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ABSTRACT 

We introduce a new class of the slash distribution using the epsilon half normal distribution. The newly defined model 
extends the slashed half normal distribution and has more kurtosis than the ordinary half normal distribution. We study 
the characterization and properties including moments and some measures based on moments of this distribution. A 
simulation is conducted to investigate asymptotically the bias properties of the estimators for the parameters. We illus- 
trate its use on a real data set by using maximum likelihood estimation. 
 
Keywords: Epsilon Half Normal Distribution; Slash Distribution; Kurtosis; Skewness; Maximum Likelihood  

Estimation 

1. Introduction 

The epsilon half normal distribution, proposed by Castro 
et al. [1], is widely used for nonnegative data modeling, 
for instance, to consider the lifetime process under fa-
tigue. We say that a random variable X  has an epsilon 
half normal distribution with parameters 0   and 

, denoted by , if its density function 
is given by, for ,  
0   1  ,EHN  

0x 

     
1

1 1

x x
f x  

  

   
            




    (1) 

where  .  denotes the standard normal density func- 
tion. When , the epsilon half normal distribution 
reduces to the half normal distribution investigated in 
[2-4]. 

0

Castro et al. [1] provided mathematical properties of 
the epsilon half normal distribution and discussed some 
inferential aspects related to the maximum likelihood 
estimation. 

On the other hand, a random variable  has a stan-
dard slash distribution  with parameter , 
introduced in [5], if  can be represented as  

S
 SL q 0q 

S

1 q

Z
S

U
                   (2) 

where  and  are independent. 
It generalizes normality and has been much studied in the 

statistical literature. 

 0,1Z N  0,1U U

For the limit case ,  yields the stan-
dard normal distribution 

q   SL q
Z . Let , the canonical 

slash distribution follows, see [6]. It is well known that 
the standard slash density has heavier tails than those of 
the normal distribution and has larger kurtosis. It has 
been very popular in robust statistical analysis and stud-
ied by some authors. 

1q 

The general properties of this canonical slash distribu-
tion were studied in [5,7]. Kafadar [8] investigated the 
maximum likelihood estimates of the location and scale 
parameters. 

Gómez et al. [9] replaced standard normal random 
variable Z  by an elliptical distribution and defined a 
new family of slash distributions. They studied its gen-
eral properties of the resulting families, including their 
moments. Genc [10] proposed the univariate slash by a 
scale mixtured exponential power distribution and inves-
tigated asymptotically the bias properties of the estima-
tors. Wang et al. [11] introduced the multivariate skew 
version of this distribution and examined its properties 
and inferences. They substituted the standard normal 
random variable Z  by a skew normal distribution stud-
ied in [12] to define a skew extension of the slash distri-
bution. 

Olmos et al. [3] introduced the slashed half normal 
distribution by a scale mixtured half normal distribution 
and showed that the resulting distribution has more kur-
tosis than the ordinary half normal distribution. Since the *Corresponding author. 
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epsilon half normal distribution  is an ex-
tension of the half normal distribution, it is naturally to 
define a slash distribution based on it in which skewness  

 ,EHN  

and thick tailed situations may exist. It leads to a new 
model on nonnegative measurements with more flexible 
asymmetry and kurtosis parameters. 

The paper is organized as follows: in Section 2, we in-
troduce the new slash distribution and study its relevant 
properties, including the stochastic representation etc. In 
Section 3 we discuss the inference, moments and maxi-
mum likelihood estimation for the parameters. Simula-
tion studies are performed to investigate the behaviors of 
estimators in Section 4. In Section 5, we give a real illus-
trative application and report the results. Section 6 con-
cludes our work. 

