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ABSTRACT 

Our purpose in this study was to develop an auto- 
mated method for measuring three-dimensional (3D) 
cerebral cortical thicknesses in patients with Alz- 
heimer’s disease (AD) using magnetic resonance (MR) 
images. Our proposed method consists of mainly 
three steps. First, a brain parenchymal region was 
segmented based on brain model matching. Second, a 
3D fuzzy membership map for a cerebral cortical 
region was created by applying a fuzzy c-means 
(FCM) clustering algorithm to T1-weighted MR im- 
ages. Third, cerebral cortical thickness was three- 
dimensionally measured on each cortical surface 
voxel by using a localized gradient vector trajectory 
in a fuzzy membership map. Spherical models with 3 
mm artificial cortical regions, which were produced 
using three noise levels of 2%, 5%, and 10%, were 
employed to evaluate the proposed method. We also 
applied the proposed method to T1-weighted images 
obtained from 20 cases, i.e., 10 clinically diagnosed 
AD cases and 10 clinically normal (CN) subjects. The 
thicknesses of the 3 mm artificial cortical regions for 
spherical models with noise levels of 2%, 5%, and 
10% were measured by the proposed method as 2.953 
± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respec- 
tively. Thus the mean thicknesses for the entire cere- 
bral lobar region were 3.1 ± 0.4 mm for AD patients 
and 3.3 ± 0.4 mm for CN subjects, respectively (p < 
0.05). The proposed method could be feasible for 
measuring the 3D cerebral cortical thickness on indi- 
vidual cortical surface voxels as an atrophy feature in 
AD.  

Keywords: Alzheimer’s Disease (AD); Fuzzy C-Means 
Clustering (FCM); Three-Dimensional Cerebral Cortical 
Thickness; Localized Gradient Vector 

1. INTRODUCTION 

Alzheimer’s disease (AD) is a major health and social 
problem in advanced countries with long life expectancy, 
such as Japan and the United States of America. Ac- 
cording to recent estimates, as many as 2.4 million to 4.5 
million Americans and 1.8 million Japanese have AD [1, 
2]. AD is associated with atrophy of gray matter in the 
cerebral cortex, which leads to morphological changes, 
i.e., a decrease in the thickness of the cerebral cortex or 
an increase in the volume of cerebrospinal fluid (CSF) in 
the cerebral sulci and lateral ventricles (LVs), which can 
be measured in magnetic resonance (MR) images. Fur- 
thermore, the atrophy of gray matter occurring in early 
stages of AD is localized to specific regions such as the 
hippocampus, amygdala, entorhinal area, and medial- 
temporal cortex [3,4]. Querbes et al. [5] reported that 
patients with AD in early stages can be diagnosed using 
a normalized thickness index-based criterion. Because 
palliative medicines can delay the progression of AD, 
early diagnosis and treatment are highly important [6,7]. 
Therefore, neuroradiologists attempt to subjectively es- 
timate the degree of atrophy by analyzing atrophic mor- 
phological changes on MR images such as the cerebral 
cortical thickness, but a diagnosis based on such analysis 
is not quantitative or reproducible.  

Several methods have been developed for quantitative 
measurement of cerebral cortical thickness between the 
white matter and cortical surfaces based on the analysis 
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coupled surfaces propagation using the level set method 
[8], Laplace’s equation from mathematical physics [9], 
the average least distance [10], the distance between 
linked vertices [11], and normal vectors derived using 
the level set method [12].  

In the method of Jones et al. [9], the cortical thick- 
nesses were measured by means of gradient vector tra- 
jectries in a virtual electromagnetic field, which was 
constructed to be analogous to the neuronal sublayers 
between the cortical surface and white matter surface. 
Their method, in which the gradient vectors were or- 
thogonal to the nested sublayers, is considered to be re- 
liable. Acosta et al. [13] developed a voxel-based method 
that is both accurate and computationally efficient by 
extending Jones’s method to a Lagrangian-Eulerian ap- 
proach. A hollow sphere with an inner radius of 20 mm 
and external radius of 23 mm has a cortical thickness of 
3 mm similar to the cerebral cortex, was constructed to 
evaluate their method. Their results showed that the cor-
tical thickness was 3.04 ± 0.02 mm with a voxel size of 1 
mm, which seems to be accurate and reliable. Therefore, 
in this study we adopted Jones’s basic idea for the meas- 
urement of the cortical thickness, which is to use the tra- 
jectory of the gradient vector in some 3D space, but we 
used a different method for calculating the gradient vec- 
tors. 

