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ABSTRACT 

Advanced biological information such as computational biology, in vitro transformation assays, genome pathway analy- 
sis, genotoxicity assays, proteomics, gene expression, cell signaling disruption and hormone receptors offer the poten- 
tial for significant improvements in the ability of regulatory agencies to consider the risks of the thousands of com- 
pounds—and mixtures of compounds—currently unexamined. While the science for performing the assays underlying 
such information is developing rapidly, there is significantly less understanding of the rationality of using these data in 
specific decision problems. This paper explores these issues of rationality, identifying the issues of rationality that re- 
main to be developed for applications in regulatory risk assessment, .and providing a draft decision framework for these 
applications. The conclusion is that these rapid, high throughput methods hold the potential to significantly improve the 
protection of public health through better understanding of risks from compounds and mixtures, but incorporating them 
into existing risk assessment methodologies requires improvements in understanding the reliability and rates of Type I 
and Type II errors for specific applications. 
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1. Introduction 

Human health regulatory risk assessments have relied 
historically on evidence from whole organism and human 
epidemiological or clinical studies. Such studies provide 
a legally well-tested basis for claims of human health 
impacts, in large measure because the health effects 
noted in these studies are directly observable as having 
an adverse impact on lifespan and/or quality of life. 
These same studies however have significant limitations 
in the levels of exposure to environmental toxins—and to 
mixtures of these compounds—for which effects can 
reliably be identified. The former limitation has been 
addressed in part through the application of policy de- 
faults such as uncertainty factors to bring a level of pre- 
caution to decisions clouded by significant uncertainty as 
to the effects at environmental levels of exposure that are 
usually of regulatory interest. The latter limitation has 
been addressed both through building in margins of 
safety for each compound and through use of cumulative 
exposure indices such as the hazard index 
(www.epa.gov/oswer/riskassessment/glossary.htm), in  
the event an individual is exposed to more than one risk 
agent simultaneously. 

Recent advances in both the methods of molecular and 
cellular biology and in understanding the biochemical  

steps leading to clinical health effects is allowing deve- 
lopment of a wider base of evidence on which risk as- 
sessments might rest [1]. This includes an array of me- 
thods from molecular systems biology such as computa- 
tional biology, in vitro transformation assays, genome 
pathway analysis, genotoxicity assays, proteomics, gene 
expression, cell signaling disruption and hormone recep- 
tors [1]. These methods offer hope of being able to iden- 
tify effects at stages earlier than clinical disease; to ex- 
amine exposure-response relationships at much lower 
exposures than whole organism studies allow; to consider 
quantitatively the additive, synergistic or antagonistic 
effects of mixtures of chemicals; and to identify sensitive 
subpopulations requiring special consideration in risk 
assessment and risk management. 

While potentially powerful tools for improving the sci- 
entific basis for risk assessment and beginning to deal 
with the backlog of tens of thousands of compounds that 
have not been examined to date because of the time and 
cost of whole organism studies, such methods have an 
ill-defined role in regulatory assessments. This lack of 
clarity stems from the fact that the observations from 
these methods are not of an adverse effect itself, but 
rather a precursor to, or perhaps correlate of, such clini- 
cally significant effects. This raises a question as to whe-  
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ther the advanced biological information might serve as a 
substitute for the whole organism data, in a supplemen- 
tary role, or as “backing support” for claims of risk based 
primarily in whole organism data. In the first role they 
will truly increase the rate of production of regulatory 
risk assessments; in the latter two, it is not clear any in- 
crease will take place (although it may be the case that 
the evidential basis for traditional risk assessments will 
be improved, or will allow rapid focus on the most po- 
tentially hazardous compounds). 

Answering this question requires clarity on the role of 
such advanced biological data in the process of reasoning 
to a decision on regulations, clarity best brought by an 
understanding of the rationality of such decisions rooted 
in the concept of reasonable confidence that 1) a signifi- 
cant risk exists and 2) reduction of a particular compound 
in the environment will reduce this risk. This reasoning is 
in part related to scientific rationality (how evidence is 
used in science to support or detract from beliefs about 
risk), and in part to the rationality of public decisions 
(how evidence is used to justify public actions such as 
risk management). Especially in the case of public deci- 
sions, one must consider how reasoning incorporates 
consideration of the precautionary principle [2,3] to al- 
low action in the face of uncertainty, while simultane- 
ously avoiding unfair restrictions on the use of potential 
risk agents in economic and other activities when the 
evidence for a claim of risk does not rise above a rea- 
sonable threshold. This balancing of aims has been ex- 
plored in traditional regulatory risk assessments, but is 
much less well explored in regard to use of the emerging 
advanced biological information. 