2. Epsilon Half Normal Slash Distribution 

2.1. Stochastic Representation 

Definition 2.1 A random variable  has an epsilon half 
normal slash distribution if it can be represented as the 
ratio  

Y

1 q

X
Y

U
                 (3) 

where  defined in (1) and   ,X EHN  
 0,1


U U  are independent, 0 

 , , q
HNS 

, , . 
We denote it as . 
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Y EProposition 2.2 Let . Then, the 
density function of  is given by, for ,  Y 0y 
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where 0  , , . 0 1  0q 
Proof. From (1), the joint probability density function 

of X  and U  is given by, for ,  0,0 1x u  
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Using the transformation:  

1
,

q

x
y u

u
  u , 

the joint probability density function of Y  and U  is 
given by, for ,  0,0 1y u  

     

11 11
,

1 1

q q
qyu yu

h y u u 
  

    
               

 
The marginal density function of  is given by  Y
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After changing the variable into 
1

qt u , the dendity 
function will be obtained as stated.  

Remark 2.3 If 0 , the density function (4) reduces 

to 
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which is the density function for the slashed half normal 
distribution studied by [3]. As ,  q 

     
1

lim
1 1Y
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The limit case of the epsilon half normal slash distri-
bution is the epsilon half normal distribution. For 

1q   , the canonical case follows. 
Figure 1 shows some plots of the density function of 

the epsilon half normal slash distribution with various 
parameters. 

The cumulative distribution function of the epsilon 
half normal slash distribution  is 
given as follows. For ,  

 , ,Y EHNS q 
0y 
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 (5) 

where  .  is the cumulative distribution function for 
the standard normal random variable. 

Proposition 2.4 Let  1 ,qY U u EHN u    and 
 0,1U U , then .   , ,Y EHNS q 

 

 

u u
  

Figure 1. The density function of  , ,EHNS σ ε q  with vari- 

ous parameters. 
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Proof. 
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where 0   and 0 1  . Proof. See [1].  
Remark 2.5 Proposition 2.4 shows that the epsilon 

half normal slash distribution can be represented as a 
scale mixture of an epsilon half normal distribution and 
uniform distribution. The result provides another way 
besides the definition (3) to generate random numbers 
from the epsilon half normal slash distribution  

Proposition 2.7 Let , then the 
moment generating function of Y  is given by, for 

 , ,Y EHNS q  

t ,  
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2.2. Moments and Measures Based on Moments 

         (8) 
In this section, we derive the moment generating func-
tion,the k-th moment and some measures based on the 
moments. where 0  , 0 1   and .  0q 

Proposition 2.6 Let  ,X EHN   , then the mo-
ment generating function of X  is given by  

Proof. From Proposition 2.4 and using properties of 
the conditional expectation, we have  
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Making the transformation 1 qw u   and the result 
follows.  

Proposition 2.8 Let  ,X EHN   , then the  
non-central moments are given by  

thk
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The following results are immediate consequences of 
(10).  

for . where 1, 2,k   0   and .  0 1 
Proof. See [1].  

Corollary 2.10 Let , where  , ,Y EHNS q  
0  , 0

Proposition 2.9 Let , where  , ,Y EHNS q  
0 

q k
,  and . For  and 

, the  non-central moment of  is given by  
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and for ,  2q 
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 Proof. From the stochastic representation defined in (3) 

and the results in (9), the claim follows in a straightfor-
ward manner.  For the standardized skewness  
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0q

1     


 

  


 ,   1 3 2

2 2
for 3

3


 



q AA
q

q qCC
     (12) 

 
 

  2 2

2
for 4

4 3 4

q BB
q

q q q CC





 
                              (13) 

where  
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which are the corresponding skewness and kurtosis coef-
ficients for the epsilon half normal distribution 

 ,EHN   .  
Figure 2 shows the skewness and kurtosis coefficients 

with various parameters for the  model. 
The skewness and kurtosis coefficients decrease as  
increases. The parameter 

 , ,EHNS q  
q

  does not affect the two 
coefficents. 