Previous methods for measuring cortical thickness 
depended on the accuracy of determination of the bound- 
ary between the cerebral cortex and white matter regions. 
However, it can be very difficult to determine the bound- 
ary in the case of diffuse neuronal cell death, since the 
edges of white matter regions may be blurred or voxels 
of the cortex and white matter in the boundary may be 
mixed, making them appear fuzzy. In addition, past stud- 
ies have not considered the voxel value information in 
MR images, which could include the atrophy information 
in the cerebral cortex. To overcome these issues, we em- 
ployed fuzzy c-means (FCM) clustering [14-17]. We 
assumed that the 3D membership map in the FCM clus- 
tering can express the fuzzy boundary between the cere- 
bral cortex and white matter regions, and the fuzzy 
framework can incorporate voxel value information re- 
lated to the AD atrophy.  

Our purpose in this study was to develop an automated 
method for measuring the 3D cerebral cortical thick- 
nesses in AD patients based on 3D fuzzy membership 
maps derived from T1-weighted images, which includes 
atrophy information in the cerebral cortical regions. In 
the proposed method, the boundary between the cortical 
and white matter regions is determined on each cortical 
surface voxel by using membership profiles on trajecto- 
ries of local gradient vectors in a fuzzy membership map, 
so that the white matter regions do not have to be seg- 
mented. 

2. MATERIALS AND METHODS 

2.1. Overall Algorithm 

Figure 1 shows the overall scheme for measurement of 
the 3D cerebral cortical thickness. The proposed method 
consisted of mainly three steps as follows. 

1) Segmentation of the brain parenchymal region 
based on a brain model matching. 

2) Creation of a fuzzy membership map for the cere- 
bral cortical region based on the FCM clustering algo-
rithm [14-17]. 

3) Calculation of the cerebral cortical thickness using 
localized gradient vector trajectories in fuzzy member- 
ship maps.  

2.2. Segmentation of the Brain Parenchymal  
Region 

2.2.1. Initial Brain Parenchymal Region Based on  
Histogram Analysis 

The background (BG) and CSF regions were removed 
from an original T1-weighted image based on a histo- 
gram analysis. Figure 2 shows a histogram of the origi- 
nal T1-weighted image. The histogram of the T1- 
weighted image could be divided into four portions that 
included three peaks, which correspond to the BG (the 
largest peak), CSF (the second largest peak), and the 
brain parenchyma and fat regions (the third largest peak), 
respectively. The two threshold values, TBG and TCSF, for 
reducing the BG and CSF regions, respectively, are 
shown in Figure 2. The inset figure shows the enlarged 
histogram without the background peak. The threshold 
value, TBG, for the background region was determined as 
TBG = MBG + kBGSDBG, where MBG and SDBG are the 
mean value and the standard deviation (SD), respectively. 
The values MBG and SDBG were determined from the first 
largest peak with more than a certain number of pixels, 
which was empirically set as 300,000 pixels in this study, 
and kBG is the constant, which was empirically set as 1.0. 
Similarly, the threshold value for reducing the CSF re- 
gion, TCSF, was determined as TCSF = MCSF + kCSFSDCSF,  
 

 

Figure 1. Overall scheme for the calcula- 
tion of three-dimensional cortical thick- 
nesses. 
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Figure 2. A histogram of an original T1- 
weighted image, where TBG and TCSF are the 
threshold values for reducing the background 
(BG) and CSF regions, respectively. The inset 
figure shows the enlarged histogram without 
the BG peak. 

 
where MCSF and SDCSF are the mean value and the stan- 
dard deviation, respectively, and kCSF is the constant, 
which was empirically set at –0.25. After reducing the 
CSF region, the initial brain parenchymal region was 
segmented by applying morphological processing and 
extracting the largest region. 