The current paper explores this issue of the rationality 
of using advanced biological information in a framework 
of traditional risk assessment. Focus is not on the science 
itself (although examples are used), but rather on the 
process of reasoning from evidence to regulatory limits 
and risk management decisions, and how advanced bio- 
logical information might play a role in such a process. 
The discussion is based on recognition that existing risk 
assessment methods are so resource intensive that they 
have led to only a few hundred potentially hazardous 
materials being assessed quantitatively for their risk, in 
contrast to the millions of compounds known to exist, 
and the tens of thousands used in daily industrial practice. 
Advanced biological methods offer the potential to 
greatly increase the number of compounds for which 
regulation can be considered, as well as improving the 
ability to determine risks in communities affected by 
multiple compounds simultaneously (a hallmark of envi- 
ronmental justice concerns). The trade-off is that these 
methods gain their power through observation of effects 
prior to clinical effects, and hence raise important scien- 
tific, statistical, philosophical and legal issues of their 

reliability in identifying significant risks before they are 
evident in observational studies of human populations 
exposed to environmental risk agents. The contention is 
that such advanced methods will take place in a regula- 
tory setting that has already established a particular way 
of treating the related concepts of uncertainty, confidence 
and precaution, and that thought will need to be given as 
to how this new information can either fit reasonably 
within this framework, or lead to revisions of the frame- 
work. 

2. Evidence and Regulation 

Regulatory processes typically have several distinct 
stages, with varying requirements for evidence (that a 
risk exists) and varying degrees of conservatism built in 
to reflect precaution and a desire for a margin of safety. 
As an example, consider the process of setting regulatory 
limits on contaminants in drinking water in the US [4]. 
Under the Safe Drinking Water Act, the US Environ- 
mental Protection Agency (EPA) must develop a Con- 
taminant Candidate List (CCL) through a process over- 
seen by the National Drinking Water Advisory Commit- 
tee (NDWAC). Those steps are: 

1. Prepare a new list every few years (typically 5 
years), of the contaminants in water that might be the 
focus of future regulatory decisions. The goal here is not 
to establish which contaminants will in fact require regu- 
lation, but simply to establish which of the currently un- 
regulated contaminants warrant a further scientific look 
to better define the risks. There is no claim through the 
CCL process that the risks can be quantified at present; 
rather that the evidence to hand is more suggestive of 
risk for some contaminants than for others. As such, this 
stage is akin to a screening assessment and not a full risk 
assessment. The CCL process draws on methods that 
allow for rapid screening of candidates from amongst the 
“universe” of many tens of thousands of compounds. 

2. Move some of the CCL candidates forward to Regu- 
latory Determination. Here the process is to supplement 
the CCL screening material with more detailed data on 
actual levels of exposure, size of affected populations 
and severity of effect to determine which candidate com- 
pounds should be at least considered for environmental 
regulation. The decision at this stage is not the level at 
which a regulatory limit (standard) will be set, but rather 
whether it is worth the effort in time and resources to go 
through the full risk assessment process in the face of 
competing demands for those resources. 

3. Finally, perform the regulatory risk assessment and 
take a regulatory decision on an exposure limit for those 
compounds passing step 2. Here the full process of risk 
assessment is engaged, including consideration of all 
available data in performing exposure-response extrapo- 
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lation; defining health endpoints as adverse and/or criti- 
cal effects; determining the treatment of uncertainty or 
perhaps reducing that uncertainty through further re- 
search; and defining sensitive subpopulations. 

The CCL process offers an object lesson in the con- 
nections between the nature of decisions being taken and 
the strength of evidence required to underpin and justify 
those decisions. The evidential basis required for deci- 
sions—both legally and rationally—becomes stronger as 
one moves from the first to the third step of the process 
above because the implications of each of these steps 
increases. This raises in turn significant questions about 
the potential role in risk assessment of advanced bio- 
logical methods that allow for more rapid development 
of information via high-throughput assays, but are also 
increasingly removed from direct observation of adverse 
effects in whole organisms, observation that has formed 
the legal foundation of regulatory decisions. 

So long as one is simply defining compounds deserv- 
ing a “further look”, the regulatory, regulated and af- 
fected communities tend to be comfortable with methods 
that have the advantage of low cost, high-throughput and 
some degree of conservatism in the sense of errors being 
more likely to lead to over-identification rather than un- 
der-identification of potential risk agents. These ad- 
vanced methods are already being used in programs such 
as REACH in the EU [5], and are at least hinted at in the 
discussions surrounding re-authorisation of the Toxic 
Substances Control Act (TSCA) in the US [6]. But as one 
gets closer to actual regulatory decisions in the third 
stage, the simplicity, low cost and high volume of these 
advanced methods become less compelling reasons for 
their use as a significant basis for decisions, and the fo- 
cus turns more to the ability of such information to pro- 
duce reliable estimates of risk, or to enhance the ability 
of traditional risk assessments to do so. 

Existing approaches to risk assessment based largely 
on whole-animal or human epidemiological studies, how- 
ever slow and resource intensive they may be, have with- 
stood tests in the court. They have been formalized in 
methods that explicitly and often quantitatively address 
uncertainties in risk estimates, how those uncertainties 
should be treated in a framework of the precautionary 
principle, and how uncertainty is related to the confi- 
dence underlying risk assessment and risk management 
claims. If advanced biological methods are to play a sig- 
nificant role in risk-based assessments and decisions, 
there will be a high evidential barrier to cross in demon- 
strating that they are reliable and lead to reasonable pro- 
tection of public health (meaning neither insufficient nor 
excessive levels of precaution). 

