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ABSTRACT 

We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal 
behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP) distribution 
are the classical distributions for this problem. However, from 2004, [1] and many other researchers have been empiri- 
cally showing that generalized logistic (GL) distribution is a better model than GEV and GP distributions in modeling 
extreme movement of stock market data. In this paper, we show that these results are not accidental. We prove the 
theoretical importance of GL distribution in extreme value modeling. For proving this, we introduce a general multi- 
variate limit theorem and deduce some important multivariate theorems in probability as special cases. By using the 
theorem, we derive a limit theorem in extreme value theory, where GL distribution plays central role instead of GEV 
distribution. The proof of this result is parallel to the proof of classical extremal types theorem, in the sense that, it pos- 
sess important characteristic in classical extreme value theory, for e.g. distributional property, stability, convergence 
and multivariate extension etc. 
 
Keywords: Financial Risk Modeling; Stock Market Analysis; Generalized Logistic Distribution; Generalized Extreme 

Value Distribution; Tail Equivalence; Maximum Stability; Random Sample Size; Limit Distribution 

1. Introduction 

An important problem from the field of stock market 
modeling is the determination of adequate model for ex- 
treme stock movement. In financial literature, the choice 
of using an appropriate probability model for financial 
returns are clearly exemplified rather than selecting a 
conventional model (see for ex. [2]). The fitted tale dis- 
tribution is crucially important in financial studies. For 
Value at Risk (VaR) estimation, one requires appropriate 
probability distribution of extremes as input. A vast num- 
ber of literature show the importance of best fitted dis- 
tribution in VaR analysis (see [3]). Another important 
area of application of probability models of extremes is 
in hedging procedure. Hedging procedure is clearly based 
on the probability of fitted distribution (see [4]). Also 
measuring the risk attached to a share or portfolio will 
critically depends on the tale distribution. [5] largely il- 
lustrates the importance of appropriate probability mod- 
els for extremes of financial returns data. 

Initially, normal and lognormal distributions were used 
to model data which arise from financial sector. In the 
last five decades, different authors have been showing 
that the distribution of extreme daily returns is far from 
normal (see [5-11]. They used a number of distributions 

different from normal and lognormal to model large val- 
ues of finance data. For example t-distribution, alpha sta- 
ble distribution, etc. In 1990’s the interest in modeling 
large values of finance data have been diverted to ex- 
treme value theory where modeling maximum of the data, 
generalized extreme value distribution for maxima (GEV 
(max)) or generalized Pareto (GP) distribution are used 
and for minimum of the data, generalized extreme value 
distribution for minima (GEV(min)) is used. These dis- 
tributions enjoy strong theoretical support for analyzing 
extreme movement of a data compared to other models. 
Below we give an outline of these theoretical properties 
of the distributions. 

The theoretical representation for GEV(max) and 
GEV(min) have been established by Jenkinson and Von 
Mises (see von Mises (1954) and Jenkinson (1955)). We 
define GEV(max) below. 

Definition 1.1 A random variable X is said to follow 
the generalized extreme value distribution for maximum 
(GEV(max)) if its distribution function is given by,  

 
  

  

1
exp 1 if 0

exp exp if 0

k

k

kx k
G x

x k

    
   
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and the supports are 

1

1

for 0

for 0

for 0.

x k k

x k k

x R k





  


 
  

 

The related location-scale family can be introduced by  

replacing the argument x  above by 
x 



 for R   

and 0  . The parameter k

k 

 is known as the shape 
parameter of the distribution and different values of  
leads to different well known distributions. That is, for 

, it is the Gumbel (Type I) distribution which is 
interpreted as 0 k , For , it is the reverse- 
Weibull (Type III) distribution, for , it is Frechet 
(Type II) distribution. Also GEV(min) can be defined as 
follows. 

k

0k 
limk G 0

k 0

Definition 1.2 A random variable X is said to follow 
the generalized extreme value distribution for minimum 
(GEV(min)), if its distribution function is given by, 

 
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1
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1 exp exp if 0

k

k

kx k
H x

x k

     
   

 

and the supports are 
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The parameter  is the shape parameter and k k . 
One can introduce the related location-scale family by  

replacing the argument x above by 
x 



 for R   

and 0  . For  (which is interpreted as 0k 
0 klimk F

0k 
0k 

), the distribution is called reverse-Gumbel, for 
, it is called reverse-Frechet distribution and for 
, the distribution is the Weibull distribution. 

The above two distributions possess the characterizing 
properties called max-stability and min-stability respec- 
tively. In the following we define max-stability for non- 
random sample size.  

Definition 1.3 A non-degenerate random variable X  
is said to be max-stable if, for each  there are 
constants  and  such that  

2,3,n  
0na  nb

  1 2max , , , .
d

n n n X X X a X b   

where 1 2, , , nX X X  are same copies of X .  
Similarly, one can define min-stability. By the extre-

mal types theorem, asymptotic distribution of maxima of 
independent and identically distributed random variables 
(i.i.d.r.v.’s) under proper normalization can be approxi- 
mated by the GEV(max) distribution. Below we give an 
outline of the theorem. 

Theorem 1.1 (see [12]): Let   be a se- 
quence of i.i.d.r.v.’s and 

, 1nX n 
1 2ax , , = m ,n nM X X X . If 

there exist sequences of norming constants  
   0 ,na b n , and a non-degenerate d.f.  such that, G

   ,wn n

n

M b
P x G

a

 
  

 
x      (1.1) 

then , in Equation (1.1), is the GEV(max) distribution 
defined in Definition 1.4. 

G

Since 
  1 2 1 2min , , , = max , , ,n n X X X X X X     , the 

asymptotic distribution of minima of i.i.d.r.v.’s can be 
derived as  1 G x  G, where  is the GEV(max). 
Hence the asymptotic distribution for minima is the 
GEV(min) distribution defined in Definition 1.2. These 
theories have been extended to multivariate case, where 
multivariate generalized extreme value distributions play 
central role (see [13,14]). 

Another alternative model for maxima is the gene- 
ralized Pareto distribution, has been suggested by two in- 
dependent works [15] and [16]. Below we define GP dis- 
tribution. 