2.2.2. Segmentation of the Brain Parenchymal Region 
with Brain Model Matching 

Figure 3 shows a flowchart for the segmentation of the 
brain parenchymal region using a brain model matching. 
The brain parenchymal model image shown in Figure 
4(a) was manually created from a T1-weighted image of 
a cognitively normal (CN) subject, whose brain seemed 
to be of average size and shape (female, 71 years old; 
mini-mental state examination (MMSE) score: 30). A 
voxel value similar to those in the white matter regions 
was assigned to holes of the CSF regions in the LVs to 
avoid removing some portions of the brain parenchyma 
by the holes of lateral ventricles due to misregistration. 
The brain parenchymal region was segmented by regis- 
tering and masking of the brain model image to each 
head region, in which the BG and CSF regions were re- 
moved, based on a global linear registration of an affine 
transformation [18,19] and a local non-linear registration 
of the free-form deformation (FFD) [20-23]. Figure 4 
shows images of the segmentation of a brain parenchy- 
mal region: (a) an original brain model image; (b) a brain 
model image after global registration to a normalized 
image; (c) an image after local registration; (d) a brain par- 
enchymal mask image; (e) a head region after removing 
CSF regions; and (f) a brain parenchymal region extracted 
from the head region (e) by the brain mask image (d).  

 

Figure 3. Flowchart for segmentation of the brain 
parenchymal regions based on a brain model 
matching.  

 

 
(a)                  (b)                 (c) 

 
(d)                  (e)                 (f) 

Figure 4. Sample images of the segmentation of a brain paren- 
chymal region: (a) An original brain model image; (b) A brain 
model image after global registration to a normalized image; (c) 
A brain model image after local registration; (d) A brain paren- 
chymal mask image; (e) A head region after removing CSF 
regions; and (f) A brain parenchymal region extracted from the 
head region (e) by the brain mask image (d).  

2.3. Creation of a Fuzzy Membership Map for 
the Brain Parenchymal Region Based on a 
Fuzzy C-Means Clustering 

The 3D cerebral cortical thicknesses were measured in a 
fuzzy membership map space for the brain parenchymal 
region based on the FCM clustering, because the fuzzy 
membership can represent the phenomenon in which the 
cerebral cortical voxel value (gray color in T1-weighted 
image) gradually increases from the cortical surface to 
the white matter surface due to AD. The FCM clustering 
method assigns a class membership value to each voxel, 
depending on the similarity of the pixel to a particular 
class relative to all other classes [14-17]. In this study, all 
voxels were assigned two class membership values, i.e., 
cerebral cortical regions and white matter regions. The 
FCM method is performed by minimizing the following 
objective function with respect to the membership func- 
tion uik and the centroids vi:  

2

1 1

n c
m

FCM ik k i
k i

J u x v
 

               (1) 
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where xk is the voxel value at a voxel k, c is the number 
of clusters, and n is the number of voxels. The member- 
ship functions are constrained to be positive and to sat- 
isfy the following equation: 

1

1
c

ik
i

u


                  (2) 

Here, the objective function is minimized when high 
membership values are obtained in areas where the ob- 
jective voxel values are close to the centroid of one of 
the clusters, and low membership values are obtained 
where the objective voxel values are distant from the 
centroids. The parameter m is a weighting exponent that 
satisfies m > 1 and controls the degree of fuzziness. As m 
approaches 1, the membership functions become more 
crisp. On the other hand, as m increases, the membership 
functions become increasingly fuzzy. A region can be 
segmented by a certain threshold value for the member- 
ship value.  