The problem here is that the attempt to avoid coming 
into conflict with traditional and legally tested appro- 
aches to regulation may cause the advanced biological 

data to be treated in the same way as current whole or- 
ganism information used in regulatory decisions. The 
tendency will be to simply replace direct observation of 
clinical effects from traditional risk assessment (“critical 
effects” in regulatory risk terminology) with the observa- 
tion of the precursor effects of Figure 1, and then to use 
the methods of uncertainty factors, precaution, etc. that 
developed historically to overcome the limitations in 
whole organism data. The question that arises is then: 
under what conditions might this be acceptable as a 
reasonable basis for establishing risks requiring regula- 
tion, and how might the process of regulatory risk as- 
sessment be adjusted to allow use of these potentially 
powerful insights into the process of disease develop- 
ment? 

At present, most regulatory decisions on at least non- 
cancer effects are based on a process [7] that 1) exam- 
ines effects in humans or whole animals to identify a No 
Observed Effects Level (NOEL) or Lowest Observed 
Effects Level (LOEL); 2) determines which effects are to 
count as truly adverse rather than merely present, there- 
fore leading to identification of a No Observed Adverse 
Effects Level (NOAEL) or Lowest Observed Adverse 
Effects Level (LOAEL); (3) establishes some form of 
Point of Departure based on the NOAEL or LOAEL; and 
4) applies uncertainty factors to account for uncertainty 
in the exposure at which the adverse effect either ceases 
to be adverse (e.g. dropping in severity so it is no longer 
considered adverse) or ceases to be present in a signifi- 
 

 

Figure 1. Advanced biological information, as used in this 
paper, refers to information on effects subsequent to, but 
part of the causal chain leading to, a clinically observable 
effect shown here as a disease indicator. Such information 
can be collected at much lower exposures than the clinical 
effects and with much lower costs and higher volumes. 
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cant fraction of the population, and applies other modi- 
fying factors to account for inter-species and intraspecies 
differences (e.g. dose modification due to pharmacoki- 
netic or pharamcodynamic differences). Much of this 
treatment of uncertainty comes from the facts that one 
often cannot measure effects in humans directly, there- 
fore requiring use of experimental animals, and from 
statistical noise in whole animal or human epidemiologi- 
cal/clinical studies becoming significant and disabling at 
exposures approaching those found in the environment. 
The uncertainty factors are a means of producing high 
levels of confidence that a regulatory limit will still be 
protective of public health even in the face of this uncer- 
tainty that prevents reliable observation of effects at lev- 
els and conditions of exposure of regulatory interest. 

Much of the emerging advanced biological data, by 
contrast, can be extended to significantly lower expo- 
sures than is the case for traditional whole organism 
studies. This will drive down—perhaps by orders of 
magnitude—the NOELs and LOELs. Uncertainty factors 
were applied to these Points of Departure in the past 
based on the argument that regulators can’t “see” down 
into the low exposures of regulatory interest, and so the 
uncertainty factors produced increased confidence that 
the proposed regulatory limit is protective of public 
health. The introduction of advanced biological methods, 
however, allows regulators to “see” down into this region 
of direct environmental interest, and so it would be inap- 
propriate to continue to apply these same uncertainty 
factors. Nevertheless, there will be strong pressure to do 
precisely that, if for no other reason than that the courts, 
regulators and the affected communities have become 
accustomed to seeing these uncertainty factors applied, 
and have come to expect them as the sign that precaution 
is being exercised. The solution to this problem is to  
either change the magnitude of uncertainty factors ap- 
plied when advanced biological information is the basis 
for a Point of Departure so the same degree of confi- 
dence in protection of health is achieved, or to apply the 
advanced biological information as supplement to, but 
not surrogate for, the observations of clinical effects. 

Additionally, the application of uncertainty factors to 
Points of Departure based on whole organism data has 
several decades of research underlying understanding of 
the degree of conservatism and margin of safety built in 
through their application. Research by Dourson et al. [8] 
and others allows approximate identification of the per- 
centiles of both uncertainty and inter-subject variability 
distributions generated through use of specific uncer- 
tainty factors. This allows regulators to ensure regulatory 
limits are neither insufficiently nor excessively protective 
in the face of uncertainty. These same probabilistic inter- 
pretations and understandings are not yet available for 
advanced biological information, and so it is not clear 

how their application will be justified probabilistically in 
assessing resulting margins of safety. 

To frame this issue, the current paper turns now to the 
reasoning process underlying regulatory risk assessments, 
and explores how advanced biological information might 
find either supplementary or new roles in that process. 

