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ABSTRACT 
Considerable research has been devoted to in-
vestigating variations in disease susceptibility 
using SNPs associated with the individual co- 
occurrence of single nucleotide polymorphisms 
(SNPs) in genetic and phenotypic variability. 
Without the raw genotype data, these associa-
tion studies are difficult to conduct and often 
omit SNP interactions, thus limiting their reli-
ability and potential applicability. In this study, 
we apply a particle swarm optimization (PSO) 
algorithm to detect and identify the best protec-
tive SNP barcodes (i.e., SNP combinations and 
genotypes with a maximum difference between 
cases and controls) associated with chronic di-
alysis patients. SNP barcodes containing differ-
ent numbers of SNPs were computed. We evalu-
ated the combined effects of 27 SNPs related to 
nine published epigenetic modifier-related genes 
on breast cancer. Eleven different SNP combi-
nations were found to be protective associated 
with the risk of breast cancer (odds ratio, OR < 
1.0; p-value < 0.05). The results suggest that 
SNPs 1 and 2 (gene BAT8), 9, 10, 11 and 13 
(DNMT3A), 20 and 21 (EHMT1), 24 (HDAC2), 25 
(MBD2), and 27 (SETDB1) are statistically very 
significant and that there may be interactive ef-
fects that play a role in the prevalence of breast 
cancer. A PSO-based on the Chi-Square test 
process allowed us to quickly identify the sig-
nificant SNP combinations in a multi-locus as-
sociation analysis, and then further detect in-
teractive effects on complex genotypes amongst 
the SNPs. The PSO algorithm is robust and pre-
cisely identifies the best protective SNP bar-
codes. It can identify potential combined epi-
genetic modifier-related genes together with the 

SNP barcodes that were deemed protective 
against breast cancer by in silico analysis. 
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1. INTRODUCTION 

Genome-wide association studies (GWAS) involve a 
vast amount of single nucleotide polymorphism (SNP) 
data from several genes which is associated with geno-
type frequencies between cases and controls and can be 
used to investigate disease susceptibility. Studies of gene 
variations associated with hereditary phenotypes are be-
coming increasingly popular and contribute to the detec-
tion of significant effects on disease susceptibility [1-6]. 

A total of 27 SNPs from nine epigenetic modifier-re- 
lated genes (BAT8, DNMT1, DNMT3A, DNMT3B, 
EHMT1, HDAC2, MBD2, MTHFR and SETDB1) were 
selected to investigate their association with breast can-
cer [7]. Previous research only considered the analysis of 
the effect of individual SNPs, but investigating their as-
sociation with SNPs can provide deep insight into dis-
ease susceptibility. Although the individual role of these 
epigenetic modifier-related genes was addressed in [7], 
the combined effect of gene (or SNP) interactions in re-
lation to breast cancer was not addressed. This study is 
similar to many association studies in that only genotype 
frequencies were published without supplementary geno-
typic raw data. 

Analysis of SNP-SNP interactions is used to investi-
gate polygenic diseases. However, it remains a challenge 
to collect large-scale combinations of SNP data and ana-
lyze the possible SNP-SNP interactions. The simultane-
ous evaluation of multiple SNPs generates many possible 
combinations of alleles in SNP-SNP interactions. The 
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possible combinations of SNP interactions between cases 
and controls is estimated to be  

( ) ( ), 3 ! ! ! 3M MC N M N M N M∗ =  −  ∗  , where N is the total 
number of SNPs or factors, and M is the selected number 
of SNPs. Machine learning and data mining methods are 
widely used in GWAS data analysis, but current methods 
aren’t robust enough to simultaneously evaluate the 
complex interactions for all tested SNPs, though some 
computational approaches have been developed to ex-
amine epistasis in family-based and case-control associa-
tion studies [8-16]. 