2.4. Measurement of the Cerebral Cortical 
Thickness Based on a Membership Profile  

As mentioned in the Introduction section, we adopted the 
basic idea of Jones et al. [9], in which the cerebral corti- 
cal thicknesses were measured by the trajectories of gra- 
dient vectors in a virtual electromagnetic field that was 
constructed to be analogous to the neuronal sublayers 
between the cerebral cortical surface and white matter 
surface. In this study, we employed a fuzzy membership 
map of the brain parenchyma obtained from the T1- 
weighted image instead of the virtual electromagnetic 
field. Furthermore, the local gradient vector was calcu- 
lated by the first-order polynomial within a 3D volume 
of interest (VOI) for reducing the impact of image noise 
on the local gradient. The local gradient vectors were 
almost orthogonal to the isosurface in the fuzzy mem- 
bership map.   

The 3D cerebral cortical thickness was measured 
based on a membership profile using a local gradient 
vector trajectory in a fuzzy membership map. First, a 
local gradient vector was calculated based on the first- 
order polynomial within a VOI, but this local gradient 
vector was expected to proceed toward the white matter. 
The global gradient vector was obtained prior to calcula- 
tion of the local gradient vector, whose direction should 
be within a 2π solid angle with respect to the global gra- 
dient vector. We assume that the gradient vector obtained 
from the VOI would have the potential to be robust 
against image noise, compared with the finite difference 
approximation for the first-order derivative. Second, a 
membership profile was constructed according to the 
trajectory of the local gradient vector from the cortical 
surface to the fully white matter regions. Finally, a 3D 

cerebral cortical thickness based on the membership pro- 
file was calculated on the local gradient trajectory. 

2.4.1. Calculation of Local Gradient Vector Gl  
The local gradient vectors were derived from the first- 
order polynomial in the VOI of the fuzzy membership 
map. Prior to calculation of the local gradient vector, the 
global gradient vector was obtained so that the local gra- 
dient vector direction would be within a 2π solid angle 
with respect to the global gradient vector. Figure 5 
shows illustrations for calculation of global and local 
gradient vectors.  

For calculation of the global gradient vector, a 9 × 9 × 
9 VOI was set at the center of a surface voxel in a brain 
parenchymal region as shown in Figure 5(a). A first- 
order polynomial was calculated in the VOI by using the 
following equation: 

 , ,f x y z ax by cz d              (3) 

Here, f(x, y, z) is the approximated membership value 
at (x, y, z) in a VOI, and a, b, c and d are constants. The 
vector (x, y, z) consisting of coefficients in Eq.3 is al- 
most orthogonal to the isosurface of the fuzzy member- 
ship map. Therefore, the 3D gradient vector Gg from the 
surface of a cerebral cortical region to a white matter 
region is expressed by 

g

a

b

c

 
   
 
 

G                  (4) 

which is normalized to  


G

N
G

                 (5) 

A local gradient vector was calculated in a 5 × 5 × 5 
VOI, which was set at the center of an objective voxel as 
shown in Figure 5(b), by applying a first-order polyno- 
mial for this VOI in the same way as for the global gra- 
dient vector. Although the local gradient vector should 
proceed toward the white matter, the local gradient vec- 
tors may proceed in directions away from the white mat- 
ter due to image noise. The global gradient vector was 
obtained prior to calculation of the local gradient vector, 
whose direction should be within a 2π solid angle with 
respect to the global gradient vector. Therefore, the local 
gradient vector was determined by using Eq.7 to calcu- 
late an angle θ between the global and local gradient 
vectors such that the local gradient vector direction 
would be within a 2π solid angle with respect to the 
global gradient vector. The angle θ between the global 
gradient vector Gg = (a b c)T and the local gradient vector 
Gl = (i j k)T was calculated by the following equation: 
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(a) 

 
(b) 

 
(c) 

Figure 5. Illustrations for calculation of 
global and local gradient vectors: (a) A 
global gradient vector within a 9 × 9 × 9 
volume-of-interest (VOI); (b) A local gra- 
dient vector within a 5 × 5 × 5 VOI; and (c) 
A trajectory of local gradient vectors. 
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Consequently, the local gradient vector was obtained 
in one of the following two ways depending on the angle 
between the global and local gradient vectors:  
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G               (7) 

