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ABSTRACT 

Hyperbolic variational equations are discussed and their existence and uniqueness of weak solution is established over 
in the last six decades. In this paper the hyperbolic equations (strong formula) can be transformed into a Hyperbolic 
variational equations. In this research, we propose a time-space discretization to show the existence and uniqueness of 
the discrete solution and how we apply it in the transport problem. The proposed approach stands on a discrete 
L∞-stability property with respect to the right-hand side and the boundary conditions of our problem which has been 
proposed. Furthermore the numerical example is given for the pollution in the smooth fluid as water and we have taken 
the pollution of the water in the west of Algeria as an example. 
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1. Introduction 

The construction of a numerical model consists of two 
distinct stages: the first is to establish a system of equa- 
tions and strongly coupled nonlinear governing the be- 
havior of continuous phenomena. 

In the late 40’s methods of grid points were used to 
model the universally large-scale atmospheric flow. Dur- 
ing recent years, alternative methods have been used, one 
of these methods is the finite element method finis. In 
this paper, we present the main tools for implementations 
of the method more generally belong to family of Galer- 
kin methods. These are commonly used instead of the 
finite difference method (considered too simplistic) to 
treat horizontal and vertical fields in the models. 

Galerkin methods, which can solve numerically sys- 
tems of equations and inequalities PDE (see ref. [1,2]) do 
not directly use the field values at the points of a grid, but 
are use of series expansions of functions appropriately 
chosen, so as to reduce the resolution of a system of or- 
dinary differential equations. There are two types of me- 
thods within this process: the finite element method for 
which the functions are zero, except for a small area where 
they are equal to the low-order polynomials, and the spec- 
tral method in which the functions are the functions of a  

spatial operator defined on the entire work area. 
The finite element method is one of the tools of ap- 

plied mathematics. It is put in place, using principles in- 
herited from the variational formulation or weak formu- 
lation, a discrete mathematical algorithm for finding an 
approximate solution of a free boundary problem (see 
[3-7]). It speaks Dirichlet conditions (values at the edges) 
or Neumann data. The finite element method is different 
than the spectral method because it is not comprehensive, 
but rather determined by local values. However, it is dis- 
tinct approximations the function is defined over the en- 
tire region and not just the discrete points (see [2]). 

The outline of the paper is as follows. In Section 2, we 
lay down some notations and assumptions needed through 
out the paper. Moreover, we study a priory estimates of 
the semi-discrete and prove the stability analysis of finite 
element for Hyperbolic equation (HE). In Section 3, we 
associate with the discrete HE problem a main theorem 
and use that in proving the existence of unique discrete 
solution. Finally, in Section 5, we applied this method to 
the equation of transport and its application in the certain 
pollutants, where the numerical example is given for the 
pollution in the smooth fluid as water and we have taken 
the pollution of the water in the west of Algeria as an 
example. 
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2. Finite Element Methods for Hyperbolic 
Equations 

2.1. The Classic Formulation 

Consider the following problem, hyperbolic first order, in 
the interval  = ,     

  

     
   

0 in , 0,

, , 0, ,

,0 ,

u u
a a u f Qt T

t x

u t t t T

u x u x x

 

 

        
  
  


  (1) 

2.2. The Variational Formulation 

The Continuous Problem 
We multiply (1) by and integer in  1

0v H    

 

0

1
0

d d d dv x v x a uv x fv x
t x

x H

   

  
 

  

   
u u 

   (2) 

    1 1
0 , 0H H v      

Using the Green formula we have 

0 d d
u u v u

v a a uv x v fv x
t x x


 

              d





0

 (3) 

the problem becomes: 

    1
0, ,b u v l v v H     

     1 1 ,eu H u H u          (4) 

with 

 

 

0, d

and d

u u v
b u v a a uv x

t x x

l f x



 




         






 

To ensure the existence and uniqueness of the solution 
we must have: 

 
   

   
 

1

2

0 min1,

0 1, 1,

0, 1, 1,

1 .,. is an elliptic :

, min , for > 0 and

2 , max ,

3

b H

b u u a a u a p a

b u v a a u

l f v c



 



 

  

  

  


  


   

0 0
  

(5) 

According the Lax.Milgram theorem, the problem (3) 
has a unique solution. 