3. Evidence and Risk 

An advantage of advanced biological information and 
methods is that they hold the potential to harmonise can- 
cer and non-cancer risk assessments, placing these both 
on a probabilistic basis. There has always been a rather 
arbitrary distinction between these categories of effect, 
with the former treated probabilistically and the latter as 
a threshold phenomenon [9]. Protection against non- 
cancer effects arose during a time when industrial hy- 
giene was rooted firmly in the idea of a distinct threshold 
for effect; the resulting regulatory framework was one 
rooted in the idea of reducing exposures below this 
threshold so the clinical effect would not appear. Cancer 
risk assessment, on the other hand, is a more recent 
process, and was affected significantly by the health 
physics community for which radiation effects are con- 
sidered largely stochastic at low doses. Hence the intro- 
duction of probabilistic concepts of risk in the latter case 
but not the former, with regulation of carcinogens being 
treated as a problem of reducing the probability of cancer 
below an acceptable level. 

There is no fundamental scientific reason for these two 
classes of effect to be treated differently. Each has an 
underlying exposure-response curve (perhaps different 
ones for different groups of individuals). At some point 
along the exposure axis, the probability and/or severity of 
the effect in a population goes above a de minimus level 
and regulation is warranted to protect public health. The 
curve may not be monotonic in the sense of always in- 
creasing as exposure is increased, and may be quite com- 
plex, but it is a curve nonetheless. The sole difference is 
ambiguity as to whether the probabilities calculated are 
truly stochastic (i.e. the probability that a given indivi- 
dual develops the effect) or refer instead to fractions of a 
population with an effect (which would be a property of 
the population, not of any given individual).  

Through harmonisation, it is possible for both catego- 
ries of effects to establish a target probability and/or se- 
verity of effect to be protected against by regulation, and 
to set the regulatory limit accordingly. Any form of treat- 
ment of uncertainty can then be applied to this result to 
increase the confidence that a regulatory limit remains 
protective even if the risk estimate is proven to have been 
incorrect. This latter concern has been addressed in tradi- 
tional regulatory risk assessment by uncertainty factors 
that make it much more likely that errors introduced by 
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inadequate data cause a regulatory standard to be overly 
protective than underprotective of human health. 

Under this harmonization of cancer and non-cancer 
risk assessment, advanced biological information and 
methods could play any of three roles in assessments and 
decisions: 

1. They could be used to determine the shape of the 
exposure-response function below the levels at which 
clinical effects can be seen in the whole organism data, 
as well as to determine which sub-populations might 
have distinct curves representing the more sensitive 
members of a population. The advanced information 
would establish the model form for extrapolation (e.g. 
establishing whether it is linear, quadratic…), but not 
otherwise provide parameters for the models. Numerical 
values for parameters would instead be obtained from the 
whole organism data by fitting the exposure-response 
function discerned from the advanced data to the results 
of the whole organism data. For example, the mathe- 
matical shape of exposure-response curves from cell 
transformation studies on radiation have been used to 
provide the functional form for extrapolation equations in 
whole organism carcinogenicity, but all parameter values 
in the equation have been obtained by fitting to the whole 
organism data [10]. 

This approach has been termed formal relevance [11], 
where there is reasonable confidence that the mathe- 
matical form is the same at both the clinical and sub- 
clinical biological levels of Figure 1, but where there is 
not reasonable confidence that the numerical values of 
parameters apply at all levels. Such use of advanced bio- 
logical information requires reasonable demonstration 
that the mathematical form of the exposure-response re- 
lationship is the same for both the advanced biological 
effect (e.g. lesions in Figure 1) and the clinical effect of 
regulatory interest. The primary problem is that there are 
intervening steps in the process of disease between the 
advanced biological effect and the clinical disease. If any 
of these intervening steps are non-linear and/or non- 
monotonic, such as would be the case if repair mecha- 
nisms are operating in these intervening steps [12], then 
the mathematical form of the exposure-response rela- 
tionship in the advanced biological data will be less 
complex that that in the whole organism data. There is at 
present inadequate testing and demonstration of this as- 
sumption, and so the rationality of using the advanced 
biological information in this way has not yet been estab- 
lished. 

2. They could be used as in item 1, but in addition at 
least some of the parameters within the extrapolation 
model—parameters that relate directly to processes mea- 
sured by other advanced biological information—would 
be determined from those advanced biological studies, 
al- though others within the model would be determined 

by calibrating the extrapolation function to the whole 
animal data as in the first option. For example, extrapola- 
tion models for radiation based on cell transformation 
studies have been given prior estimates of cell killing 
influences based on in vitro cytotoxicity studies, with 
remaining parameters discerned from fitting to whole 
organism data [12]. This approach has been termed nu- 
merical relevance [11], where there is reasonable confi- 
dence both that the mathematical form is the same at 
both the clinical and sub-clinical biological levels of 
Figure 1, and that at least some of the numerical values 
of parameters apply at all levels. This requires evidence 
that numerical relevance holds across the various con- 
texts (whole organisms, in vitro, blood samples, etc.) in 
which assays are performed. At present, evidence is in- 
adequate to establish the reliability of this assumption. 