2.4.2. Measurement of the 3D Cerebral Cortical 
Thickness 

The 3D cerebral cortical thicknesses were measured by 
using membership profiles on trajectories of local gradi- 
ent vectors in a fuzzy membership map. A trajectory of 
the local gradient vector was tracked until the sum of 
0.1-mm-long local gradient vectors was 7.0 mm, as 
shown in Figure 5(c). A membership profile was con- 
structed as a trajectory of the local gradient vector by 
connecting the membership value at each terminal point 
of the local gradient vector from the cortical surface to 
the fully white matter regions. The membership value at 
the terminal point of 0.1-mm-long local gradient vectors 
was calculated by using a linear interpolation method. 
The membership profile was normalized by setting the 
membership value at the cortical surface voxel and the 
minimum value of the profile as 1.0 and 0.0, respectively. 
Figure 6 shows a fuzzy membership profile on the tra- 
jectory of a local gradient vector from a white matter 
region to a cerebral cortical region. Finally, the 3D cere- 
bral cortical thickness at each cortical surface voxel was 
estimated at a normalized membership value of 0.75 as 
the boundary between the cerebral cortical and white 
matter regions. The membership value of 0.75 was em- 
pirically determined so that the cerebral cortex could be 
segmented as accurately as possible for a spherical 
model with a cortical thickness of 3 mm. This spherical 
model will be described in a later section.  

2.4.3. Segmentation of Ten Lobar Regions 
In order to investigate the regional atrophy at the lobe 
level, the cerebral cortical thicknesses were separately 
evaluated in ten lobar regions. For this purpose, ten lobar 
regions were segmented by registering the lobar model 
image to each brain parenchymal image by using the 
affine transform and the FFD. The lobar model image 
was selected from a probabilistic reference system for 
the human brain at the International Consortium for 
Brain Mapping (ICBM) website of the Laboratory of 
Neuro Imaging (LONI) [24]. 

2.5. Spherical Brain Models for the Validation 
Test 

Spherical brain models of known cortical thicknesses 
were used to evaluate the proposed method. The spherical  
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(a) 

 
(b) 

Figure 6. A fuzzy membership profile on a 
trajectory of a local gradient vector: (a) An 
original profile and (b) A profile normalized 
by the first value on the cortical surface. 

 
brain models were of various noise levels and isotropic 
voxel sizes (resolutions), so that the ability of the pro- 
posed method to accurately determine cortical thick- 
nesses under a variety of conditions could be analyzed.  

A sphere of a brain model with an inner and outer radii 
of 37 mm and 40 mm, respectively, in which the cortical 
thickness was 3 mm, was generated in a fine grid space 
(1100 × 1100 × 1100) with an isotropic voxel size of 0.1 
mm3. The pixel value spatial distribution of the cortical 
region in the inward direction to the center of the models 
was modeled by using the following error function: 

  2

0

2
e d

π

x terf x t               (8) 

where x is the position in the inward direction. This 
function increases with the inward direction. Further- 
more, brain models with three noise levels were pro- 
duced by adding Gaussian random noise to the brain 
models so that the percentage of standard deviation of 
Gaussian noise to the mean voxel value in the whole 
original image was 2%, 5%, and 10%. The Gaussian 

noise was generated by converting uniform random 
numbers with a Box-Muller transform. To evaluate the 
robustness of the method to the noise, we prepared 
spherical brain models with three noise levels of 2%, 5%, 
and 10%. Figure 7 shows the spherical brain models 
with three noise levels of 2%, 5%, and 10% used for 
measurement of the cerebral cortical thicknesses, where 
the true thickness was 3 mm. 

In addition to the three noise level models, we made 
two resolution models with voxel sizes of 0.5 mm and 
1.0 mm by averaging a certain cubic VOI in order to 
investigate the impact of the partial volume effect on the 
proposed method. 