Definition 1.4 A random variable X is said to follow 
the generalized Pareto (GP) distribution if its distribu- 
tion function is given by, 

 
  

  

1
1 1 if

1 exp if 0

k
kx k

Q x
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and the supports are 
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The parameter  is the shape parameter and k k . 
One can introduce the related location-scale family by  

replacing the argument x  above by 
x 



 for R   

and 0  . With respect to ,  and 0k  0k  0k   
we get the exponential distribution, beta distribution and 
Pareto distribution. 

GP distribution possess characterizing property called 
Peak over Threshold (POT) stability w.r.t non-random 
sample size. In the following we define POT stability for 
non-random sample size. 

Definition 1.5 A non-degenerate random variable X  
is said to be POT-stable if, for each  there are 
constants  and  such that 

0u 
0ua  ub

   .
d

u uX u X u a X b     

By Peak over threshold theorem, under proper norma- 
lization, the asymptotic distribution of the observations 
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above exceedances of a level u has a generalized pareto 
distribution iff asymptotic distribution of maximum of 
the observations, under proper normalization, is the 
GEV(max) distribution. We give an outline of the theo- 
rem below. 

Theorem 1.2 (see [15,16]) let   be a se- 
quence of i.i.d.r.v.’s with common continuous distri- 
bution function 

, 1nX n 

 F x
b
. Suppose there exists a pair of se- 

quences  and   with na  for all  and a 
non-degenerate distribution function  such that 

 na n 0
 G x

n

  
   

lim

lim

n n n
n

n
n n

n

P M b a x

F a x b G x





 

  
       (1.2) 

for all x  at which  is continuous. Let  G x

     
 

1
.

1u

F u x
P x P X u x X u

F u

 
    


 

Then, under proper normalization,  can be 
approximated by generalized Pareto (GP) distribution, 
when 

 uP x

Fu x  (where ).   1F x sup :x xF

This theory also extended to multivariate case, where 
multivariate generalized Pareto distribution plays central 
role (see [17]). 

Extremal types theorem (see [18]) and Peak over thre- 
shold theorem ([15,16]) facilitate a theoretical background 
to use generalized extreme value (GEV) distributions and 
GP distribution in modeling extreme movement of stock 
market indices. A number of researchers verified empiri- 
cally that these models give sufficient fit to model ex- 
treme volatility in stock market, see for ex. [19,20]. Also 
many researches utilizes these models for measuring 
extremal behavior of stock markets, see for ex. [4,21,22]. 

However, from 2004, [1] and many other researchers 
have been empirically showing that generalized logistic 
(GL) distribution is a better model than GEV and GP in 
modeling extremal behavior of different stock market 
data, this includes US, UK, Germany, Japan, India, Athens, 
African stock markets etc. See for eg. [1,23,24] etc. Also 
[25] empirically showed that GL is better than GEV to 
model extreme movements in the stock, commodities and 
bond markets. 

In this paper we show some theoretical motivation of 
this claim, that is, we present a theoretical framework of 
the role of GL distribution in extreme value modeling. In 
Section 2, we define logistic distribution and some of the 
known results of the logistic distribution which are im- 
portant in extreme value theory. We also define gene- 
ralized logistic distribution in this section. Section 3 in- 
troduces some of the notable properties of GL distribu- 
tion, namely, tale equivalence with GEV and GP distri- 
butions and stability property w.r.t geometric distribution. 
We prove a general multivariate limit theorem in Section 
4, and show multivariate central limit theorem, multi- 

variate extremal types theorem and multivariate random 
sum convergence theorem are special cases of this theo- 
rem. In Section 5, we use the above general limit theo- 
rem to prove the convergence of random maxima and 
random minima to GL distribution. For an additional 
support to our claim, we present a data analysis in Sec- 
tion 6. We introduce a multivariate generalized logistic 
distribution in Section 7, and also we prove a charac- 
teristic property of this multivariate distribution by using 
the general multivariate theorem in Section 4. 

To prove the results we require some basic concepts 
which we discuss below. 

Definition 1.6 The right end point and left end point of 
a d.f. F , denoted by Fx  and Fy  respectively, are  

  sup : 1 ,Fx x F x   

  inf : 0 .Fy x F x   

Definition 1.7 Two distributions F and G are equi- 
valent in their right tail if they have the same right end 
point, i.e. F Gx x , and  

 
 

1
lim 1.

1Fx x

F x

G x





 

Definition 1.8 Two distributions F and G are equi- 
valent in their left tail if they have the same left end point, 
i.e. F Gy y , and  

 
 

lim 1.
Fx y

F x

G x
  

For more details see [26]. Next, we introduce the max- 
stability w.r.t. a discrete distribution.  

Definition 1.9 (see [27]) Let F  be a non-degenerate 
distribution function of a random variable X  and  
be a discrete random variable defined on set of positive 
integers with probability mass function . That is,  

N

 np 
  , 1,2,3,nP N n p n   .  

Then F  is said to be max-stable w.r.t.  (or r. v.  np
X  is said to be maximum stable w.r.t. a r. v. ) if 

there exist  and 
N

0Na  Nb  such that,  

 1 2max , , ,
  

d
N N

N

X X X b
X

a





 

where , 1nX n   are same copies of X .  
Similarly, one can define min-stability w.r.t. a discrete 

distribution. 

2. Review of Logistic and Generalized 
Logistic Distribution 

Logistic distribution is an important distribution used in 
statistical modeling. It is used for modeling in a number 
of research papers (see [28]). In literature, Logistic distri- 
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bution plays some important role in modeling of ex- 
tremes of data. In this section, first, we define Logistic 
distribution and then discuss its importance in extreme 
value theory. 

Definition 2.1 A random variable X is said to follow 
standard logistic distribution if its d.f is given by 

   
1

.
1 e

X x
F x x


  


 



   (2.1) 

The following are some important results which con- 
nects logistic distribution and extreme value theory. 

Result 2.1 ([27]): Let   be a sequence of 
i.i.d.r.v.s with symmetric distribution function 

, 1nX n 
 .F . Let 

 be an integer valued random variable independent of N
 nX  and 

   1 ,0 1,   P N k p p p k     1k
1.


