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ABSTRACT

In this paper, a variable metric algorithm is proposed with Broyden rank one modifications for the equality constrained
optimization. This method is viewed expansion in constrained optimization as the quasi-Newton method to uncon-
strained optimization. The theoretical analysis shows that local convergence can be induced under some suitable condi-

tions. In the end, it is established an equivalent condition of superlinear convergence.
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1. Introduction & Algorithm

This In this paper, it is proposed to consider the follow-
ing nonlinear mathematical programming problem:

min f(x) st g;(x)=0,jel={1---,m}, (1)

where f:R"—>R,g;(jel):R" >R are continuously
differentiable functions. Denote the feasible set as fol-
lows:

gj(x)zo,jel}.

Let L(x,/i) be Lagrangian function of (1), and
L(x,A)=f(x)+> 4,9;(x).
j=1

If (x,,4,) is a KKT point pair of Equation (1), then
VX, 4|,y 15 =0, le,

X ={Xe R"

where g(x,)= ((X) ) 9(x)=(vVg(x.),jel).
At the point pair (X, ) the Newton’s iteration of (2)

is defined as follows:
VZL(%A) Va(x) [Axk}
vg (%) 0 A4,

_[Vf (%, )g}jkg)(xk)ik]

®)
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Later, a positive definite matrix H,'is replaced for
Vi L(%,4) by a lot of authors to develop some kinds

of variable metric methods, such as sequential quadratic
programming (SQP) methods [1-5], sequential systems
of linear equations (SSLE) algorithms [6-8]. In general,
the computational cost of those methods is large.

In this paper, a new variable metric method is pre-
sented, in which the following fact is based on: a positive
definite matrix B, is replaced for the matrix

{ViXL(Xk,ik) Vg(xk)J
Vg(xk)T 0 '

In the sequel, we describe the algorithm for the solu-
tion of (1). Denote

SIS TS e

v(z)=— Vf(xk)+Vg(xk)/1kJ g AX,
. ( 9(x) P B T (AAJ'
O =V(Zk+1)_v(zk)y
2) = |[Vf (x)+ Vg (x) A" +]g (¥)|-

It is obvious that mixn f(x)< min F(z),and from

7eR™MM

Equation (3), we have
By Py :V(Zk)' 4
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To the system of linear Equations (4), like uncon-
strained optimization, B, is dealt with using Broyden

rank one modifications as follows:

(Qk - B, pk) Py
Pe P

Now, the algorithm for the solution of Equation (1)
can be stated as follows:

Algorithm A:

Step 1: Initialization: Given a starting point z, e R™"
(i.e., % eR", 4 eR™), and a initial positive definite
matrix B, e R MMM 2 50,k =0

Step 2: Compute v(z,). If |v(z)|<¢ ., stop;

Bi.i =B+

®)

Step 3: Compute d, =-B,'v(z,);
Step 4: Let z,, =2z, +d,, and obtain B, , according
to (5). Set k=k +1. Go back to step 2.

2. Convergence of Algorithm

X
If the algorithm stops at z, :(ﬂij then x_ is a KKT

point of (1). In the sequel, we suppose that algorithm
generates an infinite sequence {z,} .

Four basic assumptions are given as follows:

Al The feasible set X is nonempty; The functions
f.9; (j e 1) are two-times continuously differentiable;

A2 For all xeR", the vectors {Vg;(x),jel} are
linearly independent;

A3 {x.} and {4} are bounded. There exists a
KKT point pair (X,,4,), such that ViL(x,A) is
positive definite;

A4 There exists a ball N(x,,5) of radius §>0
about x, , where V*f(x),Vg;(x),Vg;(x)(jel)
satisfy the Lipschitz conditionon N(x,,5).

Lemma 1 [9] Let F:R™™ —R™™ be continuously
differentiable in some open and convex set D, and F’
is Lipschitz continuous in D, then Vx+d eD, it holds
that

[F(x+d)=F (x)-F(x)d] <5 Jd"

where v isthe Lipschitz constant. Moreover, Vu,v,
x e D, it follows that
u—X|+|v—x
||F(u)—F(v)—F'(u—v)"ﬁv—" "2" "
Lemma 2 [9] Let F:R™™ — R™™ be continuously
differentiable in some open and convex set D, and F’
is Lipschitz continuous in D . Moreover, assume F'(x)

Ju=vi.
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is invertible for some xeD, then there exist some
e>0,>a>0, such that for all u,veD, the fact

{lu=x].Jv=x|} <& implies that

alu=v|<|F(u)-F(v)|<Blu-v|

Lemma 3 [9] For operator F:R™™ — R™™ which
satisfies:

R1 F is continuously differentiable on D ;

R2 There exists a point z, € D, such that F(z,)=0,
and F'(z,) isreversible;

R3 F' is Lipschitz continuous at z,, i.e., there ex-
ists a constant v, such that

[P (2)-F (2 )< vl

Let z,, =z, —H.'F(z), where HteRM™™ ™™
and it holds that

||Hk+1_ F'(Z*)

s”Hk—F’(z*)

,2eD.