2.6. Subjects and MRI Data 

This study was approved by an institutional review board 
of our university. High-resolution T1-weighted images of 
whole brains acquired from 10 clinically diagnosed AD 
cases (age range: 63 - 84 years; median: 78.0 years) and 
10 CN (67 - 86 years; 74.5 years) were randomly se- 
lected from among outpatients who visited our memory 
clinic from 2007 to 2008. Seven healthy volunteers were 
recruited, taking into account age matching with the AD 
patients, and they gave informed consent to undergo MR 
examination and for use of the data for research purposes. 
There was no statistical significant difference (p = 0.35) 
between the AD and CN groups in terms of age. The 
MMSE scores for AD patients and CN subjects ranged 
over 11 - 23 (median: 21) and 27 - 30 (median: 29), re- 
spectively. The 10 AD cases were determined by neuro- 
psychiatrists based on the diagnostic and statistical man- 
ual of mental disorders (DSM)-IV criteria for the diag- 
nosis of dementia of the Alzheimer’s type. These data 
were obtained with a 3.0-T MRI scanner (Intera Achieva 
3.0 T Quasar Dual R2.1; Philips Electronics, Best, Neth- 
erlands) at our university hospital by using T1-weighted  
 

 

 

Figure 7. Spherical brain models with a cortical thickness of 3 
mm used for the evaluation of cerebral cortical thicknesses. 
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3D turbo field echo (TFE) sequences (time of repetition 
(TR): 8.3 ms; time of echo (TE): 3.8 ms; time of inver- 
sion (TI): 240 ms; flip angle: 8 degrees; sensitivity en- 
coding (SENSE) factor: 2; number of samples averaged 
(NSA): 1; field of view (FOV): 240 mm × 240 mm). The 
images were obtained in sagittal planes, and were recon- 
structed into 150 consecutive transverse slice images 
with a 1-mm-slice thickness and a matrix size of 240 × 
240 pixels. All images were normalized from 0 to 1023 
for voxel value, and preprocessed by a median filter for 
reduction of noise.  

 OPEN ACCESS 

3. RESULTS 

3.1. Validation Test for Spherical Brain Models 

The cortical thicknesses with a voxel size of 0.5 × 0.5 × 
0.5 mm3 for spherical brain models with three noise lev- 
els of 2%, 5%, and 10% were 3.041 ± 0.212, 3.041 ± 
0.210, and 3.040 ± 0.204 mm, respectively. Cortical 
thicknesses with a voxel size of 1.0 × 1.0 × 1.0 mm3 for 
the three noise levels were 2.953 ± 0.342, 2.953 ± 0.342, 
and 2.952 ± 0.343 mm, respectively. 

3.2. Clinical Magnetic Resonance Images 

Table 1 shows the means of cerebral cortical thickness in 
ten lobar regions. The average cortical thicknesses in the 
right and left temporal lobes, and the left insula in AD 
cases were 3.32 ± 0.21, 3.16 ± 0.26, and 2.66 ± 0.23 mm, 

respectively. The cortical thicknesses for AD cases were 
significantly thinner than those in the corresponding re- 
gions in CN subjects, whose cortical thicknesses were 
3.64 ± 0.40, 3.47 ± 0.32 and 3.00 ± 0.41 mm, respec- 
tively (p < 0.05). Figures 8 and 9 show color-coded 
maps of cerebral cortical thickness for an AD case and a 
CN subject produced by the proposed method. The AD 
case (Figure 8) appears to have a thinner cerebral cortex 
in the temporal or frontal lobes, compared with the CN 
subject (Figure 9). 

4. DISCUSSION 

Table 2 shows the comparison of results obtained by the 
three methods for measurement of cortical thickness in a 
spherical model with a 3 mm artificial cortical region. 
Our results seem to be close to the two past studies [11, 
13], in spite of the changing levels of noise and resolu- 
tion. Thus the proposed method may be robust against 
noise. As for the resolution, although we added some 
noise to the spherical model, our results were a little bit 
worse than those of Acosta et al. [13], who included no 
noise in their experiments.  

