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ABSTRACT 

In this paper, we consider a SVIR-B cholera model 
with imperfect vaccination. By analyzing the corre- 
sponding characteristic equations, the local asymp- 
totically stability of a disease-free equilibrium and an 
endemic equilibrium is established. We calculate the 
certain threshold known as the basic reproduction 
number Rv. If Rv < 1, we obtain sufficient conditions 
for the global asymptotically stability of the disease- 
free equilibrium, the diseases will be eliminated from 
the community. By comparison arguments, it is proved 
that if Rv > 1, the unique endemic equilibrium is local 
asymptotically stable. We perform sensitivity analysis 
of Rv on the parameters in order to determine their 
relative importance to disease control and show that 
an imperfect vaccine is always beneficial in reducing 
disease spread within the community. 
 
Keywords: Cholera Model; Stability; The Basic  
Reproduction Number; Sensitivity Analysis 

1. INTRODUCTION 

Cholera is an acute intestinal infection caused by inges- 
tion of food or water contaminated with the bacterium 
vibrio cholera. Since Koch found vibrio cholera in 1883, 
the research for cholera vaccine has more than one hun- 
dred years. People have developed a variety of vaccines. 
However, these vaccines were parenteral, which have 
short effective protection and big side effects. In 1973, 
the World Health Organization canceled the vaccine in- 
oculation which attracted a major concern to oral vac- 
cines. At present, there are three kinds of oral vaccine 
(i.e., WC/BS vaccine, WC/rBS vaccine and CVD103-HgR 
vaccine) have been proved to be safe, effective and im- 
munogenic, which were approved to apply in some coun- 
tries [1]. 

In this paper, according to the natural history of chol- 
era, we improve the model of [2] in the following two 
aspects. Firstly, if the cholera persists for a long time, it 
will cause the death [3], especially in the area where wa- 
ter and sanitation resources are not adequate [4], a pa-  

rameter d is added to describe the rate of disease-related 
death. Secondly, we propose a proportion of the vaccina- 
tion in susceptible individuals. As is shown in the fol- 
lowing differential equations: 
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(1.1) 

The flow diagram of the model is depicted in Figure 1. 
Since the first three and last equations in (1.1) are inde- 
pendent of the variable R, it suffices to consider the fol- 
lowing reduced model: 
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(1.2) 

Here, S, V, I and R refer to the susceptible individuals, 
vaccinated individuals, infected individuals, and recov- 
ered individuals, respectively. 

The pathogen population at time t, is given by B(t). 
The parameter μ1 denotes the natural human birth and  
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Figure 1. Progression of infection from susceptible (S) and 
vaccinated (V) individuals through the infected (I) and recov-
ered (R) compartments for the combined human-environment 
epidemiological model with an environmental component. 

 
death rate, α denotes the rate of recovery from the dis- 
ease, η represents the rate of human contribution to the 
growth of the pathogen, and μ2 represents the death rate 
of the pathogen in the environment. The coefficients β1 
and β2 represent the contact rates for the human-envi- 
ronment and human-human interactions, respectively. The 
rate at which the susceptible population is vaccinated is , 
and the rate at which the vaccine wears off is θ. 

All parameters are assumed non-negative, and the ini- 
tial conditions of the system (1.2) are assumed as fol- 
lowing 

       0 0, 0 0, 0 0, 0 0S V I B    .    (1.3) 

The organization of this paper is as follows: the posi- 
tivity and boundedness of solutions are obtained in Sec- 
tion 2. In Section 3, we firstly calculate the basic repro- 
duction number and obtain the existence of the endemic 
equilibrium. We get the local and global asymptotically 
stability of the disease-free equilibrium in Section 4. In 
Section 5, we show that the local asymptotically stability 
of the endemic equilibrium. We analyze the sensitivity of 
Rv on the parameters, and we present the numerical 
simulation in Section 6. The paper ends with a conclu- 
sion in Section 7. 

2. POSITIVITY AND BOUNDEDNESS OF 
SOLUTIONS 

In the following, we show that the solutions of the sys- 
tem (1.2) are positive with the non-negative initial condi- 
tions (1.3). 

Theorem 2.1. The solutions (S(t), V(t), I(t), B(t)) of 
the model (1.2) are non-negative for all t > 0 with initial 
conditions (1.3). 

Proof. The system (1.2) can be put into the matrix 
form 

  ,X M X   

where  T 4, , ,X S V I B R   and  M X  is given by 

 

 
 
 
 

         
   

     
           

   

1

2

3

4

1 1 2

1

1

1 2 1

2

.