   (2.2) 

Let  1 2max , , ,N NM X X X   and there exist con- 
stants Na  and Nb  such that 

1

d
N N

N

M a
X

b


  

iff F  is the logistic distribution function. 
The logistic distribution appears as a limiting distri- 

butions as described in the following result.  
Result 2.2 (see [28]): Let  , 1nX n 

 .

 be a sequence 
of independent and identically distributed random va- 
riables with distribution function F . Let  be a in- 
teger valued random variable which are not necessarily 
independent of 

N

nX . Assume F  is in the domain of 
attraction of Gumbel distribution and  

   lim , 0,
N

P N nz A z z


    

where  A z  is a proper distribution function. Then the 
limit distribution of NM  is logistic iff 
  p 0A z az , a 1 ex  . 
The next result brings the connection between logistic 

distribution and the extreme value theory through mid- 
range. 

Result 2.3 (see [28]): Let  , 1,2,nX n    be a se- 
quence of independent and identically distributed 
random variables with 1X  follows  .F . Let  

 1 2 max , , ,n nM X X  X  and 

 1 2 min , , ,nm X X  X n . Assume F  is symmetric dis- 
tribution which belongs to the domain of attraction of 
Gumbel distribution then under proper normalization the 
midrange 

2
n n

n

m M



  

converges to the random variable Z  which follows 
standard logistic distribution given in Definition 2.1. 

In statistics literature, there are several ways of gene- 
ralizing the logistic distribution (for more details see 

[29]). Among the various generalization of logistic dis- 
tribution, the one given by Hosking (see [30]) is called 
the 5th generalized logistic distribution ([29]). This form 
of generalized logistic distribution is used for many real 
life applications, see for example [1,23,24,30,31]. Moti- 
vated by this we introduce the 5th generalized logistic 
distribution and call this generalization of logistic dis- 
tribution as generalized logistic distribution.  

Definition 2.2 A random variable X is said to follow 
the generalized logistic (GL) distribution if its distri- 
bution function is given by, 

   1
1

if 0
1 1

1
if 0

1 exp( )

k

X

k
kx

F x

k
x

    
   

 

and the supports are 

1

1

for 0

for 0

for 0.

x k k

x k k

x R k





  


 
  

 

The parameter  is known as the shape parameter of 
the distribution and 

k
k . One can introduce the re- 

lated location-scale family by replacing the argument x   

above by 
x 



 for R  and 0  . For k = 0, XF   

can be identified as the logistic distribution. For , 
and some scale transform, we get loglogistic distribution 
as given in [27]. Similarly for , through some scale 
transform we get backward loglogistic distribution. The 
statistical properties and estimation issues of the GL dis- 
tribution are discussed in [29]. 

0k 

0k 

3. Some Notable Properties of GL 
Distribution 

In this section we prove some characters of GL distri- 
bution which are important to extreme value theory. We 
study the tail behavior of GL distribution compared to 
other distributions. Also, as we see in GEV and GP dis- 
tributions, we prove GL distribution is also characterized 
by a stable property. 

3.1. Tail Equivalence of GL, GEV and GP 

In this subsection, we compare tail distribution of GL 
with GEV(max), GP and GEV(min). Figures 1 and 2 
gives the probability density functions and distribution 
functions of GL, GEV(max), GP and GEV(min) for k = 0 
respectively. Figures 1 and 2 indicate that the right tails 
of the GEV(max), GP and GL distributions are similar 
and GEV(min) and GL are similar in left tails. This clearly 
indicates that these three distributions are asymptotically  
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Figure 1. Probability density functions of GEV(max), 
GEV(min), GP and GL distributions. 
 

 

Figure 2. Distribution functions of GEV(max), GEV(min), 
GP and GL distributions. 
 
equivalent in their tails, which we prove in the following 
theorems. 

Theorem 3.1 The distributions GEV(max), GP and GL 
are equivalent at their right tails. The distributions 
GEV(min) and GL are equivalent at their left tails. 

3.2. Max-Stability and Min-Stability w.r.t 
Geometric Distribution 

From Result 2.1, the logistic distribution is characterized 
by max-stability property. Here we prove the property 
still remains with this generalization. Below theorem 
show that the GL distribution also characterized by max- 
stability and min-stability w.r.t geometric distribution. 

Theorem 3.2 The generalized logistic distribution 
given in Definition 2.2 characterizes max-stability w.r.t 

sequence of i.i.d random variable follow bution 
if and only if there exist real numbers 0Na   and 

geometric distribution. That is, let  be a 

s GL distri

1 2, ,X X 

Nb  
such that, 

 1 2max , , ,
  

d
N N

N

X X X b
X

a



where N is a discrete random variable fo eom

Se

4. A General Multivariate Limit T eorem

 

  

llows g

h

etric 

xt 

 

distribution. Similarly, the result is true for minimum. 
Hence GL satisfies the stability property. In the ne
ction we prove a theorem which gives a direct relation 

between stability property and limit distribution of a 
general class of functions. We use this theorem to prove 
a limit theorem in extreme value theory where GL plays 
the central role. 

Here we prove a limit theorm of general functions of in- 
dependent identically distributed continuous multivariate 
random variables (i.i.d.c.m.r.v) which posses property Q 

(see Definition 4.1). Let  , , ,1 2g X X X
    be a Borel-  

measurable function of 1 2, , ,X X X
   , w

m


ivariate nor
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tinues. We use the mult ing function as 
 1, 1, 1, 2, 2, 2, , , ,, , , p p pa x b a x b a x b a x b                 . 

e Below we define a property Q  of a B easuraorel m bl
fu

on 4.1 Let 
nction. 
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 g satisfies pro

  be a
per

 Bo
m

rel- 
easurable function then ty Q  if,  

   

  
    
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

  
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 

   

     

  

 ,  
1 2 , , X
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where  and 2  are integer va om

i

1,   lued rand

 , , 

 vari- 
ables or ers such that  1 2 1P    .  

The functions , m
n

i ni

 integ

1 21 1
ax , ,

n

i
X X X

X 

f functions 

n

X   

hi
  

ar mportant examples o we some of the i ch 
satisfy Property Q. By  max , , ,1 2X X X    we mean 
the coordinate wise maxim s with ran- 
dom sample size also satisfy Property Q, for more details 
see [32]. 

