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ABSTRACT 

Korteweg de-Vries (K-dV) has wide applications in physics, engineering and fluid mechanics. In this the Korteweg de- 
Vries equation with traveling solitary waves and numerical estimation of analytic solutions have been studied. We have 
found some exact traveling wave solutions with relevant physical parameters using new auxiliary equation method in-
troduced by PANG, BIAN and CHAO. We have solved the set of exact traveling wave solution analytically. Some nu-
merical results of time dependent wave solutions have been presented graphically and discussed. This procedure has a 
potential to be used in more complex system of many types of K-dV equation. 
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1. Introduction 

Yu. N. Zaiko studied the presence of a singularity results 
in that the velocity of long wave perturbations in the sys-
tem becomes imaginary, which corresponds to the wave 
propagation in the range of nontransparency [1]. Qu Fuli 
and Wang Wenqia studied linear unconditionally stable 
for nonlinear third-order K-dV equation by the analysis 
of linearization procedure and is used directly on the par- 
allel computer [2]. Rheir numerical experiment shows 
that their method has high accuracy. A model of an in-
come- pressible flow through a cylindrical metal pipe 
and the fundamental physical and mathematical facts 
presented in [3,4] are used to show how a solitary veloc-
ity wave (solution) can arise in this system, V. A. Ru-
kavishnikov & O. P. Tkachenko are studied [5]. Al-
though the resulting asymptotic expressions in the radial 
coordinate differ considerably from the classical expan-
sion in depth for shallow-water waves, they are able to 
derive the Kd-V equation. They also show how to pro-
ceed back from the Kd-V equation to the velocity func-
tion and present the numerical results obtained for a 
model problem. Nejib Smaoui and Rasha H. Al-Jamal 
studied the boundary control problem of the generalized 
Korteweg-de Vries Burger (GKdVB) equation on the in-
terval [0,1], [6]. They presented a numerical results sup-
porting the analytical ones for both the controlled and 
uncontrolled equations using a finite element method. 

Jing Pang et al. studied the method of finding the travel-
ing wave solution to K-dV equation using a new auxil-
iary equation method [7]. They got a set of traveling 
wave solution for a specific 3rd-order K-dV equation. We 
studied the governing two-dimensional 3rd order K-dV 
equation. After some suitable transformation we got a 
simple form of K-dV Equation (8). Using a new auxiliary 
equation method we got the ten sets of travelling wave 
solution of K-dV equation for real case. There are three 
cases to be arisen in our study. Two of them are real sense 
and the other is imaginary concept. After getting the ana- 
lytical solution of K-dV equation we discussed the ten sets 
of traveling wave solution numerically and their physical 
phenomena are described in result and discussion section. 

2. Method of Solution  

The remarkable form of Korteweg-de Vries nonlinear 
partial differentiable equation [8] is: 

0
0

3
1 0

2t x

u
u C u u

h


 
xxx   

 
         (1.1) 

which was first introduced by Dutch mathematics Died-
erik Korteweg and Gustav de Vries in 1895, to describe 
long water waves in a channel of depth , where  0h

2
0 0

1

6
c h   is a constant for fairly long waves,  
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 
1

2
0 0c gh , u is displacement of wave and g is the ac-  

celeration due to gravity. In this section we introduce the 
method of finding the analytic wave solution to nonlinear 
evolution equation due to Jing Pang, Chun-quan Bian, 
and Lu Chao [7]. First, a given nonlinear partial differen-
tial equation has the form. 

 , , , , , 0t x tt xxp u u u u u            (1) 

This method mainly consists of four steps: 

2.1. Step 1 

Take the complex solutions of (1) in the form 

   , ,u x t u x ut               (2) 

where u is a real constant. Under the transformation (2), 
(1) becomes an ordinary differential equation 

 , , , 0Q u u u                (3) 

2.2. Step 2 

Take the solutions of (3) in the more general form: 

   
 

 
 0
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i i
m

i i
i

G G
u a a b

G G

 








   
            

 

m

    (4) 

where am and bm are not zero at the same time, and a0, ai 
and bi  are constants to be determined 
later. The integer m in (4) can be determined by balanc-
ing the highest order nonlinear terms and the highest or-
der linear terms of 

 1, 2,3, ,i  

u  in (3).  G G   satisfies the 
second-order linear ordinary differential equation 

0G G G                   (5) 

where   and   are constants for the general solution 
of (5) as follows: 
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When  2 4 0  
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Note: Let ai = 0, 1,2, ,i   . Equation (4) changes 
to 

   
 0
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i
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i
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u a b
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            (6) 

The form of (6) has been used in (Deng, Z. G., et al., 
2009). If we set bi = 0  1,2, ,i   m , (4) changes to 