M X

M X
M X

M X

M X

S t B t S t I t S t

S t V t

S t V t V t

S t B t S t I t d I t

I t B t

   

 

  

   

 

 
 
 

  
 
 
 

   
 

  
 

   
     
  

  

We have 

1
0 0

1
0 0

d d
0, 0,

d d

d d
0, 0.

d d

S V

I B

S V
V S

t t

I B
SB I

t t

  

 

 

 

    

   
 

Therefore, 

40,
0, 1,2,3,4.

i i
i X X C

M i
 
   

Due to Lemma 2 in [5], any solution of the system (1.2) 
is such that   4X T R  for all . This completes 
the proof of Theorem 2.1. 

0t 

Theorem 2.2. All solutions (S(t), V(t), I(t), B(t)) of the 
model (1.2) are bounded. 

Proof. The system (1.2) is split into two parts, the 
human population (i.e., S(t), V(t), and I(t)) and pathogen 
population (i.e., B(t)). It follows from the first three 
equations of the system (1.2) that 
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Hence, 
d

0
d

B

t
 , when 

2

B



 . Therefore, all solu- 

tions (S(t), V(t), I(t), B(t)) of the model (1.2) are 
bounded. 

From above discussion, we can see that the feasible 
region of human population for system (1.2) is 
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and the feasible region of pathogen population for sys-
tem (1.2) is 

2

0H B B



 
    

 
. 

Define H B . Let in  denote the interior 
of Ω. It is easy to verify that the region Ω is a positively 
invariant region (i.e., the solutions with initial conditions 
in Ω remain in Ω) with respect to the system (1.2). Hence, 
we will consider the global asymptotically stability of 
(1.2) in region Ω. 

    t

3. THE EXISTENCE OF EQUILIBRIA 

In this section, we investigate the existence of equilibria 
of system (1.2). Solving the right hand side of the model 
system (1.2) by equating it to zero, we obtain the fol- 
lowing biologically relevant equilibria. 

It is easy to see that model (1.2) always has a dis- 
ease-free equilibrium (the absence of infection, that is,  
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1FV   is the next generation matrix for model (1.2). It 
then follows that the spectral radius of matrix 1FV   is  
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. According to Theorem 2 in  

[6], the basic reproduction number of model (1.2) is 
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In the following, we will discuss the case with Rv > 1. 
The existence and uniqueness of the endemic equilibrium 
is established as follows. 

The endemic equilibrium  can be 
deduced by the following system: 
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Obviously, when Rv > 1, , . 0I   0B 
Theorem 3.1. The system (1.2) has a unique endemic 

equilibrium when Rv > 1 and no positive endemic equi- 
librium when Rv < 1. 

4. STABILITY OF DISEASE-FREE  
EQUILIBRIUM 

Now, we will discuss the local and global asymptotically 
stability of the disease-free equilibrium. From above and 
[6], we can obtain the following theorem. 

Theorem 4.1. The disease-free equilibrium E0 is lo- 
cally asymptotically stable for Rv < 1 and unstable for Rv  
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> 1. 
Proof. The Jacobian matrix of the system (1.2) at X = 

E0 is 
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The characteristic polynomial of the matrix  0J E  is 
given by 
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If Rv < 1, then 

 2 1 2 0 2 1d S S0          , 

further 

1 2d S0      

After some calculations, if Rv < 1 we have a1 > 0, a2 > 
0, a3 > 0, a4 > 0, a1a2 − a3 > 0,  (see 
Appendix A). Thus, using the Routh-Hurwitz criterion, 

all eigenvalues of 

2 2
1 2 3 3 1 4a a a a a a 

 0J E

0

 have negative real part, E0 is 
local asymptotically stable for the system (1.2). If 

, then 41vR  a   and we show that  0J E  has at 
least one eigenvalues with non-negative real part. Con- 
sequently, E0 is not stable. 

Theorem 4.2. When Rv < 1 the disease-free equilib- 
rium is globally asymptotically stable. 

We will prove the global asymptotically stability of 
the disease-free equilibrium using Lemma 4.1. 

Lemma 4.1. [7] If a model system can be written in 
the form 
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where mRX  denotes(its components) the number of 
uninfected individuals and  denotes (its compo- 
nents) the number of infected individuals including latent, 
etc. 

nRZ

 0 ,0 XU  denotes the disease-free equilibrium 
of the system. 

And assume that  
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(H2)    ˆ ˆ, ,  , ,G 0,G G  X Z AZ X Z X Z for  

 , X Z , where the Jacobian matrix  ,0
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is an Metzler matrix(the off-diagonal elements of A  
are non-negative) and Ω is the region where the model 
makes biological sense. Then the fixed point  

 ,0X0U   is a globally asymptotically stable equilib-
rium of cholera model system (1.2) provided that Rv < 1. 

We begin by showing condition (H1) as 
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The characteristic polynomial of the system is given 
by 

   1 1 0.          