Theorem 4.1 

um. These function

 ,,n pXLet 1, 2,, , ,n n nX X X n 1
   
 

  

1 2, , ,gbe a sequence of i.i.d.c.m.r.v and X X X
  

at 


h th

 be 
a Boral-measurable function suc g  satisfies 
property Q , and   is independent of each iX . Let 
Y  be a non-degenerate r.v. Then there exists sequences 
 f
  and  e  such that 

   
1 2, , ,g X X X

 Y
wF f x e

     
F x     

iff Y satisfies the following equation 
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      ,F a x b F x x
1 2, , ,

and values of
Yg Y Y Y       

     

for some sequences  and  0a   b
 , where  are

an limit theorem in probability can be 
de

4.1. Multivariate Version of Generalized Central 

Let η

iY  
same copies of Y . 

Many import t 
duced as a special cases of Theorem 4.1, which in- 

cludes multivariate central limit theorem, multivariate 
extremal types theorem and Random Sum Convergence 
theorem, which we show in the following subsections.  

Limit Theorem as a Special Case 

 = n and   n

1 2 1
, , , ii

g X X X X 
     , then g satis-  

ribed in Definition (fies property Q as desc 4.1). Let X be 
the class of random variables which follows multivariate 
stable distributions. Then for all X X  there exist a se- 
quence  0na   and  nb  such or each n, 

 
 that, f

 

where 

11
,n

ii
n n XX

F a x b F x x


   
     

iX  are same copies of X
r.v

, see [11]. Let 
 , 1 be an i.i.d sequence of ’s and nY n  Z  be a 

erate r.v. Then there exist  0nc   and non-degen  nd  
such that  

   
1

n
ii

w
n n ZY

F c x d F x


  
    

iff Z X . 

4.2. Multivariate Extremal Types Theorem as a 

Let 

Special Case 

n   and  
 , 1 2 1 2, , max , , , n g X XX X X X      

property Q . Let 
, then g satisfies 

X  be the class of random variables 
follows m tivariate extreme value distributions with cha- 
racterizing property, 

n

ul

   
1 1

andn nX X
F a x b F x x n N            

where iX  are same copies of X . Let  be a  , 1nY n 
sequenc f i.i.d.c.m.r.v’s and e o Z  be a erate 
r.v. Then there exist  0nc   and    such that  

  

non-degen

nd
w

 1 2max , , , n
n n ZY Y Y F c x d F x     
 

iff Z X . 

4.3. Random Sum Convergence as a Special Case 

Let N  , a r.v and   N

1 2 1
, , , ii

g X X X X 
     , then  

g  s s property Qatisfie . Let X  
iva

be the class of random 
variables which follows mult riate strictly geometric 
stable distribution. Then for all X X  there exist con- 
stants  0a   and  b  such r each n,  that, fo

    k
X

x F x x  11
n

ii X
F a b


         

iX  are same copies of X , see [3 ,34]. Let 3where 
 , 1nY n   be an i.i.d sequence of r.v’s and Z  be a 

erate r.v. Then there exist  > 0l  annon-degen d  m  
such that 

   
1

n
ii

w
ZY

F l x m F x 


 
     

iff Z X . 

5. GL as a Limit Distribution of Random 
Maxima and Minima 

e limit theory of random maTh xima and random minima 
has been studied by many authors (see for ex. [35]). In 
this section we derive generalized logistic distribution as 
the limit of random maxima and random minima when 
sample size follows geometric distribution using Theo- 
rem 3.2 and 4.1. 

Theorem 5.1 Let  , 1 be a sequence of  nX n   
i.i.d.c.r.v. Let  2 , , 1max , N NM X X X  ,  

 2 , , 1min ,N NX X ,
random variable which fo
m X inte and N is an ger valued 

llows geometric distribution, 
independent of  iX . Also let Y  and Z  be random 
variables with no generate distribution functions G  
and H respectively, 0Na  , 

n-de

Nb , 0Nc   and Nd  
such that, 

dN N

N

M a
Y

b


  

and  

.dN N

N

m c
Z

d


  

Then 

 

1

1
if 0

1 1

1
if 0.

1 exp

k
k

x
k

G x

k
x







 
            

           

 

with supports are 

1

1

for 0

for 0

for 0.

k

x k k

x R k

 

 





  


x k

  
  

 

also H  has the same distributional form of with 

, f

G  
different parameters. 

Proof. The proof consist of two parts. First rom 
Theorem 3.2, it is verified that GL posses characterizing 
property of max-stability and min-stability w.r.t geo- 
metric distribution. By using Theorem 4.1, where 1p  ,  
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e GL

 geometric random minima, if it 
ex

the random maxima and random minimum, when sample 
size follows geometric distribution, converge to th  

and GS can be viewed as the weak limit distribution of 
sum of random number of random variables, whose ran- 
dom number follows geometric distribution. distribution, if it exists. 

Theorem 5 identifies the limit distribution of geome- 
tric random maxima and 6. Goodness of Fit Test for the BSE Data 

ists, as the GL distribution given in Section 2.2. That is, 
GL distribution can be used as an asymptotic model for 
maximum and minimum of a random number  N  of 
random variables, when N follows geometric distribution. 
Notably, unlike of GEV(max), GEV(min), and GL 
distribution provides the theory for both maxima and 
minima. This is an alternative model for maxima and 
minima. The theory is parallel to generalized extreme 
value model and generalized Pareto model in the sense 
that the three models includes three important distri- 
butions which is decided by the shape parameter. Also 
tail of these models are asymptotically equivalent and 
three models have a characterizing stability property in 
different sense. Moreover, the three models can be con- 
sidered as the limit distribution of extremes in different 
situations. These results justify the theoretical importance 
of the empirical findings, that GL can be a suitable model 
over GEV model for extremes of share market data, see 
for example [1,25,26]. Many papers also show that GL 
distribution provides an adequate distribution in hydro- 
logical application, for eg. [30,31] etc. 

Remark 5.1 It is also be noted that this theorem is 
somewhat similar to geometric stabl

GP, 

e theorem in the 
th

L distribution for weekly minimum data. 

   

In this section, we empirically study the performance of 
GL and GEV in modeling the behavior of minimum re- 
turns of Bombay stock exchange data. We use Anderson- 
Darling test for comparing goodness of fit of GEV and 
GL distributions in the extremal behavior of the data. 
Since the test is based on empirical distribution function 
(EDF) and among all the well known tests based on EDF, 
Anderson-Darling test has the highest power in testing 
normality against a number of alternatives when the pa- 
rameters are unknown [36]. 