We hypothesize that interactions between the poly-
morphisms of epigenetic modifier-related genes may 
have a synergistic or non-additive effect on the patho-
genesis of a disease and can explain differences in dis-
ease susceptibility. We propose the PSO method to gen-
erate SNP barcodes of genotypes to predict disease sus-
ceptibility and evaluate risk factors. The best combina-
tion of SNPs with genotypes can be verified by deter-
mining its risk factor in terms of odds ratio and confi-
dence intervals. We systematically evaluated the joint 
effects of 27 SNP combinations of nine related genes 
involved in breast carcinogenesis. The SNP barcodes 
generated by the PSO algorithm were statistically evalu-
ated by the odds ratio (OR) to predict dialysis suscepti-
bility in breast cancer. 

2. METHODS 

We introduce a particle swarm optimization method 
that generates the best SNP barcodes to combine SNPs 
with their corresponding genotypes. A characteristic of 
PSO is its fast convergence, allowing for the quick iden-
tification of optimal solutions in a wide solution space, 
meaning that we can look for the optimal protective SNP 
barcodes. 

2.1. Particle Swarm Optimization 

PSO is an efficient evolutionary computation learning 
algorithm developed by Kennedy and Eberhart [17] to 
describe an automatically evolving system through the 
simulation of the social behavior of organisms, e.g., the 
social behavior of birds in a flock or fish in a school. 
PSO was designed for use in practical applications and 
simulates social behavior based on information exchange. 
Within a problem space, each potential result can be re-
garded as a vector in a swarm, where the vector is re-
ferred to as a particle. Each particle uses its own memory 
and knowledge gained from the swarm as a whole to find 
an optimal solution. Each particle is evaluated by an ob-
jective function to detect good experience, and particles 
can share the experience amongst the swarm. These ex-
periences can be inform the search direction to lead the 
swarm toward the optimal solution. This superior strat- 

egy effectively mines the optimal regions of complex 
search spaces. The basic elements of PSO are as follows: 

1) Particle: In this study each particle can be regarded 
as a problem solution. 

2) Population: A swarm population consisting of n 
particles. 

3) Particle position, xi: Each candidate solution can be 
represented by a D-dimensional vector; the ith particle 
can be described as ( 1 2, , ,i i i iD )x x x x=  , where xiD is 
the position of the ith particle with respect to the Dth di-
mension. Each dimensional vector in the particle position 
is defined by the number of selected SNPs and the cor-
responding genotypes for the associated SNPs. 

4) Particle velocity, vi: The velocity of the ith particle is 
represented by , where viD is the 
velocity of the ith particle with respect to the Dth dimen-
sion. The new locations of particles are chosen by adding 
vi to the coordinate of the particle position xi; PSO oper-
ates this process by adjusting vi. In addition, the velocity 
of a particle is restricted within 

( 1 2, , ,i i i iDv v v v= 

min ,

)

[ ]max

D
V V . 

5) Inertia weight, w: The inertia weight is used to con-
trol the impact of a particle’s previous velocity on its 
current velocity. This control parameter affects the trade- 
off between the particle’s abilities for exploration and 
exploitation. 

6) Individual best value, pbesti: pbesti is the position of 
the ith particle with the highest value of the objective 
function during a given iteration. It can be regarded as a 
best current solution for the ith particle. 

7) Global best value, gbest: The best position of all 
pbest particles is called the global best gbest. It can be 
regarded as the best current solution of SNP barcodes in 
all particles. 

8) Termination criteria: The process is stopped after 
the maximum allowed number of iterations is reached. 

The PSO procedure is shown in Figure 1 and can be 
divided into the following steps: 1) initialization of parti-
cles; 2) particle evaluation with an objective function; 3) 
selection of the particles’ pbest and gbest; and 4) updat-
ing of the particles’ velocity and position. These proce-
dures are repeated in successive iterations until the ter-
mination conditions are reached. 

2.2. Encoding Schemes 

In PSO, each particle was designed in a format that 
enabled us to express a particular amount of SNP and 
genotype combinations. A particle is defined in a vector 
that consists of the number of selected SNPs and their 
corresponding genotypes; SNPs cannot be repeatedly 
selected. In this paper, we define the SNP barcode to 
represent a solution with selected SNPs and their corre-
sponding genotypes. The particle encoding can thus be 
represented by: 
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i: the ith particle from 1 to ps; G: the Gth generation from 1 to Gmax; d: the dth 

dimension from 1 to Dmax; 
d

iX : the value of dth dimension of ith particle; f(): 

objective function; ps: population size; Gmax: maximum generations; Dmax: 
maximum dimensions; w: intertia werght. 