3. They would be used as the primary basis for esti- 
mates of probability and/or severity of health effect, gen- 
erating the exposure-response curves directly without 
recourse to the whole organism data. This approach is a 
full expression of both formal and numerical relevance, 
applicable where there is reasonable confidence that both 
the mathematical form and the parameter values in the 
extrapolation equation are the same at both the clinical 
and sub-clinical biological levels of Figure 1. 

What might be the evidential requirements to allow the 
advanced biological data to play any of these three roles? 
The key lies in understanding the nature of evidence and 
rationality in regulatory decisions, and how that rationa- 
lity provides a reasonably compelling basis for the belief 
that a risk exists and that a particular regulatory limit is 
protective of health. Rationality of regulatory risk assess- 
ment can be founded in any of five categories of eviden- 
tial reasoning [13,14], examined below. Throughout the 
discussion, consider the modes by which a decision- 
maker might form a claim about whether tropospheric 
ozone produces an adverse effect at 20 ppm: 

1. Direct Empirical: In this case, there are data di- 
rectly displaying whether there is (or is not) an effect at 
20 ppm in the organism of interest (humans will be as- 
sumed here), and in a subpopulation of interest (e.g. 
asthmatics). The quality of the claim concerning the level 
of risk of asthmatic attacks at 20 ppm then rests on the 
quality of the methods used to produce the data (sample 
size, control for confounding, exposure estimation, etc.). 
For ozone, these data traditionally have been human epi- 
demiological studies. For advanced data—such as mea- 
sures of oxidative stress in cells—to play a similar role 
here, they would need to form the basis for this direct 
observation of adverse effect, replacing the traditional 
data on prevalence or incidence of asthma in a population 
with the measure of oxidative stress. This would in turn 
require asserting that the advanced data are measuring an 
effect (oxidative stress) that is itself to be considered 
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adverse in the regulatory sense. Within the existing 
framework of risk assessment, this is unlikely to occur, 
and the advanced biological information would at best 
play the roles noted in items 3 or 4 below. An exception 
is noted in Section 4. 

2. Semi-Empirical Extrapolation: In this case, there 
might be whole organism data on incidence or severity of 
asthmatic attacks at perhaps 50, 100 and 200 ppm, but 
not below 50 ppm. There is, however, a clear exposure- 
response relationship observed in the data, and that rela- 
tionship could be followed down to 20 ppm. The evi- 
dence of a risk at 20 ppm is not then directly empirical, 
but there is nonetheless a strongly empirical foundation 
due to the data at higher exposures. The epistemic quality 
of the claim of a risk at 20 ppm then rests on the quality 
of the methods used to produce the data as in the Direct 
Empirical mode of reasoning, and the clarity of the ex- 
posure-response curve seen in those data. 

For advanced data to play a role here, they either 
would need to form the basis for the observations at 
higher exposures, which would in turn require asserting 
that the effect (e.g. oxidative stress) measured is itself 
adverse and can form the sole basis of the semi-empirical 
extrapolation, or would need to provide a more reliable 
basis for developing the mathematical form of extrapola- 
tion functions below the lowest observed exposure in the 
whole organism studies. The latter approach requires 
evidence that the form of the exposure-response function 
is the same for the advanced effect and the adverse effect 
in the whole organism; i.e. it requires a demonstration of 
at least formal relevance as defined previously. 

3. Empirical Correlation: In this case, the adverse  
effect of interest (e.g. an increase in prevalence of asthma) 
is not observed, but some other advanced biological   
effect (e.g. a biochemical marker of oxidative stress) is 
observed at 20 ppm. Further, that precursor effect has 
been shown to be correlated with, or prognostic of, the 
adverse effect itself. The epistemic quality of the claim 
of a risk of clinical effect at 20 ppm based on the ad- 
vanced biological information then rests on the quality of 
the methods used to produce the advanced biological 
data (sample size, control of confounding, etc.), and the 
quality of the correlation (strength and specificity) be- 
tween appearance of the precursor effect and the clinical 
effect. For advanced data to play a role here, there would 
be a need to characterize the strength and specificity of 
the correlations used, which is the same as characterizing 
the prognostic reliability of the advanced data for the 
adverse effect of interest. We return later in this section 
to the issue of prognostic reliability 

4. Theory-Based Inference: In this case, the adverse 
effect of interest (e.g. an increase in the prevalence of 
asthma) would not be observed, but some other advanced 
biological effect (e.g. a biochemical marker of oxidative 

stress) is observed at 20 ppm and that effect is estab- 
lished scientifically to play a causal role in the adverse 
effect. The epistemic quality of the claim of a risk of cli- 
nical effect at 20 ppm then rests on the quality of the 
methods used to produce the advanced biological data 
(sample size, control of confounding, etc.) and the degree 
of rational support for the causal theory connecting the 
precursor and clinical effects. For advanced biological 
data to play a role here, there would be a need to charac- 
terise the evidential support for this causal theory across 
a wide variety of compounds, including an assessment of 
whether the measured effect was a necessary and/or suf- 
ficient condition to trigger the cascade of events leading 
to the adverse effect of regulatory interest. 