(6)

+||zk -z,

+%(||zk+l—z* ), vk,

then there exist ¢>0and o >0, when

2o - 2| < & |H, —F'(2.)] <5,

it is true that z,,, is meaning, and z, is linearly con-
vergent to z,. Thereby, we can conclude that z, is
superlinearly convergent to z,, if and only if

lim ||(Hk - F'(Z*))(Zkﬂ I )” -0
ko ||Zk+1 —Z ”
In the sequel, we prove the convergence Theorem as
follows:

Theorem 1 If there exist constants ¢ >0 and 6 >0,
such that

()

|z, - z. <J,

<€,||BO—V'(Z*)

then {z,}is meaning, and z, is linearly convergent to

z,, thereby x, and A4, are linearly convergent to x,
and A, respectively.

Proof: From Lemma 3, we only prove that v and B,
satisfy conditions R1, R2, R3 and the inequality (6).
From assumption Al, it is obvious that v is continuously
differentiable. From A3, it holds that
v(z,)=v(x.,4,)=0,and

, V2 (x)+Vig(x)A  Vg(x,)
V'(z,)=- T .
Vg (x,) 0
While VZL(x,,4)=V?f(x)+V?g(x,)A is positive

definite, and {ng (x.),jel{ are linearly independent.
So, itiseasy to seethat Vv'(z,) is reversible. In addition,

v’(zk):—(VZf (% )+ V29 (%) A V(X )]

Vg (X )T 0

*
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From assumption A4, it holds that v’ is Lipschitz con-
tinuous at z,. Inaword, v satisfies the conditions R1,
R2, R3.

Now, we prove that, for v(z,) and B, generated
according to (5), (6) is satisfied.

In fact, from (5), we have

Bei—V'(Z.)

' (qk_kak)ka
=B -Vv'(z,)+——————
‘ ( )+ kapk
' _ T
:Bk_v,(z*)+(V(Z*)ka By Py ) Py @®)
Py P«
(g -v'(z.)p) Py
+ T
Py P«
' Py ka (Qk_V'(Z*)pk)ka
=B - : | — .
kv(z){ pkaJ+ by P,
So,
B —v'(2.)
' Py Py " "qk pk"
<|B, =V'(z,
v - Bl
While
‘l_pkpl PPy
PP PP

and from Lemma 1, we have
o -v'(z.) b
:||V(Zk+1)_v(zk)_V’(Z*)(Zkﬂ_zk)" 9)

1%
sE(

Zea— 2| +z -2 ")"Zm -z

So,

i.e., (6) is true, thereby, from Lemma 3, we get

Bt —V'(z. )" < || B, -V

—Zs

(z*)||+%(||zk+l—z* + ).
7, > 7,ie, X > X A4 > 4.

The claim holds.
Theorem 2 Under above-mentioned assumptions, if
g, o inTheorem 1 satisfy that

65 (v/(2.)) | <13 <25, (10)

X X

then {( kj} is superlinearly convergent to ( k], ie.,
A A

X — X, :0[ X, — X, J

A = A A=A

Proof. From Lemma 3, we only prove that v and B,
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satisfy (7). Denote D, =B, -V'(z,)
Frobenius norm. From (8),

.
Dk(l_kapk]
Py Py |

p, PP . [pkkakaka

Pk Py ” (pk pk)

=(Dk pk) (D P ) Py P =||Dk pk||2
T 2 2
(pk pk) "pk”
2

T2 T
Dk plfrpk Dk[l _ plfrpk ]
F P Pc J|e
”Dk pk||

k Mk
T 2
D{l—%} .
el P P ]

T D 22
o (182 —[jog; - kpk"]
k Pk " k" (12)

1 "kak"J2
<D, - L3
Il zuoknp( Ind

In addition, from (6), (10), using the method of
mathematical induction, it is not difficult to prove that

[t norm, -}

N ||(qk _V’(Z*) pk) ka"F .(11)
Py Py

||Dk+l F <

Since

A :tr(DkTDk): +

So,

, - 1
|B-v'(z.)|<(2-27)6.]7., — 2. SE"Zk -z
thereby,
I, <26,z -2 <269k (14)
k=0

Thus, from (9), (12), (13), we have

D 3
[Oep” k" <2|p,, ("Dk”F ~ Dl +ZV”Z"_Z*"J’

1 <
[eil

$0L 4s(jo, 1o

i+1

3 i
oy 2]
4 k=0

% ol

<45% +6ve, Vi,
2" kP " is convergent, thereby, I|m|| kP "
< [n el i

From Theorem 2, we don’t conclude that {x,} is su-
perlinearly convergentto x,, i.e.,
%1 = %] = o([% = x.[|). In the sequel, we discuss one

condition which assures that x, is superlinearly conver-
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gentto X,.
Lemma4 Let R:R" —R" be a function defined by

R(x) = A(x)(VF (x)+ Vg (x) 2 )+ Vg(x.)9(x),

where A(x)=1, —Vg(X)(Vg(X)‘lVQ(X))_ vg(x)".
Then, [%., — x| =o(|x —x.]). if and only if

(||Xk+1 X ")

Proof. Obviously, using the triangle inequality, it holds
that

||Xk+1 —X||=

||R Xk+l

(% = x[}) & % = %] = 0 ([ %ees = x.]])-
In addition, from A1, we know that R(x) is con-
tinuously differentiable, and
R(x,)=0,
R'(x,)= A(x*)VixL(x*,/l*)+Vg(x*)Vg(x*)T.