Figure 1. PSO flowchart. 
 

( ), ,,Genotype ,  1, 2, , ,  1,2, ,i i j i jX SNP i n j m= =  = 

)i

 

where SNPi,j represents the selected SNP, Genotypei,j 
represents the three possible genotypes once SNPi,j is 
selected, n represents the size of the population, and m 
represents the number of SNPs selected. 

2.3. Population Initialization 

Based on the above encoding schemes, the population 
of particles is randomly generated over the search space. 
SNPs are selected based on a randomly generated value 
between XSNPmin = 1 and XSNPmax = 27. In addition, the 
three genotypes are randomly generated between 1 and 3. 
In each particle, the selected SNPs between SNP1 and 
SNPm are not the same. If a given SNP is found to be 
repeated in a particle, the SNP is randomly generated 
between XSNPmax and XSNPmin until it is different. For ex-
ample, let X = (2, 3, 7, 3, 1, 3). In this representation of 
the particle, SNPs 2, 3, and 7 and genotypes 3, 1, 3 are 
chosen. In this case, the selected SNPs with their corre-
sponding genotypes are represented as (2, 3), (3, 1), and 
(7, 3). The initial velocity for a particle is based on a 
randomly generated value in the interval (0, 1). 

2.4. Objective Function 

In this study, an objective function is used to compute 
the SNP barcode for the difference between the cases and 
controls; the particle fitness is represented as a value 
computed by this objective function. The maximum dif-
ference between cases and controls has the highest fit-

ness value. We use set theory to evaluate the fitness value, 
with the equation defined as follows: 

( ) ( ) (controls casesi iF X X= − X       (1) 

where controls represents the total number of SNP inter-
actions in the control group and cases represents the total 
number of SNP interactions in the case group. Xi repre-
sents the ith particle. The total number of intersections of 
the controls and the ith particle is calculated as 
n(controls∩Xi). The total number of intersections of the 
cases and the ith particle is calculated as n(cases∩Xi). For 
example: X = (SNP1,2, Genotype2,1) is used to evaluate 
the number of matching conditions in the cases and con-
trols. The case group contained 89 cases and the control 
group had 191 controls. According to Eq.1, the value is 
determined by subtracting 89 from 191, leaving 102. 

2.5. Selection of pbest and gbest 
When moving, particles keep a record of their personal 

best position (pbest) and the global best position (gbest). 
If a particle’s fitness value in the current iteration is bet-
ter than the fitness value of pbest form the previous itera-
tion, then the position and fitness value of pbest are up-
dated with the current position and fitness value. If the 
fitness value of pbest is better than gbest in the previous 
iteration and is the best value in the current iteration, 
gbest is updated by pbest. Each particle then adjusts its 
direction based on pbest and gbest in the following itera-
tion. 

2.6. Updating Particle Velocity and Position 

The PSO algorithm updates the particle’s velocity and 
thus moves its position (i.e., possible solution), thus al-
lowing us to search for a better solution. In each genera-
tion, the position and velocity of the ith particle are up-
dated with the pbesti and gbest of the swarm population. 
The updating equations can be formulated as: 

( ) max
max min min

max

Iteration Iteration

Iteration
i

LDWw w w w
−

= − × + (2) 

( )
( )

new old old
1

old
2

id LDW id id id

d id

v w v c r pbest x

c r gbest x

= × + × × −

+ × × −
   (3) 

new old new
id id idx x v= +              (4) 

where w is the inertia weight, wmax is 0.9, wmin is 0.4 and 
Iterationmax is the maximum number of allowed iterations. 
This inertia weight is a positive linear function of time 
that changes with the generations; r1 and r2 are random 
numbers between (0, 1), and c1 and c2 are acceleration 
constants that control how far a particle moves in a sin-
gle generation. The velocities  and  respec-
tively denote the velocities of the new and old particles;  

new
idv old

idv
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old
idx  is the current particle position, and new

idx  is the 
updated particle position. The velocity implies the degree 
to which a particle’s position should be changed at a par-
ticular moment in time, such that equals that of the 
global best position, i.e., the velocity of the particle fly-
ing toward the best position. To obtain a search solution, 
the particle velocities in each dimension are restricted 
within [Vmin, Vmax]

D, and the particle positions are re-
stricted within [Xmin, Xmax]

D, thus determining the size of 
the steps the particle is allowed to take through the solu-
tion space. 

