
Applied Mathematics, 2013, 4, 449-455 
http://dx.doi.org/10.4236/am.2013.43067 Published Online March 2013 (http://www.scirp.org/journal/am) 

Multiple Solutions for a Class of Concave-Convex 
Quasilinear Elliptic Systems with Nonlinear Boundary 

Condition 

Li Wang 
School of Basic Science, East China Jiaotong University, Nanchang, China 

Email: wangli.423@163.com 
 

Received June 7, 2012; revised February 6, 2013; accepted February 13, 2013 

ABSTRACT 

In this paper, a quasilinear elliptic system is investigated, which involves concave-convex nonlinearities and nonlinear 
boundary condition. By Nehari manifold, fibering method and analytic techniques, the existence of multiple nontrivial 
nonnegative solutions to this equation is verified. 
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1. Introduction 

In this article, we are interested in the existence of two 
nontrivial nonnegative solutions of the following prob- 
lem: 

 

 

   

2 2

2 2

2 2 2

,

| | ,

,

.

p

p

p

p

p q p

u m x u u u u v x

v m x v v u v v x

u v
u f x u u v g x v

x

 

 


 


 

 

 

 

  

    
   


     

 
 

n n
2

,
q

v


 

(1.1) 
where  is a bounded domain with smooth boun-  NR

dary, 2
Np

p p
N p

      


 is the critical Sobolev  

exponent for the embedding .   1, p N p NW R L R 
1 ,q p   


n

 is the outer normal derivative,  

    2,  R  0,0 , the weight m(x) is a positive 
bounded function and      ,f x g x C   are smooth 
functions which may change sign in Ω. By Nehari mani- 
fold, fibering method and analytic techniques, the exis- 
tence of multiple positive solutions to this equation is ve- 
rified. 

In recent years, there have been many papers con- 
cerned with the existence and multiplicity of positive 
solutions for semilinear elliptic problems. Some interest- 
ing results can be found in Garcia-Azorero et al. [1], Wu 
[2-4] and the references therein. More recently, Hsu [5] 

has considered the following elliptic system: 
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 (1.2) 

By variational methods, he proved that problem (1.2) 
has at least two positive solutions if the pair of the para- 
meters  , 

 
belongs to a certain subset of 2R . How- 

ever, as far as we know, there are few results of problem 
(1.1) in addition to concave-convex nonlinearities, i.e.,  
1 q p  , including nonlinear boundary condition. We 
focus on the existence of at least two nontrivial nonnega- 
tive solutions for problems (1.1) in the present paper.  
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where ,S S  satisfy 
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The main result of this paper is summarized in the fol- 
lowing theorem. 
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Theorem 1.1. If the parameters ,   satisfy 

     10, 0, ,

p
p p p q

p q p q
q

f g
p
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then problem (1.1) has at least two solutions  and  ,u v
 ,U V  satisfy  in  and , , , 0u v U V  Ω , , ,U V 0.u v   

It should be mentioned that the similar results about 
the existence of multiplicity of positive solutions for the 
Laplace problem with critical growth and sublinear per- 
turbation have been discussed in the recent paper [6-8] 
and the reference therein. 

This paper is organized as follows. Some preliminaries 
and properties of the Nehair manifold are established in 
Sections 2, and Theorems 1.1 is proved in Sections 3. 

2. Preliminaries 

Let  1, pW   denotes the usual Sobolev space. In the 
Banach space  we introduce 
the norm which is equivalent to the standard one: 

   1, 1,: p pW W W   

 

  
  

1, 1,
,

d

d

p p p

p pW

p p

p p

u v u v

u m x u

v m x v





 

  

  





x

x

 

First, we give the definition of the weak solution of 
(1.1). 

Definition 2.1. We say that  ,u v W  is a weak so- 
lution to (1.1) if for all  1 2,  W , we have 
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It is clear that problem (1.1) has a variational structure. 
Let  be the corresponding energy func- 
tional of problem (1.1), and it is defined by 

 , :I u v W R

       1 1 1
, , ,

p

W
I u v u v R u v G u v

p q  
  


, ,  

where 

     , d
q q

R u v f x u s g x v s 
 

   d ,  

 , dG u v u v x
 


  .  

It is not difficult to verify that the functional I is not 
bounded neither from below nor from above. So it is 
convenient to consider I restricted to a natural constraint, 

the Nehari manifold, that contains all the critical points 
of I. First we introduce the following notation: for any 
functional we denote by :F W  R   1 2, ,F u v    
the Gateaux derivative of F at  ,u v W  in the direc- 
tion of  1 2, ,W  

 

 and 

   1
1 1, ,F u v F u v     0 ,  

     2
2 2, ,F u v F u v     0 .  

Define the Nehari manifold 

         , 0,0 , , ,N u v W I u v u v 0   . Note that  

N contains all solutions of (1.1) and  if and 
only if 

 ,u v N

     , ,
p

W
u v R u v G u v  , .         (2.1) 

Lemma 2.1.  ,I u v  is coercive and bounded below 
on N. 

Proof. Suppose  ,u v N .  From (2.1), the Holder 
inequality and the Sobolev embedding theorem, it fol- 
lows that 

 

     

   

   

     

,

1 1 1
, , ,

1 1 1 1
, ,

,

, .

p

W

p

W

p

W

q
qp

W

I u v

u v R u v G u v
p q

u v R u v
p q

p
u v

p

q
S u v f g

q

 

   
 

 

   
 



 

  


   
          

 




 
 



 (2.2) 

Thus  is coercive and bounded below on  since I N
.q p      Define     , , , .u v I u v u  , v Then 

for all  ,u v N  we have 
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  (2.3) 

Arguing as that in [9,10], we split  into three parts: N

      , , , ,N u v N u v u v     0 ,  

      0 , , , ,N u v N u v u v    0 ,  

      , , , ,N u v N u v u v     0 .  

Lemma 2.2. Suppose  ,u v is a local minimizer of  I
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on  and  Then N   0,u v N .  ,I u v  0  in 1.W 
  

Proof. If  is a local minimizer for I on N, then 
 is a solution of the optimization problem mini-

mize  subject to 

 ,u v
 ,u v

I

 , 0.u v   

Hence, by the theory of Lagrange multipliers, there 
exists R   such that 

   , ,u vI u v   

 1 

   

 in . 1W  
Here  is the dual space of the Sobolev space 
. Thus, 

W 

W

   , , ,I u v u v

   
, , ,u v u  v   

But , , ,u v u v  0  since  Hence   ,u v  0N .
0.   

Lemma 2.3.  for all 0N 

     1
p qf g  0,

p p

p q 
 

    

Proof. We argue by contradiction. Suppose that for all  

     10,
p p

p q p qf g  
 

    there is  

  0,u v N ,  then (2.3) and the Sobolev embedding the- 
orem imply that 
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Thus from (2.4), (2.5) we have 
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By Lemma 2.3, we can write  for all N N N  
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From (2.7) and (2.8) it follows that 
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where  0 0 , , , , , , , , ,d d q N S S f g     is a positive 
constant. 

For all  ,u v W  such that  ,G u v  0 , set 
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we have . For all  it follows that  1 1,t u t v N  max ,t t
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Then  t  that achieves its maximum at maxt  is in- 
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3. Proof of Theorem 1.1 
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(ii)  ,u v  is a nontrivial solution of (1.1). 
Proof. Let   ,n nu v N   be a minimizing sequence 
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Since I is coercive on N, we get that   ,u vn n  is 
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,n nu u v   strongly in  and in qL   L   . 
This implies 
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Since   ,n nu v N  , we get 
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