5. Expert Insight: In this case, the advanced biological 
data are not used to calculate a risk at all. Instead, they 
are used to support a claim (informed, but subjective) by 
a reflective expert that the adverse effect is or is not ex- 
pected to appear at 20 ppm. This mode of reasoning is 
not considered further here as it is judged inadequate to 
provide a reasonable evidential basis for risk estimates. 

These uses of the advanced biological data in any of 
the modes of evidential reasoning however raise issues of 
coherence of findings across compounds, across levels of 
exposure and across species. 

To see what is meant by this issue of coherence, con- 
sider the case of a single compound (ozone) and species 
(humans). Turning first to Empirical Correlation, imag- 
ine that there are no direct measurements of the adverse 
effect (increased prevalence of asthma) in humans due to 
ozone exposures at 20 ppm. Instead, there are measure- 
ments of markers of oxidative stress at a variety of levels 
of exposure. Developing the necessary correlation be- 
tween these two biological levels of effect (asthma and 
oxidative stress) requires data from an array of com- 
pounds, and a demonstration that the strength and speci- 
ficity of the correlation are high enough to pass standards 
of minimal epistemic status [13] that can then withstand 
legal challenges. No amount of collection of data on 
ozone itself will be sufficient to establish the reliability 
of the correlation, since strength and specificity are pro- 
perties of defined sets of compounds and not of any com- 
pound individually. 

The use of advanced biological data in Empirical Cor- 
relation rests, therefore, on the prognostic ability of these 
data in supporting the claim that a regulator might rea- 
sonably expect the truly adverse effect (asthma) to be 
present even if only the precursor effect (marker of oxi- 
dative stress) has been observed. A suite of such markers 
will need to be examined, since lack of response to one 
marker does not imply the compound produces no risk of 
the clinical effect. Recent research makes it clear that 
there can be many pathways, mechanisms and modes of 
action leading to the same disease state, and that any one 
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stage of a pathway may be neither necessary nor suffi- 
cient to cause the next stage [15,16]. Instead of thinking 
of a particular event (such as oxidative stress) as uni- 
quely causing the next stage (such as inflammation, and 
from there to clinical effect), that precursor event will 
have only a probabilistic, prognostic ability to foresee 
any of the more overtly clinical stages taking place later 
in a causal sequence of events leading to disease. 

An example can be seen in Figure 2, produced here 
for perchlorate. In this figure, there are four stages of the 
clinical disease: 1) inhibition of iodine uptake into the 
thyroid; 2) down-regulation of T3 or T4 (or up-regula- 
tion of TSH); 3) altered development or thyroid hyper- 
plasia and 4) birth defects or tumours as clinical, ad- 
verse effects to be regulated. Advanced biological data 
can provide information on the first three stages. The 
question is how well appearance of any or all of these 
stages is prognostic of the appearance of the fourth, 
clinical stage of the disease pathway. 

But such one-to-one correlations (between an individ- 
ual advanced biological effect and the disease) as pre- 
dictors of clinical effects would fail to make use of the 
full prognostic power of suites of advanced biological 
assays, whose high throughput nature allows collection 
of data throughout the chain of events in Figure 1 or 2. 
This prognostic power can be improved significantly by 
considering the combined impact of data on several of 
the precursors simultaneously. By setting prognostic 
ability within a framework such as Bayesian analysis 
[17,18], it is possible to combine information at many 
stages of action in a pathway to calculate the overall con- 
fidence in the clinical, adverse effect at the end of that 

pathway. The result is a methodology that reflects quan- 
titatively and probabilistically the coherence of findings 
on a given compound across levels of effect, as well as 
providing uncertainty distributions on the risk of disease. 
This is where the utility of the advanced biological data 
becomes most evident, although the databases required to 
develop the joint probabilities and/or the Bayesian net- 
work capabilities has yet to be developed. 

The situation concerning the rather poor state of de- 
velopment of the rational base is similar for Theory- 
Based inference. Theories are generalised statements 
about how specific classes of events (oxidative stress, 
inflammation, asthma) are related causally. If the theory 
is not generalisable, how is one to know whether it is 
reliable to invoke it when using advanced biological data 
for the case of assessing risks from ozone? Confidence in 
invoking a particular theory justifying use of the ad- 
vanced biological data will require testing the theory 
across a wide class of compounds and exposure condi- 
tions, to determine whether a consistent theory emerges 
that accounts for all of these tests simultaneously, or ex- 
plains why some compounds and conditions might vio- 
late the causal scheme of the theory. Again, these are 
early days for such tests, and so the rationality of em-
ploying such theories is not yet established. 