2.7. Parameter Settings 

The population size parameter was set to 50. PSO ter-
mination condition is reached at a pre-specified number 
of iterations (100 in this case). The starting value of the 
inertia weight w is set to 0.9 and the final value is set to 
0.4 [18]. The acceleration (learning) factors c1 and c2 are 
2 [19]. These parameters have been optimized by Ken-
nedy and Eberhart [17]. 

2.8. Statistical Analysis 

We used the odds ratio (OR) and p-value of Pearson 
Chi-Square test, which are commonly used criteria to 
determine performance [20]. 

Odds Ratio
TP TN

FP FN

×=
×

           (5) 

TP, TN, FN, and FP respectively represent the number 
of true positives, true negatives, false negatives and false 
positives. For statistical analysis with SPSS version 19.0 
(SPSS Inc., Chicago, IL), the odds ratio are used to de-
termine the best SNP barcode and quantitatively measure 
the risk of disease; the p-values are used to prove that the 
SNP barcode is statistically significant for the difference 
between cases and controls. 

3. RESULT 

3.1. Data Set 

The datasets were obtained from the epigenetic modi-
fiers (49 SNPs for 10 genes) in a breast cancer associa-
tion study [7] and consisted of the SNPs and clinical 
statuses for 4373 cases and 4556 controls. Except for the 
MTHFR gene which, according to [7] contains only one 
SNP, the other genes chosen for this study (BAT8, 
DNMT1, DNMT3A, DNMT3B, EHMT1, HDAC2, MBD2, 
and SETDB1) all had 27 SNPs, with details shown in 
Table 1. The SNPs in the original data [7] consist of dif-
ferent numbers of individuals; therefore, the number of 
each SNP needs to be normalized to fit the same number. 
The new data was randomly generated according to the 
frequency of the original data; however, the output still 

obeyed the final frequency for each SNP for the whole 
dataset. All the SNP data from the data source are ad-
justed to the same sum number, (5000) for all genotype 
distributions. For example, in the SNP1 (gene, BAT8; 
dBSNP ref, rs535586), the sums of the values with three 
genotypes (i.e., AA, Aa, and aa) in cases is 4373. First, 
the percentage for each genotype in SNP1 is calculated as 
“original data*/sum (%)”, i.e., 1930/4373 (44%) for AA, 
1936/4373 (44%) for Aa, and 507/4373 (12%) for aa, 
where the symbol * indicates that the original data was 
derived from the SNP dataset before normalization. Ac-
cording to this percentage, the modified data for SNP1 
was calculated by multiplying the percentage with the 
sum of the complete dataset (SNP number adjusted to 
5000), i.e., 44% × 5000 (= 2200) for AA, 44% × 5000 (= 
2200) for Aa, and 12% × 5000 (= 600) for aa. Therefore, 
the modified data for SNP1 has been adjusted to the sum 
of 5000 (2200 + 2200 + 600 = 5000). 

3.2. Evaluation of Breast Cancer  
Susceptibility in 27 Separate SNPs from 
Nine Epigenetic Modifier-Related Genes 

Table 1 shows the performance (OR and 95% CI) for 
each SNP from nine epigenetic modifier-related genes 
(BAT8, DNMT1, MTHFR, DNMT3A, DNMT3B, EHMT1, 
HDAC2, MBD2, and SETDB1). Some SNPs (such as 
SNPs 1, 11, and 21 listed in Table 1) with certain geno-
types display a statistically significant OR (p-value < 
0.05) for breast cancer with OR values ranging from 1.16 
to 0.90. The other SNPs show no statistically significant 
OR for chronic dialysis patients. 