Table 1 shows a comparison between performance of 
GEV(min) and GL on minima returns. For fifteen inter- 
vals, GL provides an adequate fit in eleven intervals than 
GEV(min), which indicates that GL distribution provides 
a better fit than GEV(min). However, GEV(min) pro- 
vides an adequate fit in 11 out of 15 intervals and in which 
most of the intervals p-values are large, which shows that 
GEV(min) also provides a model for minimum returns. 

Table 2 shows that GL provides a better fit in six in- 
terval compared to GEV(min). While GEV(min) pro- 
vides an adequate fit in nine out of ten intervals showing 
that GEV(min) is also a model for monthly minima. 

Comparing GL and GEV(min) in quarterly minimum 
data, Table 3 indicates the same result, that is, GL pro- 
vides a better fit than GEV(min). Further GEV(min) and 

eory of partial sum of random variables where geo- 
metric stable (GS) distribution plays a central role. GS 
distribution is widely using in stock market modeling, 
 

Table 1. Performance of GEVmin and G

GEVmin GL 

Intervals n loca scale shape p loca scale shape p Best fit 

1 78 0.006 0.006 226 0.396 −0.009 0.005 0.324 0.465 GL 0.

2 78 0. 0. − 0.

−

− GL 

GE

GE

GE

004 0.007 0.270 000 0.007 0.005 0.356 000 − 

3 78 0.014 0.011 0.107 0.112 −0.019 0.007 0.103 0.869 GL 

4 78 0.012 0.009 0.207 0.672 −0.016 0.006 0.044 0.95 

5 78 0.010 0.012 0.204 0.395 −0.015 0.009 0.308 0.225 Vmin 

6 78 0.017 0.014 0.135 0.599 −0.023 0.010 0.26 0.938 GL 

7 78 0.010 0.0082 −0.101 0.031 −0.014 0.005 0.106 0.152 GL 

8 78 0.011 0.009 −0.235 0.176 −0.015 0.005 0.027 0.219 GL 

9 78 0.010 0.011 0.071 0.701 −0.015 0.007 0.217 0.932 GL 

10 78 0.013 0.011 0.012 0.052 −0.017 0.007 0.178 0.58 GL 

11 78 0.015 0.014 0.0113 0.541 −0.021 0.009 0.177 0.254 Vmin 

12 78 0.008 0.007 0.090 0.009 −0.011 0.005 0.229 0.125 GL 

13 78 0.008 0.008 0.183 0.107 −0.012 0.006 0.293 0.348 GL 

14 78 0.006 0.007 −0.036 0.401 −0.019 0.006 0.293 0.494 GL 

15 88 0.009 0.0117 0.117 0.003 −0.013 0.008 0.242 0.00 Vmin 
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Tab erfor  of G  and stribution for m  min ata.

Vmin GL 

le 2. P mance EVmin  GL di onthly imum d  

  GE  

Intervals n p Best Fit Loca Scale Shape p Loca Scale Shape 

1 26 0.015 0.006 323 0.324 −0.018 0.005 0.396 0.206 GEV in  0. m

2 26 0.024 0.015 −0.060 0  0.  

GE

.708 −0.03 0.01 0.132 511 GEVmin 

3 26 0.025 0.007 −0.153 0.255 −0.027 0.004 0.075 0.525 GL 

4 26 0.034 0.020 0.137 0.551 −0.043 0.015 0.261 0.517 GEVmin 

5 26 0.020 0.008 −0.054 0.419 −0.023 0.005 0.135 0.350 Vmin 

6 26 0.024 0.009 0.141 0.208 −0.027 0.006 0.264 0.339 GL 

7 26 0.027 0.012 0.156 0.257 −0.032 0.009 0.274 0.258 GL 

8 26 0.023 0.012 0.051 0.593 −0.028 0.008 0.204 0.625 GL 

9 26 0.015 0.006 0.467 0.049 −0.018 0.005 0.507 0.122 GL 

10 35 0.019 0.013 −0.081 0.695 −0.023 0.007 0.256 0.886 GL 

 
Tabl erformance of min) L d on f rter um *Ind eith ribution fit the 

 
e 3. P  GEV(  and G istributi or qua ly minim  data. icates n er dist

data.

  GEVmin GL  

Intervals n Loca Scale Shape p Loca Scale Shape p Best Fit 

1 2  0.029 0.015 074 0.419 −0.035 0.01 0.123 0.529 GL 2 −0.

2 22 0.034 0.015 0.3072 0.  0  

GE

103 −0.04 0.012 0.383 .186 GL 

3 22 0.039 0.018 −0.073 0.054 −0.046 0.011 0.124 0.052 Vmin 

4 24 0.0252 0.010 0.263 0.01 −0.029 0.008 0.350 0.028 GL* 

 
GL g es a go mod ree f fou rvals

hich shows both distribution can be used to model 

 

In  also a 
su for extremes, moreover it plays better 

D
iv od el in th  out o r inte , 

w
quarterly data and comparing these distributions GL is a 
better model. 

On analysis of half yearly data, Table 4 clearly shows 
GL provides a good fit comparing to GEV(min). Finally, 
Table 5 illustrates GL provides a better for yearly mini- 
mum data compared to GEV(min). Both distribution fit 
for the data at 0.05 level. 

The above analysis reveals that for analyzing the mini- 
mum returns in stock market data, GL provides a better 
fit than GEV distributions, which shows minimum be- 
haves like a geometric minimum than the usual minimum 
in stock market data (for more details see [37]). 

7. Multivariate Generalized Logistic 
Distribution and a Characterization
Property 

Section 5, we identified that GL distribution is
itable model 

model than GEV in some situations. We also proved that 
the above theorem is parallel to the existing extremal 
types theorem and peak over threshold theorem. Naturally, 
one can think a multivariate version of GL distribution as 
parallel to the theory of multivariate extreme value dis- 
tribution. 

efinition 7.1 Let  1, 2, ,, , , 1n n n p nX X X X ,n   
 
   

be a sequence of i.i.d.c.m.r.v and let  
 1 2max , , ,N NM X X X    , where N is random variable 

follows geometric distributio
p- nces

n. Let  and  are 
 such t

, 

 0na 
hat  

nb
dimensional real seque

 
N N

1, 1, 1, 2, 2,,N N N N N

a x b

a x b a x



 

 
 

2, , , ,, ,N p N p N p Nb a x b 

Suppose the following convergence occur

 N

w
M N NF a x b G    

Then we called as multivariate generalized logi-  G  
stic (MGL) distribution and 

1X   here  D GF D G , w   

Notice that, the univariate margins of G must be a 
generalized logistic distribution, this includes all three 
ty l 

the logistic, tic and
tio elow we prove a 

is the domain of attraction of G . 

pes of the margina distribution: k = 0, k > 0 and k < 0 
correspond respectively to  loglogis  
backward loglogistic distribu ns. B
characterizing property of MGL distribution. 