   
 0

1

i
m

i
i

G
u a a

G







    



          (7) 

2.3. Step 3 

Substitute (4) into (3) and collect all terms with the same  

order of 
G

G
 together. The left-hand side of (3) is con-

verted into a polynomial in 
G

G
. Then, let each coeffi-  

cient of this polynomial to be zero to derive a set of 
over-determined partial differential equations for  

 0 , , 1, 2, , , , , and .i ia a b i m v    

2.4. Step 4 

Solve the algebraic equations obtained in step 3 with the 
aid of a computer algebra system (such as Mathematica 
or Maple) to determine these constants. Moreover, the 
solutions of (5) are well known. Then substituting 0 , 

i , 
a

a  1, 2, , ,ib i m   , and the solutions of (5) into 
(4), we can obtain the exact analytical/traveling wave 
solutions of (1). 

v

3. Solution of Mathematical Problem  

Consider the K-dV equation  

0t x xxxu uu u                  (8) 

describe the evolution of long wave (with large length 
and measurable amplitude) down a canal with a rectan-
gular cross section. Here u represents the wave amplitude, 
and t  represents the vertical velocity of the wave at (x, 
t), 

u

xu  describes the rate of change in amplitude with 
respect to x and xxx  is a dispersion term. This means 
that if u is the amplitude of wave at some point in space, 
then ux is the slope of the wave at the point and uxx con-
cavity near the point as given in [9,10]. The existence of 
solitary waves is due to the balancing effects of 

u

xuu  
and xxx  in Equation (8). The nonlinear term u xuu  in 
Equation (8) is important because the amplitude of the 
wave depends on its own rate of change in space; it also 
represents steepening. The term xxxu  implies dispersion 
of different frequency components. 

Now we choose the traveling wave transformation (2) 
i.e.    , ,u x t u   x vt    where v = constant. 
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Substituting these into (8), integrating it with respect 
to   once, and letting the integrating constant to be 
zero, we have 

21
0

2
u u vu               (9) 

According to step 2 we get m = 2. Therefore we can 
write the solution of (9) in the form 
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That is 
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2

(10) 

where a2 and b2 are not zero at he same time. By using (5) 
and from (10), we have 
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      
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4
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2  (11) 

Substituting (10) and (11) into (9) and collecting the  

coefficients of  0, 1, 2, 3, 4
G

i
G

        
, and letting it  

be zero without loss of generality we obtain the system: 
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   (iii) 

2
1 2 1 22 10a a a a            (iv) 

2 2
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a a   0

0

             (v) 

2
1 2 1 0 1 1 2 12 6b b b a b a b vb            (vi) 
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2
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0

   (vii) 

1 2 1 22 10b b b b             (viii) 

2
2 2

1
6

2
b b 0               (ix) 

From (ix) we get either b2 = 0 or b2 = −12 and from (v) 
either a2 = 0 or 2

2 12a   . So, there are three cases to 
be arisen. For b2 = 0 and a2 = 0 uses the system of equa-
tions (i) to (ix) we get trivial solutions.  

Trivial solution set is a0 = a1 = a2 = b1 = b2 = 0 and 
the other solution sets are as follows: 

For 2
2 12a    and b2 = 0, using the system of 

Equations (i)-(ix) we get a set of solution is as follows: 
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For a2 = 0 and b2 = −12, using the system of Equa-
tions (i)-(ix) we get a set of solutions are as follows: 
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For 2 12a    and b2 = −12, using the system of 
Equations (i)-(ix) we get a set of solutions are as follows: 
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where   and   are arbitrary constants. By using (A)- 
(E) Equation (10) can be written as: 
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Equations (A)-(E) and (10) implies respectively as fol-
lows: 
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Now, the second order differential Equation (5) is as 
follows: 
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3.1. Case I 

For the first case:  2 4 0  
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where, 2 4M     
Therefore, Equations (F)-(J) becomes: 
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3.2. Results and Discussion 

We study here the interaction of two wave solutions to 
the third order K-dV equation. The numerical representa-
tion of two dimensional third order K-dV equations for 
this problem are obtained by the Fortran scheme and 
compared with analytical solution cases for 5.0  , 

1.25  , and c = 10.0 such that . Numeri-
cal representation generates that the same behavior as 
wave solutions. The solutions remain unchanged before 
and after their interaction. As seen in Figure 1(a) in 
Equation (12), time evolution of u wave for different 
values of displacement on the domain [0, 1]. Here the u 
wave varies with displacement. It is found that the water 
flow oscillates regularly that is periodic over the dis-
placement region 50 ≤ x ≤ 250. In Figure 1(b), u wave 
for different values of time t against for the whole region 
of displacement 0 ≤ x ≤ 50 and time 0.2 ≤ t ≤ 0.1. It is 
seen that the wave increases gradually as time increases. 
Figure 2 describes the phase 

2 4  

 

0

u   from the equation 
12 with respect to time and displacement. It shows an    
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Figure 1. u wave (a) against t for different values of x (b) 
against x for different values of t. 
 