3.3. Identification of SNP-SNP Interactions 
with Maximum Differences between 
Cases and Controls Using PSO 

Table 2 shows the 11 2-SNP barcodes selected by 
systematic sampling, listed in order of the magnitude of 
difference between cases and controls from maximal to 
minimal. Among the combinations, 2-SNP barcode with 
their corresponding genotypes, namely SNPs (1, 2) with 
genotype 1-1, [rs535586-AA]-[rs652888-AA], showed the 
maximal difference (135) between the controls and cases 
(1479 vs. 1344). Similarly, 3 and 27 combined-SNP bar-
codes with the best performance (the largest difference 
between controls and cases) were mined using the GA. 
The left side of Table 3 shows only two to nine SNPs for 
the combinational analysis. For example, in a 3-SNP 
combination, the barcode consists of SNPs (1, 2, 21) 
with genotype 1-1-2, i.e., [rs535586-AA]-[rs652888-AA]- 
[rs6559218-Aa]. In a 4-SNP combination, the barcode 
consists of SNPs (1, 2, 11, 20) with genotype 1-1-1-2, i.e., 
[rs535586-AA]-[rs652888-AA]-[rs7581217-AA]-[rs452
6432-Aa]. Therefore, the PSO provides the highest  
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Table 1. Effect in individual SNPs of 27 epigenetic modifier-related genes on the occurrence of breast cancer. 

SNPa Genotypes Controls/Cases OR 95% CI p-value SNP Genotypes Controls/Cases OR 95% CI p-value

1 BAT8 1 2353/2208   15 DNMT3B 1 1788/1849   

 rs535586 2 2098/2213 1.12 1.034 - 1.222 0.006 rs2424932 2 2406/2363 0.95 0.871 - 1.036 0.241

  3 549/579 1.12 0.987 - 1.281 0.079  3 806/788 0.95 0.844 - 1.069 0.350

2 BAT8 1 3079/2995   16 DNMT3B 1 1546/1515   

 rs652888 2 1676/1748 1.07 0.986 - 1.166 0.103 rs2424928 2 2440/2447 1.02 0.932 - 1.116 0.616

  3 245/257 1.08 0.899 - 1.293 0.417  3 1014/1038 1.04 0.930 - 1.163 0.444

3 DNMT1 1 1251/1280   17 DNMT3B 1 1871/1878   

 rs2290684 2 2534/2565 0.99 0.899 - 1.088 0.825 rs992472 2 2351/2354 1.00 0.918 - 1.090 0.955

  3 1215/1155 0.93 0.831 - 1.039 0.198  3 778/768 0.98 0.870 - 1.103 0.783

4 DNMT3A 1 1412/1425   18 DNMT3B 1 1539/1536   

 rs7587636 2 2486/2506 1.00 0.911 - 1.095 0.980 rs2424913 2 2460/2469 1.01 0.923 - 1.105 0.903

  3 1102/1069 0.96 0.859 - 1.075 0.488  3 1001/995 1.00 0.893 - 1.119 0.944

5 DNMT3A 1 1395/1355   19 DNMT3B 1 1733/1799   

 rs6749992 2 2442/2477 1.04 0.951 - 1.146 0.363 rs1333469 2 2405/2340 0.94 0.862 - 1.026 0.145

  3 1163/1168 1.03 0.926 - 1.155 0.553  3 862/861 0.96 0.856 - 1.077 0.512

6 DNMT3A 1 1568/1579   20 EHMT1 1 1544/1560   

 rs749131 2 2466/2481 1.00 0.914 - 1.092 0.984 rs4526432 2 2460/2436 0.98 0.896 - 1.072 0.661

  3 966/940 0.97 0.862 - 1.082 0.555  3 996/1004 1.00 0.894 - 1.119 0.968

7 DNMT3A 1 1747/1744   21 EHMT1 1 2035/2056   

 rs7560488 2 2398/2406 1.01 0.921 - 1.097 0.910 rs6559218 2 2385/2267 0.94 0.864 - 1.022 0.155