3. The Discrete Problem 

The finite element method is a special case of the vari- 
ational approximation method, also called the method of 
Rayleigh-Ritz or Galerkin approach which allows the 

solution u as follows. We construct a subspace  of 
finite-dimensional space , then we define the appro- 
ximate solution h  of the solution  as the solution to 
the following problem: Find  solution of 

hV
V

u u
hVhu 

   , , h
h h h hb u l V          (6) 

where 

   
    

2 1

1,

,

in and 0

h
h

h I a b

V v C H

v P u 

   

  


    (7) 

3.1. The Space Discretization 

We defined the following space: 

    1 0
1, : ,h h h j j j hV v c v I P I I         (8) 

    1
0 .h h hV v H v  0            (9) 

we have 

   
 

0

1
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d d

d ,

, ,
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h h h
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h h

u u
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t x

fv x v V

u t t x

u u

 

 




 

        
  

  

 

 



h

     (10) 

3.2. Existence and Uniqueness of the Solution 

We have 

 

 

   
 

0

1

0

d

d ,

en ,

0 .

h h
h h

h h h

h h

h

u u
v a a t u v

t x

f t v x v V

u t t x

u u

 

 





 

        
  

  

 

 



h x

    (11) 

we can set  h hv u t , we get 

 2
0 d dh h

h h h
x

u u
u a u a u x f t u

t

  

  



 
  
   

  
 
 

  


,h x  (12) 

Then 

     2 21 1
d d

2 2
h

h h

u
a x u x a x u a' x u x

x

 

 

        h  

Thus 

     2 21 1
d d

2 2
h

h h

u
a x u x a x u a' x u x

x

 

 

        h  

Then 
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     
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 
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Equation (12) becomes 

   

     

2 2

2 2
0

1 1
d

2 2

1
d d

2

h h

h h

u x a u
t

a t u a' x u x f t u x






 

 




  



  h


  (13) 

We set 

   

   

2 2

2
0

1 1
d
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1
d

2

h h

h

I u x a u
t

a t a' x u x








 
 



   
 


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and 

  dhII f t u




  x  

We can write (13) 

I II                      (14) 

We suppose 

   0 0

1
0

2
a t a' x     
 

      (15) 

Using the inequality of young 

 
  2

d
2 2
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h
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



 
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we can write 
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Using (15) we have 
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    
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Then 
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   
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   

  
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thus 
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   
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
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  
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or 
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   
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2 d d
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  
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 
 

implies 
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   
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d     

  

 

 

 

 


 

Then 

       

   
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d      
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By Using the inequality of Cauchy Schwarz 

         2 2

0 0

d d d
t t

hl l
A f u x f u





          

Using Young inequality 
2

2 , , et
4

n
m n m m n 



        

     

 
 

2

2

2

0

2
2

0

d

d
4

t

hl l

t

h l

A f u

f
u

  


  





 
  
 
 




 

Copyright © 2013 SciRes.                                                                                  AM 



S. BOULAARAS  ET  AL. 459

we put 0

1

2
  . Then 

 
  2

2

2

2

0
00

1
d

2 4

t
l

h l

f
A u


  



 
  
 
 
  

(3.12) equivalent 
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thus, we have 
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in particular cases or f  and  are null 0a

     
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which reflects the stability of the energy of the system. 

3.3. The Time Discretization 

The time discretization of the finite element methods in- 
troduced in the previous section can be done either by 
finite differences or by finite elements. 

If we choose a finite difference scheme implicit, both 
methods are unconditionally stable. 

For example, using the implicit Euler method for the 
time discretization of the problem (3.7). The problem can 
be written, for all : find  0n  n

h hu V
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 
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t t

u
a x u x a u x

x

u u
t t

u
a x

x

 

 

 

 

 

 







 





 

 
 
     
  
 


 



 
     
  


 



 
 






 

 

 

 

2 2

2

0

2 21

( ) ( )

d d

1 1

2 2

n n n
h h

B

n n
h hl l

u x a u x

u u B
t t

 

 





 



  
 

 


 

calculation of B  

     2

0d d
n

n n nh
h h

u
B a x u x a u x

x

 

 

  
   

thus, we have 

        2 2

0

1 1
= d

2 2
n n n
h hB a u a a x u





      
  x  

Using    

   0 0

1
,

2
a x t a x    

        

     2

2 2

0

2 2

0

1 1
=

2 2

1

2

n n
h h

n n
h h l

B a u a a x u

a u u





 

  

    
 

 

 n

 

Then, we deduce 

     2 2

2

2 21

21
0

1

2

0

n n n
hl l

n

l

u u a u
t

u

 







 


 
     (18) 

Summing from  to , we find, for  0 1m  1,m 
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   2 2

2
2 2 1 0

1 1

2
m m

m j j
h hl l

j i

u t u a u u 

 

 
    

 
  2

2

l
 

In particular, we can conclude that 

2 2

20 0m
h hl l

u u m  

1

 

The diagram is clear, however, subject to a stability 
condition: for example, in the case of the Euler method, 
the stability condition is  This restriction is 
not as severe as in the case of equation parabolic equa- 
tion. this is particularly why the explicit schemes are 
used in the approximation of hyperbolic equation. 