Theorem 7.1 The MGL distribution is characterized 
by max-stability w.r.t geometric distribution. That is, let 
N  be a random variable follows geometric distribution. 
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Table 4. Performance of GEV(min) and GL

  GEVmin 

 distribution for half yearly minimum data. 

GL  

Intervals n Loca Scale Shape p Loca Scale Shape p Best Fit

1 23 0.038 0.019 0.130 0.452 −0.046 0.013 0.256 0.569 GL 

2 23 0.040 0.019 008 0.041 −0.047 0.013 0.165 0.195 GL −0.

 
Tab erfor  of GE n) and istri  ye inim ta. 

EVmin GL 

le 5. P mance V(mi  GL d bution for arly m um da

  G  

Intervals n Loca Scale Shape p Loca Scale Shape p Best Fit 

1 23 0.049 0.023 0.001 0.109 −0.058 0.015 0.171 0.131 GL 

 

let e a s ce of 

i.d.c.m.r.v which follows MGL distribution iff there exist 
 and are p-dimensional real sequences such 

and, 

 =X   1, 2, ,, , ,n n n p nX n  


, X 1  bX


equen  

i.
a 0n 

 
 nb  

that

  1, 1, 1, 2, 2, 2, , , ,, , ,

N N

N N N N N N p N p N p N

a x b

a x b a x b a x b



 

 


 

   
1NM N N X

F a x b F x  
    

Proof. The result is directly from Theorem 4.1. 

7.1. Proof of Theorem 3.1 

Si e only 
gi P. We 

distribution functions of 
. 

s

nce the proof contains only simple calculation, w
ve proof for tail equivalence of GEV(max)and G

use notations G  and F for 
GEV(max)and GL respectively

As per the assumed notation for the distributions of 
GEV(max) and GL, to prove the asymptotic equivalence 
of their right tail , by Definition 1.7, it is enough to prove 
that G Fx x  and 

 
 

1
lim 1,  .

1Fx x

G x

F x





  


 

We n theprove this i  following three cases. 
Case 1  0  . Here   ,G Fx x  

 
 

  

 

1 exp exp1
.

1 ex

lim lim
11 1

x x

p

xG x

x

  

 

 

This is 

F x 


 

0

0
 

 
 

form. So applying L-Hospital’s rule we 

get, 

       
 

    

2

2

1
lim

1

1 exp
lim exp exp exp

exp

lim exp exp 1 exp 1.

x

x

x

x

x

d d G x

d d F x

x
x x

x

x x





  
  

 
       

       

 

Case 2 



 0  . Here also   ,G Fx x  

 
 

 
  

1

1

1
1

k


1 1 1
lim lim

1 1 exp 1x x

F x x

G x x








 

  


   
 

which is again 
0

0
 form. So applying L-Hospital’s rule, 

 
 

 
        
 

        

1
x x



 
      

1 1 1

21

2 1 11

1

1 2 1

1
lim

1

1 1
lim

1 1 1 1 exp 1

1 1

1 1
1 lim

1 2 1 1 exp 1

1
1 lim

x

x

x

x

d dx F x

d dx G x

x x x x

x x

x

x x x







1 exp 11 1 1 x xx x

 



 



 



 

   

 



  



  









  
  

 
 

        

     
          

 
   

       

 

 
    11

1

1
1 exp 12 1

1

1
1 1.

2 0

xx
x







 
 
  
      

  

  
    
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. In this case 
1

,G Fx x


   and 
1

c
k

 0 Case 3   

 
 1

1 0
lim 1 1.

1 1x

F x

G x








  


 

7.2. Proof of Theorem 3.2 

To prove the max-stability of GL, we use the following 
lemma from [27]. 

Lemma B.1 Let XF  
 

be a non-degenerate distribution 
function of a r.v. X  

 
f’s 

which is maximum stable w.r.t 
. If   and for any real 
 and

 , 1np n 
constant c

Fy  ,
 d. 1

Fx   ,
, H  and 2H  defined by  

    1 expXF x H c x   and  

    2 expXF x H c x    for all real x , then 1H  
and 2H  are non-degener
 , 1np n   with 

1H

ate and maximu  stablem  w.r.t 
y c  and 

2Hx c
 [27]. B

 respectively.
 see e  we pr  

Theorem 3.2. 
Proof. Let 

 
oveFor detailed discussion low

XF  
stic di

ters 

be the distribution function of gene-
ralized logi stribution with , and location and
scale parame

 
 0k 

  and   res at ipectively. Th s,  

  1

1
, .

1 1

X k
F x x

kx
k






 
  

   
  

   

 Now take the transformation  
1

expHx x , we get, 

 
 

1 1
exp ,X H k

F x x x
k

         
 

1

1 exp x  

tio
(see [27]). is, 

 

which is the distribu n function of Logistic distribution 
 That 

1
expX HF x 

y Le
x   is logistic distri- 

bution function and b mma (B.1), the distribution 
function XF  

, for 

. T

is m etric distribution. 
Similarly s. L

but
ution

pr

ax-sta  geom
0 , the s

 

ble w.r.t
k 

e

ame proof work  That is, G  
distri ion satisfies max-stability w.r.t geometric dis- 
trib o prov that GL is the only distribution with 

operty of max-stability, let X  be a random variable 
which follows GL distribution with shape parameter k . 
Now take the t sformation ran

if 0X m
Y m

             (
if 0X m 

5) 

then for follows loglogistic distribution with 
distribution function 

0k  , Y  

  1

0

b
k




if

1 if
c

Y

y

F y x
y

b



 




         
   

 

where 




. For Y follows back-  

ward loglogistic distribution. By [27], we know that the 
class containing logistic, loglogistic and backward log- 

stribution. The re

strib
larly 

e 

7.3. Proof of Theorem 4.1 

Let 

 0k  , 

logistic has the characterizing property max-stability 
w.r.t to geometric di lation (B.1) is one 
to one implies the max-stability property w.r.t to geo- 
metric di ution characterize generalized logistic dis- 
tribution. Simi we can prove that min-stability cha- 
racterizes GL distribution w.r.t geometric distribution.  