  3 855/850 1.00 0.887 - 1.118 0.944  3 580/677 1.16 1.022 - 1.317 0.026

8 DNMT3A 1 2726/2765   22 EHMT1 1 1968/2003   

 rs734693 2 1925/1885 0.97 0.888 - 1.048 0.404 rs7852475 2 2340/2314 0.97 0.891 - 1.056 0.505

  3 349/350 0.99 0.845 - 1.158 0.888  3 692/683 0.97 0.858 - 1.097 0.624

9 DNMT3A 1 2745/2784   23 HDAC2 1 2051/2067   

 rs2276599 2 1901/1874 0.97 0.895 - 1.056 0.501 rs352063 2 2293/2324 1.01 0.929 - 1.099 0.895

  3 354/342 0.95 0.814 - 1.116 0.546  3 656/609 0.92 0.811 - 1.044 0.202

10 DNMT3A 1 1628/1706   24 HDAC2 1 2695/2664   

 rs2289195 2 2477/2425 0.93 0.855 - 1.020 0.130 rs3778216 2 1971/1974 1.01 0.930 - 1.097 0.755

  3 895/869 0.93 0.826 - 1.040 0.195  3 334/362 1.10 0.939 - 1.288 0.254

11 DNMT3A 1 2152/2010   25 MBD2 1 2147/2146   

 rs7581217 2 2213/2362 1.14 1.051 - 1.243 0.002 rs1259936 2 2239/2267 1.01 0.929 - 1.098 0.762

  3 635/628 1.06 0.934 - 1.201 0.374  3 614/587 0.96 0.845 - 1.091 0.496

12 DNMT3A 1 1703/1698   26 MTHFR 1 2237/2286   

 rs2304429 2 2428/2387 0.99 0.903 - 1.076 0.753 rs1801133 2 2217/2105 0.93 0.856 - 1.011 0.084

  3 869/915 1.06 0.942 - 1.184 0.351  3 546/609 1.09 0.958 - 1.241 0.185

13 DNMT3A 1 1656/1644   27 SETDB1 1 2111/2163   

 rs6722613 2 2429/2513 1.04 0.954 - 1.138 0.359 rs4970986 2 2313/2250 0.95 0.874 - 1.033 0.222

  3 915/843 0.93 0.827 - 1.042 0.206  3 576/587 0.99 0.870 - 1.127 0.935

14 DNMT3B 1 1262/1322         

 rs6058897 2 2480/2494 0.96 0.873 - 1.056 0.400       

  3 1258/1184 0.90 0.804 - 1.003 0.058       

aData collected from literature [7]. 
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Table 2. Representative difference between cases and controls for two SNP combinations amongst 27 SNPs, listed from maximal to 
minimal. 

Cases Controls 
SNPs Genotype 

No. % No. % 
Difference of percentage 

SNP (1, 2) 1 - 1 1344 26.88 1479 29.58 2.70 

SNP (7, 14) 2 - 3 601 12.02 632 12.64 0.62 

SNP (10, 19) 3 - 2 424 8.48 441 8.82 0.34 

SNP (11, 13) 3 - 3 109 2.18 118 2.36 0.18 

SNP (15, 27) 2 - 3 284 5.68 288 5.76 0.08 

SNP (17, 19) 1 - 3 342 6.84 342 6.84 0.00 

SNP (5, 19) 2 - 3 411 8.22 406 8.12 –0.10 

SNP (16, 27) 2 - 3 294 5.88 284 5.68 –0.20 

SNP (9, 16) 1 - 2 1360 27.20 1342 26.84 –0.36 

SNP (19, 25) 1 - 1 782 15.64 752 15.04 –0.60 

SNP (1, 11) 2 - 2 1010 20.20 896 17.92 –2.28 

 
Table 3. Estimated effects of SNP barcode on the occurrence of breast cancer. 