3. Maximum Likelihood Inference 

In this section, we consider the maximum likelihood es-
timation about the parameters of the  model de-
fined in (4). For ,  

EHNS
0y 
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where .  , , qθ 

Suppose 1 2  is a random sample of size  
from the epsilon half normal slash distribution  

, , , ny y y n

 , ,EHNS q  . Then the log-likelihood function can be 
written as  
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 (14) 

 The estimates of the parameters maximize the likeli-
hood function. By taking the partial derivatives of the 
log-likelihood function with respect to , ,q   respec-
tively and equalizing the obtained expressions to zero, 
we obtain the following maximum likelihood estimating 
equations. 
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(a)                                                       (b) 

Figure 2. The plot for the skewness 1  and kurtosis coefficient 2  with various parameters. a) Skewness coefficient; b) 

Kurtosis coefficient. 
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The maximum likelihood estimating equations above 

are not in a simple form. In general, there are no implicit 
expression for the estimates. The estimates can be ob-
tained through some numerical procedures such as New-
ton-Raphson method. Many programs provide routines to 
solve such maximum likelihood estimating equations. 

In this paper, all the computations are performed using 
software R. The MLE estimators are computed by the 
optim function which uses L-BFGS-B method. In the 
following section, a simulation is conducted to illustrate 
the behavior of the MLE. 

For asymptotic inference of , the Fisher 

information matrix 

 , , qθ 

 I θ  plays a key role. It is well 
known that its inverse is the asymptotic variance matrix 
of the maximum likelihood estimators. For the case of a 
single observation  1n  , we take the second order 
derivatives of the log-likelihood function in (14) and the 
Fisher information matrix is defined as  

    2 log Y

i j

f
,i j

y
I

 

 
 

   
θ         (15) 

for 1,2,3i   and 1, 2,j 3 .  
Proposition 3.1 Let 1 2  is a random sample 

of size n  from the distribution , where 
, , , nYY Y

 EHNS θ
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 , , qθ 
θ
  and  is the maximum likelihood esti-

mator of , we have  
θ̂

    1

3 ,dn N
 θ θ I θ0ˆ      (16) 

Proof. It follows directly by the large sample theory 
for maximum likelihood estimators and the Fisher infor-
mation matrix given above. 

4. Simulation Study 

4.1. Data Generation 

In this section, we present how to generate the random 
numbers from the epsilon half normal slash distribution 

.   , ,EHNS q 
Proposition 4.1 Let ,Z V  be two independent ran-

dom variables, where  0,1Z N  and V  is such that  
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The density function of X  is  
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which proves the result.  
Using the definition in (3) and the results in Proposi-  

tion 4.1, we can generate variates from the epsilon half 
normal slash distribution  with the fol- 
lowing algorithm. 

 , ,EHNS q 

Algorithm 4.2 Using the definition in (3) to generate 
data 
 Generate  0,1 ,  0,1  and  Z N S U

 10,U U   

 Let 1V     if 
1

2
S





. Otherwise 1V      

 Set X V Z   

 Set 
1 q

X
Y

U
   

4.2. Behavior of MLE 

In this section, we perform a simulation study to illus 
trate the behavior of the MLE estimators for parameters 
 ,  and .  q

It is known that as the sample size increases, the dis-
tribution of the MLE tends to the normal distribution 
with mean  , , q   and covariance matrix equal to the 
inverse of the Fisher information matrix. However, the 
log-likelihood function given in (14) is a complex ex-
pression. It is not generally possible to derive the Fisher 
information matrix. Thus, the theoretical properties (as-
ymptotically normal, unbiased etc) of the MLE estima-
tors are not easily derived. We study the properties of the 
estimators numerically. 

We first generate 500 samples of size 50n   and 
100n   from the  , ,EHNS q   distribution for fixed 

parameters. The estimators are computed by the optim 
function which uses L-BFGS-B method in software R. 
The empirical means and standard deviations(SD) of the 
estimators are presented in Table 1. 