There are two negative characteristic foots are 1   , 

1       . Hence, X  is always globally asymp- 
totically stable. 

Next, applying Lemma 4.1 to the cholera model sys- 
tem (1.2) gives 
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which is clearly an Metzler matrix. Meanwhile, we find 
 Hence, the disease-free equilibrium is glob- 

ally asymptotically stable. 
 ˆ ,G X Z 0.

5. STABILITY OF THE ENDEMIC  
EQUILIBRIUM 

Now we consider the case with Rv > 1. The stability of 
the endemic equilibrium is established as follows: 

Theorem 5.1. If  1,vR   , , ,E S V I B      is locally 
asymptotically stable. 

Proof. Let 

1 1 2 2 2 3 1, , .J B I J S J S           
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Based on Eq.3.3 and Eq.3.4, we have  
 2 1 2 2d S 1S          . It is then easy to ob- 

serve that 

 2 1 2 2d 3J J        , 

further, 

1 2d J    . 

After some calculations, we have  1 20, 0,b b 
2 2

3 4 1 2 3 1 2 3 3 10, 0, 0, ,b b b b b b b b b b b      4  

(see Appendix B). Using the well-known Routh-Hurwitz 
criterion, the proof is thus complete. 

6. SENSITIVITY ANALYSIS OF Rv 

To facilitate the interpretation of the sensitivity of Rv, we 
now present some numerical simulations by using the set 
of parameters values in Table 1. 

Now, we regard the vaccinated rate  and the wanning 
rate θ as the control parameter, while the other parameters 
are fixed. From Figures 2 and 3, the effects of various 
parameters, i.e.,  and θ on the basic reproduction 
number Rv have been shown. It is noted that as the 
parameter  increases, Rv decreases; as θ decreases, Rv 
decreases. In fact, we can obtain the critical values of  
and θ that reduce Rv to 1, 
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Table 1. Estimation of parameters. 

Parameters Meaning Values Reference 

μ1 Natural human birth and death rate 9.13 × 10−5/day [8] 

β1 Contact rates for the human-environment interaction 0.214/day [8] 

β2 Contact rates for the human-human interaction 0.02/day [8] 

d Disease-induced death rate 0.013/day [4] 

α Recovery Rate at which people recover from environment 0.2/day [8] 

η Contribution of infected individuals to the population of vibrio cholera 10 [9] 

μ2 Net death rate of vibrio cholera 0.33/day [9] 

 
In Figure 2, we select θ = 0.07, 0.03, 0.007, 0.0001, 

corresponding v = 2.07, 0.89, 0.21, 0.01, respectively. 
We can see that when the wanning rate θ has a greater 
value, v has not reasonable value so that when  > v, Rv 
< 1. Similarly, in Figure 3, we select  = 0.01, 0.1, 0.3, 
0.6, 0.99, corresponding θv = 0.0002, 0.003, 0.01, 0.02, 
0.03, respectively. We can see that when  is smaller, θv 
has not reasonable value so that when θ < θv, Rv < 1. 
Thus, the basic reproduction number can not reduces 
below unity only by increasing θ or decreasing . The 
critical values v and θv play a key role in regulation the 
infection magnitude. In order to reduce Rv to 1, a greater 
vaccinated rate than v and a smaller wanning rate than 
θv have to be achieved simultaneously. We will deduce 
Rv below 1 by using both  and θ at the same time, which 
can control cholera (see Figure 4). 

 7. CONCLUSION 
Figure 2. The contour diagram of the basic reproduction 
number Rv with , θ has some fixed value. In this paper, we have conducted stability analysis of a 

SVIR-B cholera model. The mathematical analysis results 
show that the basic reproduction number Rv satisfies a 
threshold property with threshold value 1. Rv in our 
model include the parameters  and θ which reflect the 
effect of vaccination. Numerical simulation show also 
that the vaccination is always beneficial to the eradication 
of cholera. 

 

 

However, there are inherent disadvantages towards the 
vaccination modeling. For cholera with incubation period, 
it is hard to rapidly identify those with ambiguous 
symptoms [4]. Moreover, the vaccination does not al- 
ways work well due to the limitations of medical devel- 
opment level and financial budget (some vaccine is very 
expensive and some portion of people cannot be covered) 
[10]. 

Hence, incorporating some other control strategies, for 
example, public health improvement, isolation etc, we 
may consider the more realistic ordinary differential 
equation model. The theoretical study of cholera models 
has been in progress, and is an exciting area of future 
research. 

Figure 3. The contour diagram of the basic reproduction 
number Rv with , θ has some fixed value. 
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Figure 4. The contour diagram of the basic reproduction number 
Rv with , θ variables. all the other parameter value are the 
same as those in Figure 2. 
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From Section 4, we know that Rv < 1, 
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After some algebraic manipulations, we have 2 2
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