Combined SNP SNP genotypes Cases Controls Difference (%) OR 95% CI p-value

  No. % No. %     

SNPs (1, 2) 1-1 1344 26.88 1479 29.58 2.70 0.875 0.802 - 0.955 0.003

  3656  3521      

SNPs (1, 2, 21) 1-1-2 623 12.46 718 14.36 1.9 0.849 0.756 - 0.953 0.005

  4377  4282      

SNPs (1, 2, 11, 20) 1-1-1-2 280 5.60 337 6.74 1.14 0.821 0.697 - 0.967 0.018

  4720  4663      

SNPs (1, 2, 10, 21, 24) 1-1-2-2-1 155 3.10 193 3.86 0.76 0.797 0.643 - 0.988 0.039

  4845  4807      

SNPs (1, 2, 10, 21, 24, 27) 1-1-2-2-1-1 57 1.14 84 1.68 0.54 0.675 0.481 - 0.947 0.023

  4943  4916      

SNPs (1, 2, 9, 10, 21, 24, 27) 1-1-1-2-2-1-1 32 0.64 51 1.02 0.38 0.625 0.401 - 0.974 0.038

  4968  4949      

SNPs (1, 2, 9, 10, 21, 24, 25, 27) 1-1-1-2-2-1-2-1 14 0.28 27 0.54 0.26 0.517 0.271 - 0.987 0.046

  4986  4973      

SNPs (1, 2, 9, 10, 13, 21, 24, 25, 27) 1-1-1-2-2-2-1-2-1 7 0.14 18 0.36 0.22 0.388 0.162 - 0.930 0.034

  4993  4982      

 
difference in terms of SNP barcodes between the cases 
and controls for fixed numbers of SNPs. 

3.4. Prediction Scores of the Best 
PSO-Generated SNP Barcodes in 
Breast Cancer 

Table 3 lists the best n-SNP barcodes (n = two to nine) 
calculated by the PSO algorithm. The right side of the 
table shows the estimated effect (odds ratio, 95% CI, and 
p-value) of certain SNP barcodes with respect to breast 
cancer susceptibility. SNP combinations (two to nine 
SNPs) with group differences between cases and controls 
are shown in “Difference” field. The difference between 
cases and controls are reduced from 2.70% to 0.22% 
between two to nine SNP barcodes. The OR of the best 

SNP barcodes is in the range of 0.875 to 0.388, and the 
95% CI of OR is in the range of 0.162 to 0.988. The SNP 
barcodes involving two to nine SNPs show significantly 
decreasing OR values (p-value < 0.050 to 0.001). Since 
the SNP barcodes listed in Table 3 show that the control 
numbers are greater than the case numbers, the SNP 
barcodes are regarded as protective SNP barcodes against 
breast cancer. 

4. DISCUSSION 

Accumulating evidence on SNP-SNP interaction sup-
ports polygenic models for breast cancers [21-23] and sug- 
gests that, in terms of disease analysis, breast cancers are 
associated with combinations of SNPs rather than indi-
vidual SNPs. Possible protective effects are also important 
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for the prediction of cancer morbidity by SNPs. However, 
computational methods used to identify the complex in-
teractions are still difficult to implement for high order 
SNP-SNP interactions. In this study, the PSO method 
was used to overcome this problem. We analyzed the 
contributions of 27 SNPs from nine breast cancer related 
genes to generate protective SNP barcodes in a case- 
control study of 5000 cases and 5000 controls with gen- 
otype data simulation. The genotype information is sim- 
ulated at random with the genotype frequency as the only 
dependent variable. In general, a larger number of simu-
lated datasets may provide more stable results for certain 
types of SNP barcodes associated with disease. However, 
the purpose of this study was to develop a methodology 
for detecting cancer-associated SNP barcodes using case- 
control studies where only the genotype frequencies are 
known. 