The use of advanced biological data in semi-empirical 
extrapolation requires a further consideration of rational- 
ity: the “meaning” of the data within any extrapolation 
function (the desideratum of clarity of conception in ra- 
tionality [11]). Consider that exposure-response extrapo- 
lation equations usually employ linear, quadratic or 
multi-stage models. In such models, the coefficients of  

 

 

Figure 2. The stages of disease generally (white boxes) and in the specific case of perchlorate (black boxes in the row below). 
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the terms have no essential scientific “meaning”. For 
example in the multi-stage model often used in cancer 
risk assessment, the α, β, etc. coefficients don’t “mean” 
anything; they are simply fitting coefficients to the whole 
organism data. As a result, it becomes impossible to use 
the advanced biological data to gain a better estimate of 
these coefficients such as might be used in putting 
Bayesian priors on the coefficients before fitting to the 
whole organism data, since it is not clear which data in 
the pathway prior to appearance of the full clinical effect 
relates to any particular term or coefficient in the model. 

Why is this issue important? Consider the case of a 
multi-stage model and Semi-Empirical Extrapolation. 
This model is fit to whole organism data (clinical disease 
in Figure 1 or 2) at higher levels of exposure than those 
of interest in regulation. Rationality requires some test of 
the model to establish its reliability as guide to estimates 
of risk at lower levels of exposure. If the multi-stage 
model has many terms, and if there are no prior con- 
straints on reasonable values for the coefficients in these 
terms, then the model has large degrees of flexibility. 
This means it can fit almost any set of data. This in turn 
means that its ability to fit any particular set of data (such 
as those for the whole animal effects) is not a test of the 
truthfulness or reliability of the model. It provides no 
confidence that the model is in some sense correct and 
therefore can be followed reliably downwards in expo- 
sure into the region of regulatory interest. 

Getting around this problem requires constraining the 
coefficients of the model based on advanced biological 
data from the stages or processes in the pathway to full 
adverse effect (the stages to the left in Figure 2, or above 
in Figure 1). This requires, however, that the terms in the 
extrapolation model have “meaning” in the sense de- 
scribed earlier, so the assessor can determine which spe- 
cific set of advanced biological data apply in constrain- 
ing any particular coefficient prior to fitting to the whole 
organism data. This in turn calls for greater development 
and testing of biologically-based models of exposure- 
response [19]. 

A core feature of these biologically-based models is 
the role of dosimetry. Figure 2 shows a stage of assess- 
ment related to the biologically effective dose, which is 
the amount of the active form of a compound that 
reaches a target cell (here, the cells of the thyroid). A key 
difference between advanced biological data and whole 
organism data is that the latter are collected in a biologi- 
cal context (a body) that is significantly more complex in 
terms of the relationship between application of the 
original compound (here, perchlorate) and delivery of the 
active form of that compound to the target cells. This 
difference can affect not only the mode and mechanism 
of action at the two levels of biological organization (af- 
fecting the strength and specificity of correlations), but  

also parameters in an exposure-response relationship 
(reducing the reliability of any attempt at employing nu- 
merical relevance of the advanced biological data). In 
traditional risk assessment, this difference is accounted 
for through application of modifying factors. In risk as- 
sessments utilizing advanced biological data, either the 
dosimetric differences between the biological contexts of 
measurements (whole animal versus advanced biological 
assays) must be accounted for in explicit application of 
pharmacokinetic and pharmacodynamic models, or these 
differences treated as noise in empirical correlations that 
will reduce the strength and specificity of these correla- 
tions. Note that these differences are caused precisely by 
the strength of the advanced biological methods: their 
high volume and rapid throughput, characteristics that 
usually are obtained by making the measurements in a 
context different from that of a whole organism. 

4. Effects, Predisposition, Cumulative Risk 

The discussion turns next to a promising future direction 
for use of advanced biological data. In the traditional 
approach to regulation, a compound is considered to pro- 
duce a particular, critical effect that is in and of itself 
adverse. That effect might be thyroid cancer or asthmatic 
attacks. The risk assessment is aimed at exploring all of 
the possible adverse effects a person might experience, 
and determining whether any of them are produced di-
rectly from exposures to the compound. 

More recent research has shown that the effects of 
many risks agents may be indirect [20]. They may, for 
example, cause up or down regulation of genes, or ge- 
netic instability, that then predispose an individual to 
effects from other risk agents. This raises a complicated 
decision problem that has yet to be fully addressed in 
regulatory decisions. What is it that an environmental 
agency is protecting the public against? One thought is 
that it is protecting the public against specific effects: the 
critical effects that appear in traditional regulatory risk 
assessments such as those summarized in the USEPA’s 
Integrated Risk Information System. 

There is, however, another potential approach to deci- 
sions based on how a compound causes indirect effects 
that don’t technically count as the critical effect for that 
particular compound. Imagine a case in which the oxida- 
tive stress of ozone up or down regulates certain genes 
that predispose an individual to effects from other air 
pollutants such as particulate matter (PM). The ozone 
doesn’t directly cause a disease from the PM, and will 
only show its influence if an individual is subsequently 
exposed to PM. The proximal cause of that disease is the 
PM. The ozone is a distal cause because it has contri- 
buted in moving the individual into a different state of 
sensitivity to PM. But distal cause doesn’t move the in- 
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dividual all the way to disease; so long as regulatory risk 
management is based primarily on control of proximal 
causes, this increased power of advanced biological in- 
formation will be less evident. 