Table 3 shows a comparison of the results obtained by 
the 7 methods for measurement of cerebral cortical 
thickness in clinical cases. Zeng et al. [8] developed a 
method for the segmentation of cerebral cortical regions 
using coupled-surfaces propagation based on a level set 
approach, and for measurement of the cortical thickness.  

 
Table 1. Means of cerebral cortical thickness in ten lobar regions. 

Cerebral cortical thickness (mm) 
 

Frontal Temporal Parietal Occipital Insulae 

 Rc Ld R L R L R L R L 

ADa 3.41 ± 0.22 3.45 ± 0.29 3.16 ± 0.26 3.32 ± 0.21 3.02 ± 0.30 3.28 ± 0.28 3.32 ± 0.40 3.57 ± 0.45 2.69 ± 0.30 2.66 ± 0.23

CNb 3.62 ± 0.34 3.58 ± 0.32 3.47 ± 0.32 3.64 ± 0.40 3.11 ± 0.28 3.42 ± 0.34 3.51 ± 0.32 3.64 ± 0.39 2.94 ± 0.39 3.00 ± 0.41

p value 0.12 0.33 0.03 0.04 0.47 0.33 0.25 0.73 0.11 0.03 

aAlzheimer’s disease patients; bClinically normal subjects; cRight hemisphere; dLeft hemisphere. 

 

 
(a)                      (b)                          (c) 

Figure 8. Color-coded maps of cerebral cortical thickness in a patient with Alzheimer’s dis- 
ease (age: 76 years; gender: female; mini-mental statement examination score: 21): (a) An 
original T1-weighted image; (b) A color-coded axial map; and (c) A color-coded volume-ren- 
dering map. 
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(a)                      (b)                          (c) 

Figure 9. Color-coded maps of cerebral cortical thickness in a patient with Alzheimer’s dis- 
ease (age: 76 years; gender: female; mini-mental statement examination score: 21): (a) An 
original T1-weighted image; (b) A color-coded axial map; and (c) A color-coded volume-ren- 
dering map. 

 
Table 2. Comparison of results obtained by three methods for 
the measurement of cortical thickness in a spherical model with 
a 3 mm artificial cortical region. 

 
Voxel size  

(mm3) 
Noise level  

(%) 
Thickness  

(mm) 

0.5 × 0.5 × 0.5 0 2.88 ± 0.08 
Lerch et al. [11] 

1.0 × 1.0 × 1.0 0 2.72 ± 0.17 

0.5 × 0.5 × 0.5 0 3.01 ± 0.01 
Acosta et al. [13] 

1.0 × 1.0 × 1.0 0 3.04 ± 0.02 

2 3.04 ± 0.21 

5 3.04 ± 0.21 0.5 × 0.5 × 0.5 

10 3.04 ± 0.20 

2 2.95 ± 0.34 

5 2.95 ± 0.34 

Proposed  
method 

1.0 × 1.0 × 1.0 

10 2.95 ± 0.34 

 
The mean cortical thickness for the 20 CN subjects was 
2.92 mm. Jones et al. [9] presented a computerized 
method for measurement of the cortical thickness based 
on trajectories of gradient vectors in a virtual electro- 
magnetic field. They found that the cortical thicknesses 
for the left and right hemispheres were 2.67 mm and 2.69 
mm, respectively.  

Fischls et al. [10] developed a method for thickness 
measurement of the cerebral cortex based on the average 
least distance, and reported that the average cortical 
thicknesses for 30 CN cases (20 - 37 years) were 2.7 ± 
0.3 mm for gyri and 2.2 ± 0.3 mm for sulci. Lerch et al. 
[11] developed a method for cortical thickness measure- 
ment as the distance between vertices of the white matter 
and gray matter surfaces, which were fitted using de- 
formable models, resulting in two surfaces with a huge 
number of polygons each. According to their results, the 
average cortical thickness was 3.1 ± 0.28 mm for 19 AD 
patients (mean age: 68.8; mean MMSE: 21.2 ± 4.6) and 