Remark B.1 In the above proof, we give short steps 
mainly using Voorn’s idea (se [27]). One can directly 
prove the theorem. 

 1, 2, ,, , , , 1n n n p nX X X X n   
 
   be  

t a
bles (i.i.d.c.m.r.v) defined on some 

probability space 

 a sequence of 

independen nd identically distributed continues mul- 
tivariate random varia

 , , P  . We use symbols  ,   
and   

ed
ons

e

to deno random integer an teg
valu  random va rticularly, we write 
we c ider non ger and N, depends
param ter , fo d random vari Whe

te both non 
riable, pa

random inte
r integer value

d in
 wh

on so

er 
en 

me 
n 

n
 

able. p
n  , non dom,-ran  then  p

 we
 m
 

ay be interpreted 
as n  o prov theorem need the following  . T e the 
T  function in multivariate case.  

Definition C.1 Let  , , 1nX X n    be a sequence of 
i.i.d.c.m.r.v with 

Y
F  represents distribution function of 

Y  and g  be a given Borel function. Define, 

    0 , , ,p
X

D x y x y F x       

and for every value of m , where m  is a positive inte- 
ger, we get  

      1 2, , ,
, , .

m

p
m g X X X

D x z x z F x     
    

Also the cardinality of and are same. Let 0D  mD  

mM  be a sequence of class of func uch that,  tions s

 0: and is a bijectionm mM f f D D f   

Then for every value of m  a T M,   m m   
such that, 

       
1 2,

, ,  , 

 .

Xg X X
x F T x F x

x

     

 

   
 (C.1) 

Below we give a simple example of the above T

, , X
x 

  
function. 

ample C.1 Let Ex  , , 1nX n X  be a sequence of 
i.i.d.c.m.r.v and 
   1 2 1 2, , , max , , , ng X X X X X        X  

the fun
is given. Then 

ction nT  is,  

Copyright © 2013 SciRes.                                                                                  AM 



K. NIDHIN, C. CHANDRAN 570 

   , , .n
n x y x y   T

Remark C.1 Let  and  0na   nb
orm

 be given se- 
quences and let , 0D  be the following f

    0 , , ,
X

D x y y x       x F

which implies, 

      1 2, , ,X  

 m

, , .
m

m m mg X X
D x z x z F a x b   

     

also M  and T  can define accordingly.  
In  we prove Theorem 4.1. 
Proof. Let be a non-degenerate distribution func- 

tio ence of i. .m.r.v such

 the following
G  

1

n. Let  , 1nX n   be a sequ i.d.c  
that 1X F   (for notational c ni  wonve ence e use 1F  
instead of 

1X
F  ) and define  

   
     

1,  ,

1, ,

p

wT x F a x b x G x      

be

T x F a x b x  
      

 

 distribu


 the class of sequences of tion functions which 
convergence to  ,  x G  the notation F   x

 ,T x F 
. We use

for a member   in

tio e , w.r.t 

, ,a b

a x b    


   . Now, we  

define a Func n spac  g , as 

  
     

1

1 1, ,T x F a x T x F a x b

 

      
,  ,kT x F a x b x

b




       
 

   

 

   

with a matric  as d

      1 1 1 1 1 11,nd T x H , ,

sup

n n m m m

x

a x b T x F a x b

y

 




     
 (C.2) 

m  

are part

where  is froy

        1 1 1 1 1 110, ,n n n m m my T H a x b T x F a x b          

and , n m icular values of 

,x 

1 1   . It is easy to 
verify lows metric conditions on  . We deno   d  fol te  

, , ,F a b
T   fo  , r 

Next we define a relation

T x F a x b   
   . 

 M   on . T at is, let 
,  and 

  h
 , 1nX n   , 1nY n   , 1  a

s i.i.d 
n


ach 
Z n 
form

re hree se- 
and  

t
quence of random variables e

1 1X F 1 2Y F  and 1 3
  ,   Z F  Now let 1, , ,a bF   

2, ,and l mF  . We 1, ,a b

  .
 that  say F  and 2, ,l mF  are M    

related (denoted by ) if 1, , 2, ,

M

a b l mF F




     , 0.T l 
  1 2lim , ,d T x F a x b x F x m            (C.3) 

Then below we show that the relation M   
. Since 

      1 1lim , , , 0,d T x F a x b T x F a x b x                

the relation is reflexive. Also let 1, , 2, ,,anda b r sF F    

is an equi- 
valence relation on . Let  1, ,a bF 

and 1, ,a b s2, ,

M

rF F . Th


at is, 

      1 2lim , , , 0d T x F a x b T x F r x s               

implies 

      1, , 0d x s T x F a x b   2lim ,T x F r           

or 1, ,a b2, ,

M

r sF F  so that the relation is symmetric. Now 

let 





1, ,a 2, ,,b r sF F  and 
3, ,f eF  h

M

, suc  that 1, , 2, ,a b r sF F


  

and 2, , 3, , .r s f eF F  That is, 
M 

      1 2lim , , , 0,d T x F a x b T x F r x s                

and 

      , 0.x s T f x e   2 3lim , ,d T x F r x F           

Then, 

      1 3lim , , , 0.d T x F a x b T x F f x     e         

that is M   is transitive. 
So we have a partition on by the equivalence r  

lation 

  e-
M  . 

Now we show that   1
1,T x F x

     always exists and is
a graph of a distributio early for any  n function. Cl

,1mx m p     then  

   1
1 2 1 2, , , ,0 , , , ,0p pT x x x x x x

        
   

   and  

     , ,0 , , , ,01 , ,T
         T. Also  is  

one to one and onto function and each of its variable the 
function is monotone implies 1T

  monotonically non 
reasing for 
ous for each 
hen we pr following 

dec each of its variable and and right con- 
tinu of its coordinates. 