 .t O x  

3.4. Matrix Form 

A thorough analysis of the stability and convergence pro- 
perties of the discontinuous Galerkin method can be 
found in Thomee (1984), Eriksson, Johnson and Thornee 
(1985) (see also Dupont (1982)). Let us just recall that 
the method is formally of order  at the nodal 
points tn, and of order 

2q 
1q   in the global interval 

 0,T , 
Now we 

 

 

1

1 1
0

1 1

0
0

1
d d

d d ,

,

,

n n h
h h h h

n n
h h

n n

h h

u
u u v x a v

t x

a u v x f v x

u

u u

 

 
 

 

 



 

 

 
  


 

 

 

 

 

x

    (19) 

thus 
1

1

1 1
0

1 1
d d

d d ,

n
n n h
h h h h h

n n
h h

u
u v x u v x a v x

t t x

a u v x f v x

  

  
 

 




 


 

  

 

  

 

d

 

or 

 
1 1

1 1

,
N N

h h
j j i

j i

v u u i  
 

 

      

We can write 

1 1

0 0

;
n n

n n
h i i h

i j

u u v j i   

 

        ( 1) 

and we have 

 

   

1
1

1 1
0

d d

d d

n
n n h
h h h h h

n n
h h h

u
u v x u v x t a x v x

x

t a x u v x t f x v x

  

  
 

 




 


  



  

  

 

d

 

we set 

   

 

1

1

1
0

1

d d

and

d

and

n n
h h h h

n

nh
h h

n
h

A' u v x u v x

u
B' t a x v x t a x u v dx

x

C' t f x v dx

 

 

 

 













 






   






 


 

 



h

j i

 

Using 

  1 1

0 0

1 ;
n n

n n
h i i h

i j

u u v v  

 

      

1

sup sup
1 1

sup sup
1 1

d

d ,

i j

i j

n n
n

i j ip p
i j

n n
n

i j ip p
i j

A u v

u v

 

 

 

 



 

 

 
   

 
 

  
 

 

 





x

x

 

 

 

1
0sup sup

1 1

1
0sup sup

1 1

d

d

i j

i j

n n
n
i i j ip p

i j

n n
n n

i i j ip p
i i

B t u v a x
x

t a x u v

 

 

 

 



 



 

x

x

             
        
   

 

 





 

and 

 1

sup
1

d
j

n
n

j jp
j

C t f x v






    x  

with 

 sup sup if 2i jp p i j       

we consider 

 
   0

constant

,

a x

a x t t

 


 
 

The previous relation becomes 

1

1

sup sup sup sup
1 1

d d
i j i j

n

j
j

n n
n n
i i j ip p p p

i i

A' v

u x u
   

   





 



i j x
    



   

 

1

sup sup
1 1

1 1

sup sup
1 1

d

d ,

i j

i j

n n
n

j i i jp p
j i

n n
n n

j i ip p
j i

B t v u x

t v u x

 

 

 

 



 

 

 

         
 

j



        

  

 





 

and 

 1

sup
1

d
j

n
n

j jp
i

C v f x






x        
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thus the equation A B C   

 

i j x

U




 equivalent 

 

 
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1 1

sup sup
1 1

1

sup sup
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i j
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n
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n
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j i
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n
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 

 
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 


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 
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 


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    

   

      



  

  

  

  









1 j

n

j

 
   

 

So the above equation to give 
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d

d
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n
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
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


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

  
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

 






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
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(20) 
Our system is reflected in the form: 

   1 1n n

n

t t

U F

          
    

K R K

K
     (21) 

where 

-The  ,i jK    symmetric three-diagonal matrix of  

dimension  defined as   1N N   1

( )d 
sup sup

, ( )
i j

i j i jp p
K x x

 
     

x



 

-The matrice  ,i jR  
 N  

symmetric three-diagonal 
matrice of dimension  defined as 1 N  1

x x     
sup sup

, d
i j

i j i jp p
R x

 
   


   

 

Calculation of the matrices terms 

   , , ,i j i jR K    : 

1st Case i j  

 

   

1
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sup sup sup sup
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1 1
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x x
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2
d

3i j
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h
x

 
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        (22) 

for: i j  
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h h
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sup sup
d 0
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x
 
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2nd Case 
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thus we have 1j i   
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d
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Thus, we have for 1j i   
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3rd Case 
1j i   For 
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         (26) 
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and for 1j i   

sup sup
d
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h
x
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                   (27) 
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d
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x x

x x x X
x x

h h

h
h s x h s x
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



 





           

    

 

 

 

 

 

4. Application 

The dimensional models are developed to assess the phe- 
nomena of dispersion in the far field zone wherein the 
concentration of the released product is homogeneous 
across the section. 