71.04

3.96

71.04

3.9670.88

4.0110.00

40
.00

t

x

0 0.2 0.4 0.6 0.8
0

10

20

30

40

 

Figure 2. u wave contour against t and x. 
 
example of two solution on the domain [0, 40] × [0, 1]. 
As expected, we see that the soliton travels until they 
collide, but their amplitudes are unchanged and position 
in time has changed considerably. Amplitude of u wave 
with respect to t and x gradually increases smoothly. In 

Figure 3(a) for the wave solution of K-dV equation rep-
resented by 13, time evolution of u wave against t for 
different values of x. The graphical representation of 
Equation (13) we consider the constants λ = 5.0, μ = 1.25, 
and c = 10.0 such that we choose the values for 

 but c does not depend on λ and μ. It is 
found that the water flow oscillates regularly that is pe-
riodic for x = 5.0, x = 10.0, x = 15.0, x = 20.0 and x = 
25.0 against t. Here the time t defined over the interval [0, 
1.6]. Figure 3(b) describes u wave for different values of 
time t against x. Here x varies from 0 to 50 for t = 0.1, t 
= 0.5, t = 0.9, t = 1.3 and t = 1.7. As seen in Figure 4, u 
wave contour against t and x. For 0 ≤ t ≤ 2 and 0 ≤ x ≤ 40, 
the contour gradually increases and it is started from 
−284.164 and finishes −15.8359. As expected, we see 
that the solitons travel until they collide and the wave 
gradually increases. Figure 5(a) we found the u wave 
against t for different values of x while the constants λ = 
5.0, μ = 1.25, and c = 10.0 so that . The 
graphical representation of equation 14, water wave u is 
increased before the collision. In this case u wave is de-
fine over the interval 

2 4   0

02 4  

1.25 0t    for x = 5.0, x = 10.0,  
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Figure 3. u wave (a) against t for different values of x (b) 
against x for different values of t. 
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Figure 4. u wave contour against t and x. 
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Figure 5. u wave (a) against t for different values of x (b) 
against x for different values of t. 
 
x = 15.0, x = 20.0 and x = 25.0. Figure 5(b) describes u 
wave increases against x for t = –2.0, t = –1.6, t =–1.2, t 
= –0.8 and t = 0.4. Interesting things are to be found in 
both cases, u wave gradually increases against t for dif-
ferent values of x and against x for different values of t 
before collision. As seen in Figure 6, u wave contour 
against t and x. For the both cases we plot the phase 
 u   for the Equation (14) with respect to time and 

displacement. As expected, we see that u wave contour 

gradually increases like −324.161, −160, −55.8359 and 
so on over the domain [0, 40] × [–2, 0]. Next, contours of 
typical flow patterns are seen in Figure 7(a) which is 
based on equation 15. The branch is composed of associ-
ated over 0 ≤ t ≤ 2 and displacement 5 ≤ x ≤ 25. It is 
found that the flow oscillates irregularly that is multipe-
riodic oscillation. We are also interested in trying our 
scheme for the wave solution of the K-dV equation. In 
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Figure 6. u wave contour against t and x. 
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Figure 7. u wave (a) against t for different values of x (b) 
against x for different values of t. 
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this figure we see that the behavior of the u wave is ex-
actly what we expect in the analytical sense, the only 
thing that the change about the wave once in time for x = 
5.0, x = 10.0, x = 15.0, x = 20.0 and x = 25.0 anywhere 
else about the wave stays the same. In Figure 7(b) we 
see that wave solution follows that the exact solution 
fairly closely with respect to displacement over t = 0.1, t 
= 0.5, t = 0.9, t = 1.3 and t = 1.7. The general behavior 
of wave solution of K-dV equation remains same how-
ever. Figure 8 describes u wave contour against t and x 
over the domain [0, 40]  [0, 2]. U wave contour is 
maximum on the top of the wave but diminishes from the 
top to both the sides of contour. Here, we see that at the 
top the value of the contour −100 and it gradually de-
creases to the both sides like −260 to the left and −260 to 
the right. The plot of function (16) is shown in Figure 
9(a) we have found u wave against t for different values 
of x. In Figure 9(b) indicates that the u wave against x 
for different values of t. Here we have seen that the u 
wave against x for the different values of t like t = −2.0, t 
= −1.6, t = −1.2, t = −0.8 and t = −0.4, are exact to the 
previous one. For the both cases it shows that the waves 
are running against t and x respectively. Figure 10 de-
scribes u wave contour against t and x over the domain  
[0, 25]  [–2, 0]. Here u wave contour is maximum on 
the top of the wave but diminishes from the top to both 
the sides of contour. At the top the value of the contour is 
−283.903 and it gradually decreases to the both sides like 
−300 to the left and −300 to the right. 