T ove the equation, 

     1 1, ,   and   T x F x T T x F x x , .            (C.4) 

Let  , 1nX n   be i.i.d.c.m.r.v’s and  

 , , ,1 2g X X X
    be a Borel measurable function. Now  

, define  for 1i 

    1 1 1 2, , ,i ii iU g X X X          

 , 1  nU nthen is also a sequence of i.i.d.c.m.r.v’s. Let  

   1 1P X xx F     1 1P U x H x    and . Then  
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      1 2 1, , , , , .x P g U U U x d x H x        

But we know th

which is same as, 

   , , , , , , , , , ,x P g g X X X X X         1 2 1 2 2g X    


        11 1 1 2, , , , .g X X X x d x H x         
     

 

at 

     
    

1 1

1 2

, ,

, , , ,

x H x x P U x

 1,x P g X X X x d x

 

  

   

   
 

x F  

.

Hence, 

    1 2 1 2 2, , , , , , , , , ,x P g g X X X g X X X

     , , ,   11 1 1 2 ,g X X X x d    
  

   d x F x    
 

    



       

 

But 



      1 2 1, , , , , .x P g X X X x d x F x       
operty Q


So r


 by p  

     ,   and  , .d d x F x x1 1,d x F x           (C.5)  

Now n show ewe ca xistence of a special property in 
the function space. That is, there exist a spec l member, 
we call this member as stable member, in each equivalent 

 
Given that in ev ivalent class, there ast 

one  such that  

1
.t

which implies  

1
, .t

for every . By using Equation (C.5) we get  

, .

That is, 

.

ia

class.
ery equ exist at le

2 , ,t a bF

     , ,wT x F a x b x F x         
2t

    2
, w

tT x F a x b x F x         

1,2,k  

 ,T T x F a     2 1

w
t tx b x F x        

     2 1

1, ,w
t tT x F a x b T x F x   

       

Putting 
2t

T oF F   we get 

.     1

1, ,w
tx F a x b T x F x   

       

then by using multivariate version of Khintchine’s 
theorem, there exist sequence  and   0f   e  such 
th

 . 

W

at  

  1   1 1
, ,t tT x F x x F f x e x        

Here we need the assumption of weak convergence. 
hich implies 

     1 1
, , .t k tx F x T x F f x e           (C.6) 

So that 
1, ,t f eF  satisfies stability property. 

Now, we have a partition on   and we know that 
every valent class contai equi ns a ember. let stable m 0  

relation be one of the equivalent class introduced by the 
M   and 1, , 0a bF   is a stable m er in Tha  emb 0 . t is, 

     1 1 1, ,b T x F x x  ,T x F a x and .     

Then for all 

 

2, , 0r sF  , 

     2 1 1, , , as .pT x F T x F x r x s     (C.7   ) 

Since, 1, , ,a bF  2, , 0r sF   implies, 

      1 2, , , 0.x F a x b T x F r x s     limd T           

But 

   T T x    1 1 1, ,

and values of .

kx F a x b F x x



  



     
 



The above two equation implies, 

     2lim ,d T x F r x s x   1 1, , 0.T x F       

Therefore,  

     2 1, ,T x F r x s T x F x        1 ,

Hence, in the function space, every equivalent class 
contains at least a stable member and all othe
of ss wi mber. It is 
ea mb

mu rty
of the 

as and .p x  
 

r members 
 that cla ll converge to that stable me
sy to prove that the limiting me er is unique in every 

class, if it exist. This complete the proof.  
Remark C.2 In Equation (C.6), we introduce a 

property called ltivariate stability prope  for some 
members in  . This is a multivariate extension 

of stability property in [32]. Below we give an exact 
definitions and some examples of this property.  

.2 Let Definition C  T  

,a b

be a given one to one func- 
tions. We say that 1,F 

 sequence in 
 satisfies stability p

if it is a constant . In other words, 
roperty 


1, ,a bF   satisfies stability property if for each  , 

      1 1 1, , , 0, kd T x F a x b T x F x x    .          

That  ,  is for each 

     1 1 1, , , kT x F a x b T x F x x    .       

A member 

 

1, ,a bF   is called a stable member if it 
is a constant sequence in  . Using Equation (C.1) the 
stability property can be tten for sequence  rewri  nX  in 
terms of the ows.  function g as foll
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 nX  Definition C.3 Let be a sequence of i.i.d.c.m.r.v 
and g  be a Bo  of rel function 1 2, , ,X X X

  
sfies stability property f

. Then we 
sa  or the 
given f

y that  ,iX i  sati1
unction g  if, for every  ,  

     
11 2, , ,

, .
Xg X X X

F a x b F x x
       

    

Example C.2 Let  , 1nX n   be a sequence of  

i.i.d.c.m.r.v. and 1X  follows strictly multivariate geo- 
metric stable distribution and N  be a random variable, 
independent of iX , and N  follows geometric distri- 

bution. Let  , , ,
N

 

1 2 1 ii
g X X X X  . Th 

en there exist  

a sequence  1 0p   , depends on N, such that 

1

N

ii
X

   is a stable member since, 

   
se

Equation 
sta

Below w
Definition C.4 Let 

11

1 , .N
ii

k
XX

F p x F x x






      

e [38]. 
Remark C.3 By (C.7), each equivalent class 

forms the domain of attraction of a ble member.  
e define domain of attraction.  

T  
 Fo

e 
if for every 

be a given one to one func- 
tions. Let r any distribution function
su say that is the domain of
at

.

0
   .


,1,1,1GT  

 G  
 ch that ,1,1,1GT  , w

traction of 
0  

1, ,a b 0F  , 

      1 1, , , 0 as pd T x F a x b T x G x           

That is, 

      .

table
 domain of a

mem
m

Remark C.4 Let be the class of all do a
attractions for a give sequences of functions 

1 1, , as pT x F a x b T x G x           

Therefor for each s  member, there exist an equi- 
valent class of   which is the ttraction of 
the stable Below remark gives a distance mea- 
sure between do ain of attractions.  

ber. 

  
n 

m in of 
 T . 

The metric space with n   is a complete metric  , 
hich is defined as, if   are two elements of w  and 

where and 

  For the proof se  Theorem 

] and a complete proof see Page (202,203) in
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