3.74 ± 0.32 mm for 17 CN subjects (mean age: 61.0; 
mean MMSE: 29.3 ± 0.6). Arimura et al. [12] proposed 
an automated method, which can measure cerebral corti- 
cal thicknesses with normal vectors on a voxel deter- 
mined by differentiating a level set function. They re- 
ported that the cortical thicknesses for 29 AD cases 
(mean age: 69.7; mean MMSE: 20) and 19 CN (mean 
age: 61.9; mean MMSE: 28) were 3.2 ± 0.1 mm and 3.5 
± 0.1 mm, respectively. On the other hand, in our results, 
the mean thicknesses in the whole cerebral lobar regions 
were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for 
CN subjects, respectively (p < 0.05), which seemed to be 
close to those of the previous studies.  

In this study, the boundary between the cortical and 
white matter regions was determined by using member- 
ship profiles on trajectories of local gradient vectors in a 
fuzzy membership map, so that the white matter regions 
do not have to be segmented. Therefore, the cortical 
thickness can be measured even if the segmentation of 
the white matter region would be very difficult due to the 
blurred and noisy boundary between the cerebral cortex 
and white matter.  

It is important to note two limitations of the proposed 
method. The first limitation concerns the registration 
technique used for segmentation of the brain parenchy- 
mal regions by using a brain model matching. Small por- 
tions of cerebral cortical regions for some cases were 
shaved off due to the misregistration between the brain 
model and each case segmented head region. The second 
limitation concerned the calculation of the global gradi- 
ent vectors, which was employed for determination of 
the rough direction of the local gradient vector, whose 
direction should be within a 2π solid angle with respect 
to the global gradient vector. However, although the 
proposed method was robust against random error, the 
directions of the global gradient vectors were influenced 
by the shelving fluctuation of pixel values around the 
boundary even if we used a 9 × 9 × 9 VOI. Therefore, we 
should consider the shape of the cortical surface in the 
de ermination of the global gradient vectors.  t    
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Table 3. Comparison of results obtained by seven methods for the measurement of cerebral cortical thickness in clinical cases. 

Number of cases Mean age Mean MMSE Cortical thickness (mm) 
 Algorithm type 

AD CN AD CN AD CN AD CN 

Zeng et al. [8] 
Coupled-surfaces  

propagation based on  
a level set approach 

- 20 - - - - - 2.92 

Jones et al. [9] 
Streamline of gradient 

vectors in a virtual  
electromagnetic field 

- - - - - - - 

Left hemisphere: 
2.67  

Right hemisphere: 
2.69 

Fischls et al. [10] 
Average least  

distance 
- 30 - 20 - 37 - - - 

Gyri: 2.7 ± 0.3 
Sulci: 2.2 ± 0.3

Lerch et al. [11] 
Distance between  

linked vertices 
19 17 68.8 61.0 21.2 ± 4.6 29.3 ± 0.6 3.1 ± 0.28 3.74 ± 0.32 

Arimura et al. [12] 
Normal vectors based  
on a level set function 

29 19 69.7 61.9 20 28 3.2 ± 0.1 3.5 ± 0.1 

Acosta et al. [13] Jones’s method-based 1(MCI: 8) 8 - - - - 2.18 ± 0.18 

Proposed method 
Localized gradient  

vector trajectory in a 
fuzzy membership map 

10 10 75.7 74.2 19.1 29 3.1 ± 0.4 3.4 ± 0.4 

 
5. CONCLUSION 

We have developed an automated method for measuring 
the 3D cerebral cortical thicknesses in Alzheimer’s pa- 
tients using 3D fuzzy membership maps derived from 
T1-weighted images. The proposed method could be 
robust against the image random noise, because the 3D 
cerebral cortical thicknesses were measured by using 
membership profiles on trajectories of local gradient 
vectors in a fuzzy membership map. Our results showed 
that our proposed method was able to provide quantita- 
tive and useful information of the AD atrophy. The pro- 
posed method could assist radiologists in classification of 
AD patients by visually showing 3D cortical thicknesses 
in cerebral lobes separately. 
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