As Table 1 shows, SNPs 1, 11, and 21 show signifi-
cant differences with respect to the risk of breast cancer 
based on the odds ratio (p-value < 0.05) and share a 
common effect between individual and combined SNPs 
for the occurrence of breast cancer. However, SNPs 2, 9, 
10, 13, 20, 24, 25, and 27 are not found to be significant 
as individual SNPs in relation to the occurrence of breast 
cancer. These results reveal that the SNPs involved in 
SNP-SNP interactions may be detectable using associa-
tion studies. The analysis of the results in Table 3, which 
depicts the maximum difference information calculated 
by the PSO algorithm, can be used to predict the relative 
strength of the impact of an SNP on breast cancer protec-
tion. For example, the difference between controls and 
cases for SNP barcode [SNPs (1-2-21)-genotype (1-1-2)] 
is higher than that of [SNPs (1-2-11-20)-genotype (1-1- 
1-2)], suggesting that SNPs 1 and 2 are more relevant for 
breast cancer protection than SNPs 11, 20, and 21. Hence, 
an order of impact on breast cancer for the SNPs listed in 
Table 3 can be arranged as SNPs 1/2 > SNP 21 > SNP 
11/20 > SNP 10/24 > SNP 27 > SNP 9 > SNP 25 > SNP 
13. The PSO-generated SNP barcodes involve two to 
nine SNPs and show significantly decreasing OR values, 
ranging from 0.875 to 0.388 in Table 3 (p-value, 0.003 to 
0.034). In contrast, some individual SNPs with breast 
cancer protection display OR values ranging from 0.99 to 
0.90 (Table 1). Figure 2 shows the relationship amongst 
OR, cases and controls. The value of OR is reduced from 
the low order to high order SNP-SNP interaction. Also, 
the difference between cases and controls decreases quickly, 
indicating that a very significant SNP barcode can be 
found in the high order SNP-SNP interaction. However, 
this rapidly decrease in difference increases the difficulty 
in identifying optimal SNP barcodes. PSO successfully 
overcome this difficulty, and the results show the SNP 
barcode is statistically significant. 

We analyze the PSO in term of the computational  

 

Figure 2. Frequency analysis among cases and controls, and 
odds ratio in 2- and 9-order SNP-SNP interactions. 

 
complexity and parameters. Computational complexity is 
a key issue in detecting SNP-SNP interactions, and is 
estimated by the objective function computation for the 
PSO algorithm. Given I iterations and P solutions (parti-
cles) in the population, then the objective function com-
putation has a computational complexity of O(IP). Opti-
mal PSO parameters were investigated by Kennedy and 
Eberhart [17]. Population size and the number of itera-
tions can be adjusted according the dataset. The sug-
gested population size ranges from 50 to 100 and the 
suggested number of iterations ranges from 100 to 1000. 
The acceleration constants c1 and c2 control how far a 
particle moves in a single generation, i.e., they respec-
tively control the exploitation and exploration ability in 
each search. To balance exploitation and exploration, it is 
suggested that c1 and c2 are set equal to 2. PSO can 
overcome the limitations imposed on computational time 
for complex SNP interactions for GWAS because PSO 
has the following advantages: 1) PSO allows robust 
analysis of high-order SNP combinations for GWAS stud-
ies and generates the best SNP barcodes; 2) PSO is an 
evolutionary algorithm without exhaustive search; 3) 
PSO only needs two parameters for computation without 
complex settings; and 4) PSO’s computational complex-
ity is unaffected by the data set size. 

5. CONCLUSION 

Analysis of association studies is made difficult by the 
huge number of SNPs involved, especially when multi-
ple SNPs are investigated simultaneously. Our proposed 
PSO algorithm was shown to successfully identify 27 SNP 
cross-interactions, and provides representative SNP-SNP 
interactions for breast cancer. The PSO algorithm can 
help identify the best fitness of cases and controls. Re-
sults involving two to nine SNPs show the OR of the best 
SNP barcodes is in the range of 0.875 to 0.388, and the 
95% CI of OR is in the range of 0.162 to 0.988. All SNP 
barcodes show significantly decreasing OR values (p- 
value < 0.050 to 0.001). These results demonstrate that 
PSO, coupled with odds ratio analysis, can successfully 
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account for complex SNP interactions and provides the 
best SNP barcode profile for predicting breast cancer 
cases. This suggests that the method is suitable for the 
systematic exploration of genome-wide SNP interactions. 
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