Based on simplifying assumptions including neglect- 
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ing dispersion phenomena vertical and transverse and 
longitudinal dispersion. Transport the pollutant is given 
by the following equation: 

0,
C C

u
t x

 
 

 
            (28) 

with 
C: concentration of pollutant (mg/L); 
U: flow velocity (m/s); 
for the application of our model, we chose the site of 

Wadi EL Meleh (in the west of Algeria). 
The watershed of Oued El Maleh is located in the 

north part of the country in wilaya Ain Témouchent. It is 
characterized by a Mediterranean climate arid to semi- 
arid with hot influences the Sahara to the south and cold 
north and east. 

This area is known by low rainfall with an average 
inter-annual 300 mm/year. 

The study watershed is located in north-western Al- 
geria is approximately (1 9  and 1 2 ) and 
between longitude (  and 35 ) lati- 
tude. 

'24"

17 '22"
6 '17"W

16'37"N35

It is bordered by the Mediterranean Sea to the north, 
the mountains of Berkeches south, the mountains of El 
Sbaa Chioukh South West, Tessala Mountains in the 
South East, Mlata plain to the east and the basin of Ouled 
El Kihel West (in the west of Algeria). 

4.1. Problematic 

Equation (28) is a hyperbolic equation, then it would be 
wise to use a semi-explicit scheme time discretization. 
We will use the finite element method for discontinuous 
Galerkin spatial discretization. 

The assumptions are: 
*The velocity is constant and independent of time; 
*The density of the pollutant is equal to that of water; 
*The pollutant concentrations depend only on time and 

distance; 
*Knowledge of initial conditions and boundary con- 

ditions. 

4.1.1. The Initial Condition 
Considering that the concentrations are zero regardless of 
the distance downstream of the sampling point. 

 ,0 0 for 0.C x x   

4.1.2. Boundary Conditions 
It is defined by: 

*The pollutant is considered conservative or passive, 
and the principle of conservation of mass is taken into 
account: 

   , dA x C x t x M



  

*Concentrations are considered zero after an infinite 
distance downstream from the point of sample collection: 

 , 0 forC t t 0    

0 when .
C

t
x


 


  

such that: 
A: section of the river (m2); 
C: concentration of pollutant (mg/L); 
M: mass rejection (Kg). 
Calculated flow velocity is given by the following for- 

mula: 

U Q S                 (29) 

such that: 
S: mesh section (m2); 
U: flow velocity (m / s); 
Q: average daily flow of the river (m3/s). 
The choice of using one-dimensional models can be 

detrimental in terms of the accuracy of predictions since 
several phenomena have been neglected. However, the 
interest lies in the small number of data required making 
a tool in line with the issue of emergency. 

Data. 

4.1.3. Hydrodynamic Data 
Flood discharge (m3/s)—wet section (m2) main flood- 
length (m)—Raw slope (m/m)—high flood. 

(source station hydrology Turgot North ‘Ain Timou- 
chent). 

4.1.4. Choice of Pollutants 
Our choice fell on two pollutants: NO2 and NH4 have a 
large dilution in water, and its harmfulness and toxicity 
to living beings, in addition to the stream is infected dis- 
charges from a manufacturing plant detergents. The ma- 
nufacture of detergents is based on products of this type. 

For this, the laboratory service of the National Agency 
of Water Resources (ANRH) performs measurements of 
the chemical composition of the water regularly and in 
different places. 

4.1.5. Explanation 
Equation for the program you must enter the input para- 
meters (according to our assumptions): 

Insert the U velocity calculated using the formula in 
Section 4 [u = Q/S]. 

Insert the 10 minAT   and h = 2 m [h = max hi]. 
these two parameters are chosen arbitrarily (the semi- 
implicit time discretization scheme) because it is un- 
conditionally stable. For a maturity de 12 h, we obtain 72 
iterations. 

Introduction of a number of points: our choice was 
focused on 5 points due to the low concentration of the 
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pollutant treated to avoid that other phenomenon out- 
weighs the transportation 

for the calculus of quasi-stationary state for the simu- 
lation of the pollutions concentration for each gaseous. 
The proposed discretization stands on a discrete L - 
stability property with respect to the right-hand side and 
the boundary conditions of our problem which was pro- 
posed. Furthermore the numerical application in certain 
gaseous for our discretization is given and deficient. A 
future work, we will complete of this research and we 
will be devoted to the computation and comparison be- 
tween our discretization and an economic societies data. 

Read initial data from the file container (The data are 
from the original collection of 16 November 2009 to 08: 
35 h). 

Matrices are calculated discretization of the array for- 
mula defined before 

  1 .n nA tUB C AC    

The result was a system of equations to be solved, 
where  is the forecast (the unknown). 1nC 
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