3.3. Case II 

For the second case:  2 4 0  

     1 2 exp 2G c c      , 
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Figure 8. u wave contour against t and x. 
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Figure 9. u wave (a) against t for different values of x (b) 
against x for different values of t. 
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Figure 10. u wave contour against t and x. 
 

Equations (F)-(J) and (10) implies respectively as fol-
lows: 
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  which is same as Equation 

(20). 
The numerical representation of two dimensional third 

order K-dV equation for this problem is obtained by the 
Fortran scheme compared with analytical solution to the 
following cases for 5.0  , 6.25   and c = 12.0 
such that 2 4  0   in the real sense. Numerical solu-
tion generates that the same behavior as solitary wave 
solutions for different cases. The solutions remain un-
changed before and after their intersection. As seen in 
Figures 11(a) and (a1) for the Equation (17), time 
evaluation of u wave for different values of displacement 
like x = 5.0, x = 10.0, x = 15.0, x = 20.0 and x = 25.0. 
For a particular value of x = 10.0, u wave simply solitary. 
But the second case Figures 11(b) and (b1) for the same 
equation, u-wave generates solitary for different values 
of t = −0.4, t = 0.0, t = 0.4, t = 0.8 and t = 1.2. Here  
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Figure 11. u wave (a) against t for different va ues of x (b) against x for different values of t. l   
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negative sign of t indicates before the collision. For a 
particular value of t = 0.0 the u wave is solitary. In Fig- 
ure 12 shows that the contour is produced against t and x 
simultaneously. In this equation we get the numerical 
representation of the solution of Equation (18) for 

5.0  , 6.25   and c = 12.0 such that 2 4 0   . 
But for the values c = 10.0, c = 12.0, c = 15.0, c =17.0 
we observe that u wave is solitary. For a particular value 
of c = 12.0, u wave generates solitary which is repre-
sented in Figure 13(b). Next, contours of typical flow 
pattern are seen in Figures 14(a) and (b) which is based 
on Equation (19). The waves associate over the interval 
−3 ≤ x ≤ 3. It is found that the flow oscillates regularly. 
We are also interested in trying our scheme for the wave 
solution of the K-dV equation. In this figure we have 
seen that the behavior of u wave is exactly that what we 
expect in the analytical sense, the only thing is that the  

change about the wave once for the single value of c. For 
Figure 14(a) the oscillation is no doubt solitary before 
and after the collision for different values of c = 10.0, c  
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Figure 12. u wave contour against t and x. 
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Figure 13. u wave against x for different values of c. 
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Figure 14. u wave against x for different values of c. 
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Figure 15. u wave against x for different values of c. 
 
= 12.0, c = 15.0, c = 17.0. But in Figure 14(b) for a par-
ticular value of c = 15.0, the wave is very clear. The plot 
of Equation (20) is shown in Figures 15(a) and (b). We 
have found wave against for different values of c. The 
waves against x for different values of c = 0.4, c = 0.6, c 
= 1.5, and c = 3.0 for λ = 5.0, μ = 6.25, and c = 12.0 such 
that  are exact that we have got in the ana-
lytical sense for the Equation (20). But in Figure 15(b) 
represents a solitary wave against x for a particular value 
of c. 

2 4   0

4. Conclusion 

In this research numerical estimation of traveling wave 
solution for third order of two-dimensional K-dV equa-
tion using a new auxiliary equation method has been 
studied. The K-dV equation for the present problem 
comes from the third order two dimensional governing 
Equation (1.1) after some suitable transformation. It is 
found that there are nine exact traveling wave solutions 
(12)-(20) of 2-dimentional K-dV equation exist for real 
sense depends on different relevant physical parameters 
but the last one is exact the same as (20). Numerical re-
sults of first ten cases for real sense obtained by using 
FORTRAN program have been shown graphically and 
discussed. We have also found that when employing the 
Fortran-Scheme for the numerical estimation of K-dV 
equation that are presented graphically for the first case 
λ2 – 4μ > 0 and second case λ2 – 4μ > 0 Equations (12)- 
(20). Remaining imaginary cases will be avenue of an- 
other research work in the future.  
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