures 2-17. The 
values of 0  and   are taken to have the same value 
as .50   The values of i  and o  and ,, 21   
and 3  are given, respectively, in terms of 0  and 
 . The ratio of the outer radius of the cylinder to its 
length is given by .2.0/ Lro  In addition, the * is 
dropped, for simplicity, from the dimensionless relaxa-
tion times. 

Figure 2 illustrates the variation of dimensionless 
temperature T  through axial parameter Z, for value of 
the dimensionless time namely 8  and at the second 
interface of the dimensionless radial direction (R = 0.75). 
The computations were carried out for C-D, L-S and 
G-L theories of thermoelasticity. Figure 3 shows the 
variation of dimensionless radial stress 1  through the 
axial parameter Z. The values of dimensionless time and 
radial direction are chosen to be 8 and 0.75, respectively. 
The results were calculated for L-S and G-L theories.  

In what follows, we restrict our attention to the results 
of L-S theory. Figures 4,6,8,10,12,14 and 16 illustrate, 
respectively, the variation of dimensionless radial and 
axial displacements, 1u  and 3u ; the dimensionless 
temperature T; and the dimensionless stresses ,1  

,, 32   and 5  through the radial direction of the 
multilayered hollow cylinder for different values of the 
dimensionless time ,7,5  and 9 with the relaxation 
time 2023  tt . Similar results are plotted in Figures 
5,7,9,11,13,15, and 17 through the radial direction of the  

Table 1. The geometry and material constants of a finitely long 
hollow cylinder. 

 Material 1 Material 2 









2m

N
Er  61050  61058  









2m

N
E  61015  61022  









2m

N
Ez  61015  61018  









2m

N
Grz  51015  61020  









K.m

watt
r  18 22 









K.m

watt
  12 15 









K.m

watt
z  15 20 

rr     0.2 0.2 

zrrz    0.1 0.1 

zz     0.15 0.15 









K

1
z  6103   6103   









K

1
r  6104   6104   









3m

kg  0.095 0.095 









K

c
kg

kj
  0.31 0.31 
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Figure 2. Variation of dimensionless temperature T through the 
axial direction of the hollow cylinder for various thermoelas-
ticity theories ( = 8; R = 0.75). 
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Figure 3. Variation of dimensionless radial stress 1  thro- 
ugh the axial direction of the hollow cylinder for L-S and G-L 
theories (  = 8; R = 0.75). 
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Figure 4. Variation of dimensionless radial displacement 1u  
through the radial direction of the hollow cylinder for different 
values of the time parameter   ( 2032  tt ). 
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Figure 5. Variation of dimensionless radial displacement 1u  
through the radial direction of the hollow cylinder for different 
values of the relaxation time ( 7,32  tt ). 
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Figure 6. Variation of dimensionless axial displacement 3u  
through the radial direction of the hollow cylinder for different 
values of the time parameter   ( 2032  tt ). 
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Figure 7. Variation of dimensionless axial displacement 3u  
through the radial direction of the hollow cylinder for different 
values of the relaxation time ( 7,32  tt ). 
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Figure 8. Variation of dimensionless temperature T through the 
radial direction of the hollow cylinder for different values of 
the time parameter   ( 2032  tt ). 
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Figure 9. Variation of dimensionless temperature T through the 
radial direction of the hollow cylinder for different values of 
the relaxation time ( 7,32  tt ). 
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Figure 10. Variation of dimensionless radial stress 1  through 
the radial direction of the hollow cylinder for different values 
of the time parameter   ( 2032  tt ). 
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Figure 11. Variation of dimensionless radial stress 1  through 
the radial direction of the hollow cylinder for different values 
of the relaxation time ( 7,32  tt ). 
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Figure 12. Variation of dimensionless axial stress 3  through 
the radial direction of the hollow cylinder for different values 
of the time parameter   ( 2032  tt ). 
 
 42

37

32

27

22

17

12

7

2

-3

A
xi

al
 s

tr
es

s 
σ 3

 

0.25   0.375     0.5     0.625    0.75    0.875    1
Radial parameter R 

t2 = 20 

t2 = 21 

t2 = 22 

L-S

 
Figure 13. Variation of dimensionless axial stress 3  through 
the radial direction of the hollow cylinder for different values 
of the relaxation time ( 7,32  tt ). 
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Figure 14. Variation of dimensionless circumferential stress 

2  through the radial direction of the hollow cylinder for 
different values of the time parameter   ( 2032  tt ). 
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Figure 15. Variation of dimensionless circumferential stress 

2  through the radial direction of the hollow cylinder for 
different values of the relaxation time ( 7,32  tt ). 
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Figure 16. Variation of dimensionless shear stress 5  through 
the radial direction of the hollow cylinder for different values 
of the time parameter   ( 2032  tt ). 
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Figure 17. Variation of dimensionless shear stress 5  through 
the radial direction of the hollow cylinder for different values 
of the relaxation time ( 7,32  tt ). 

multilayered hollow cylinder for different values of the 
relaxation time )22,21,20( 23  tt  when the dimen-
sionless time 7 . 

5. CONCLUSIONS 

The conclusion of the above results may be given as: 
1) Figure 2 illustrates that the dimensionless tem-

perature is slightly changed and the differences 
between C-D, L-S, and G-L are very small (tiny). 
The coupled theory (C-D) may give results with 
small relative error compared with those given by 
Lord and Shulman’s (L-S) and Green and Lindsay’s 
(G-L) theories. However, the results of L-S and G-L 
are much closed to each other (see Figure 3). 

2) The plots of results given by Lord and Shulman’s 
theory show that the effect of the dimensionless 
time is slightly clear in the first layer, but in the 
second and third layers the effect is not declared. 
This happened for dimensionless radial and axial 
displacements (see Figures 4-7), and axial, circum-
ferential, and shear stresses (see Figures 12-17). 

3) However, for dimensionless temperature and radial 
stress, the effects of dimensionless time is very 
clear in the first layer and start to decrease with the 
increase of radial direction in the second and third 
layer (see Figures 8-11). 

4) The effect of the relaxation time of Lord and Shul-
man’s theory in all physical waves (displacements, 
temperature and stresses) is clear in the first layer, 
but is less considerable in the second and third lay-
ers. This revealed that the effect of the relaxation 
time has no effect when the dimensionless radius is 
increasing. 
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