It holds that R’(x,) is nonsingular. In fact, let d =0,
and

(15)

(A )VAL(x.2)+ Vg (x)Vg(x.)")d =0,
the facts that Vg(x, ) has full rank, A(Xx,)is semi-posi-
tive definite and V% L(x,,4,) is positive definite imply
that
(x,,4,)d =O,Vg(x,‘)T d=0.

A(x) V5L
So,
A(x,)d =d,d"V%L(x,,4,)d =0,

which is a contradiction.
Thereby, from A4 and Lemma 2, there exist
B>a >0, such that

%, — x| < ||R(xk+l)

< Bl%e =%
So,
||R(Xk+1)

=0(Xe1 = %) & X =% =[x =% ]])-
The claim holds.
Theorem 3 Under above-mentioned conditions, {x,}

is superlinearly convergent to x. if and only if
[AGO(VE (%) + Vo (%) 4
H(V2E(x)+ V20 (%) 2) (X —xk))‘
=o(%ca = x]).

and Hg(xk)Wg(X*)T(Xm X, “ o = %) 1

[A(Xk) Onxmj(v(zk)w;(z*)(xm—xk))

0 |

mxn mxm

= 0(||Xk+1 - Xk”)-

(16)
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Proof. The sufficiency Suppose that (16) holds. We
only prove that |R(x,,q)[|= 0% = X))

From (4), we have

V(X A)=B,py + (Vg(xk)(ﬂk—/t)),

0

So, the fact A(x,)Vg(x,)=0 implies that

(A(%) 0nm)BeP —(A(X) Opm V(X A)=0,
thereby,

“R(%1) =(A(%)  Opn ) BePe = (R (%) =R (%))

-Vg(x)9(x).

From (15), we have
R'(%,) (X — %)
=(AG)VAL(x2)+ Vg (x ) Vg (%)) (%1 = %)

=—(A(X) Opn V() P +VI(X)VI(X)" (X = %)

+(V2f x*)+Vzg(x*)/L)(xk+l—xk))

+(A(%, )—A(x*))(vzf (x,‘)Jrvzg(x,,)ﬂw)(x“l —%)-
In addition, according to Lemma 1, we have

||R(Xk+1) - Rk - R'(X*)(Xkﬂ - X )” = O("Xk+1 - Xk”)'
R(xk+1) = 0<| Kia1 — X ")
The necessity: Suppose that ||, — .| =o(]|x —x.|)

e e =] = 0P =)

On one hand,
g(xk)+vg(x*)T(Xk+l_xk)
= g(xk)"‘Vg(Xk )T(Xk+1_xk)

Ve (%) = Ve (%)) (s =%c).

so, from (16), it holds that

0JOp
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So, in order to prove that
9 (s)+va (%) (% =% =
While
Hg % )+ Vg (xk)T(xm1 X )
= ( (%ca) =9 (%) -V (%)’ (Xm_xk))
+(9(xea)-9(x)).

According to Lemma 1, we have
9(%2) =9 (%) = Vg (%) (Xa = %)
=0([[% = x]):
q (9(%1)-9(%))
<K s = %= 0(%ea = x]) (k>0).
So, ”g X, +Vg(xk) (%r = %)= 0% — xk||)

On the other hand, the fact A(x,)Vg(x )=0 im-
plies that

A% (VE (%) + V9 (%) A
+(V2F (%) + V29 (%) A ) (X1 — X ))

o([[%es — Xk”)'

(
:A(Xk)(Vf (Xk)+Vg( X ) A
+<V2f( +V2g( )(xk+l )
Let h, (x)=Vg(x )+Vg( )/1 then

VE (% )+ VG (%) A+ (V21 (%) + V20 (x.) 4 ) (%s =X, )
=h, (%) h, (%) (4= %)
=~ (%) = (%)= Vh () (% %)

)

+(h (X1 )=, (X )
It is easy to see that
(%) + Y (%) (Xea =% )| =
Thereby,
"A(xk)(Vf(xk)+Vg(xk)ﬂk(Vf(xk)+Vg(xk)/1k

(V21 (%) + 720 () 2) (% =) = 0 (16 = %))

The claim holds.

0(||Xk+1 = % ")
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