It can be seen from Table 1 that the parameters are 
well estimated and the estimates are asymptotically un-   

 
Table 1. Empirical means and SD for the MLE estimators of  ,  and .  q

50n   100n   
    q  

 ˆ SD   ˆ SD   q̂ SD   ˆ SD   ˆ SD   q̂ SD  

2 0.3 1 2.2209 (0.6088) 0.2660 (0.2858) 1.2227 (0.4234) 2.0585 (0.5608) 0.3232 (0.2994) 1.1316 (0.2637)

2 0.3 3 2.1196 (0.5719) 0.3227 (0.3084) 3.3663 (0.7471) 2.0233 (0.4061) 0.2831 (0.2508) 3.0813 (0.1773)

2 0.5 1 2.3379 (0.6281) 0.4108 (0.3118) 1.1454 (0.3721) 2.1292 (0.5656) 0.4606 (0.3129) 1.0993 (0.3041)

2 0.5 3 2.1219 (0.5556) 0.4706 (0.2718) 3.2898(0.8117) 2.0833 (0.4435) 0.4964 (0.2397) 3.2379 (0.6898)

4 0.3 1 4.0192 (0.3592) 0.3300 (0.3026) 1.0527(0.3202) 4.0184 (0.3080) 0.3249 (0.2474) 1.0179 (0.2063)

4 0.3 3 4.0281 (0.8434) 0.2912 (0.2594) 3.4566 (0.8925) 4.0070 (0.5591) 0.3133 (0.2390) 3.1680 (0.3239)

4 0.5 1 3.9019 (0.1017) 0.4597 (0.3060) 1.0644 (0.2826) 4.1157 (0.8947) 0.5110 (0.2578) 1.0255 (0.2549)

4 0.5 3 4.2622 (0.3156) 0.4209 (0.2389) 3.3251 (0.6728) 4.0777 (0.2836) 0.4434 (0.1991) 3.0810 (0.1540)
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Ta  2. S ary r t e

Size Deviation 

ble umm  fo he life of fatigu  fracture. 

Sample 
Mean 

Standard 
1b  2b  

101 1.025 1.119 3.001 16.709 

 
able 3. Maximum likelihood parameter estimates(with T

(SD)) of the HN, EHN and EHNS models for the stress- 
rupture data. 

Model ̂  ̂  q̂  loglik AIC BIC 

HN  1.5135 - - −1  23 2 23 3  15.1666 2.333 4.948

 (

0.3580 −109. 9 223. 98 228. 00

 (

2.7647 −98. 89 203 78 211. 32

 

0.1064)      

EHN  1.2863 - 819 63 87

0.1274) (0.1046)     

EH S  N 0.4728 0.8536 98 .97 82

(0.0665) (0.0560) (0.7830)    

 
iased. The empirical mean square errors decrease as 

tress-rupture data set, the 

b
sample size increases as expected. 

5. Real Data Illustration 

In this section, we consider the s
life of fatigue fracture of Kevlar 49/epoxy that are sub-
ject to the pressure at the 90% level. The data set has 
been previously studied in [1,3,13,14]. 

Table 2 summarizes descriptive statistics of the data 
set where 1b  and 2b  are sample asymmetry and 
kurtosis coefficients, respectively. This data set indicates 
non negative asymmetry. 

We fit the data set with the half normal, the epsilon 
half normal and the epsilon half normal slash distribu-
tions using maximum likelihood method. The results are 
reported in Table 3. The usual Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC) to 
measure of the goodness of fit are also computed. 

2 2logAIC k L   and log 2logBIC k n L  . where 
k  is the number of parameters in the distribution and 

 is the maximized value of the likelihood function. 
e results indicate that EHNS  model fits best. Fig- 

ures 3(a) and (b) display the fitted models using the 
MLE estimates. 

6. Concluding

L
Th

 Remarks 

 the epsilon half normal 

 

In this article, we have studied
slash distribution  , ,EHNS q  . It is defined to be the 
quotient of two independe m variables, an epsilon 
half normal random variable and a power of the uniform 
distribution. This nonnegative distribution extends the 

nt rando

 
(a)  

 
(b)  

Figure 3. Models fitted for the life of fatigue fracture data 
set. a) Histogram and fitted curves; b) Empirical and fitte
CDF. 
 

tion is conducted and demonstrates the good per-

 to thank the anonymous review- 

d 

epsilon half normal, the half normal distribution etc. 
Probabilistic and inferential properties are derived. A 
imulas

formance of the maximum likelihood estimators. We 
apply the model to a real dataset and the results demon-
strate that the proposed model is very useful and flexible 
for non negative data. 
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