In a sense, this situation is already reflected in regula- 
tory risk practice. It is found in the idea of a sensitive 
subpopulation. One of the sensitive subpopulations for 
PM exposures is asthmatics. If ozone makes people more 
sensitive to compounds that cause asthmatic attacks, this 
is reflected in PM regulations by identifying a new sub-
population of people who are highly asthmatic. This shift 
of sensitivity won’t, however, necessarily be reflected in 
regulations on ozone; it will instead drive down the 
regulatory limit on PM where that limit is set on the basis 
of the sensitive subpopulation. Thus advanced biological 
information from one compound may be useful in defin- 
ing whether that compound can move individuals to in- 
termediate stages of disease, sensitizing them to the ac- 
tions of other compounds that complete the transitions to 
full disease. A sensitive subpopulation for the second 
compound would then be defined as that subpopulation 
for which advanced biological information suggests 
movement to the intermediate stages has already taken 
place by exposure to the first compound. 

When moving regulatory risk constructs backwards 
from adverse effect to the predisposing conditions for 
that effect, the increased role of advanced biological data 
will naturally cause a debate on the nature and aims of 
the regulatory process. It will cause regulators to ask 
more carefully whether their mission is to prevent a 
compound (e.g. ozone) from directly producing an unac- 
ceptably large risk of the critical effect for that com- 
pound, or whether its mission might include preventing 
an individual from being exposed to one particular com- 
pound (e.g. ozone) at levels that predispose that indivi- 
dual to the effects of yet other compounds (e.g. PM). The 
details of such a concept of attributable risk as applied in 
regulatory standards have yet to be addressed in policy, 
and so the rationality of this application is not yet estab- 
lished. 

The issue is made more complicated by the nature of 
regulatory decisions, which generally are designed to 
apply nationally and equitably. If advanced biological 
information shows that there is significant interaction 
between compounds through sensitizing, then the risk 
caused by exposure to a compound such as ozone will 
depend on the magnitude of exposure to other com- 
pounds such as PM that allow this sensitivity to be ex- 
pressed; i.e. the risk will be context dependent. This in 
turn raises the specter of a different allowed limit on ex- 
posure to ozone (as an example) in different parts of a 
country, depending on the exposures to other compounds 
such as PM. The regulatory process for human health 
risk is not yet structured to deal with this instance of in- 

teractions between compounds or the resulting context 
dependence of regulatory limits on exposure. 

Applications of advanced biological information may 
be most evident first in cumulative risk assessment. At 
present, regulatory risk assessment for mixtures tends to 
be dominated by two approaches: dose additivity and 
effect additivity. Note first that both are based on the idea 
of additivity, therefore ignoring the possibilities of syn-
ergistic (the total effect of two compounds being greater 
than the sum of the two individual risks) or antagonistic 
(the total effect being less than the sum of the two) ef-
fects. Effect additivity has been applied to the clinical 
effect, introducing all of the limitations of developing the 
base of whole organism data required for such studies. 
This is a severe limitation when one considers the im-
mense number of permutations of exposure to different 
compounds that can exist in complex environments 
where individuals might be exposed to hundreds of com- 
pounds simultaneously. 

The rapid, high throughput nature of advanced bio- 
logical information means assays can be performed on 
many of these permutations, examining the ability of 
these mixtures to produce any of the intermediate stages 
of disease such as biomarkers in Figure 1. The assump- 
tion must be made that how a cell was caused to display 
a given biomarker does not affect the prognostic ability 
of that advanced biological effect for higher stages of the 
disease, an assumption that has not been tested to date. 
And all of the issues raised earlier on the nature of ra- 
tionality in using prognostic tools apply. But if those 
issues can be resolved reliably, giving reasonable confi- 
dence that they provide a sound and protective basis for 
regulatory risk assessments, the ability to conduct cumu- 
lative risk assessment will be greatly improved. 

5. Error Rates 

We turn finally to the issue of under and over develop-
ment of margins of safety and of precaution. In decision 
problems, there are two kinds of errors in applying ad-
vanced biological information that weaken the rationality 
of a specific decision process relying on that information 
[21]: 

Type I error, which in this context means stating that a 
compound will produce an adverse effect—based on a 
positive result from the advanced biological data—when 
it does not in fact produce that effect. 

Type II error, which in this context means stating that 
a compound will not produce an adverse effect—based 
on a negative result from the advanced biological data— 
when it in fact produces that effect. 

Both of these types of error have consequences. Type 
II errors can arise either because the statistical properties 
of the data collection were inadequate to identify an ef- 
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fect at some stage of the pathway to disease, or because 
the compound does produce changes that are part of the 
causal chain or network leading to the adverse effect but 
not by causing changes in the particular stage, biomarker, 
genetic change, etc. analysed in the advanced biological 
data. The result in either case is a false negative. 

Type I errors appear to be less problematic at first 
glance. If anything, they lead to incorrectly identifying a 
compound as posing a risk. They will arise either be-
cause the statistical properties of the data collection were 
inadequate, producing a false positive, or because the 
measurement is of a precursor effect with low specificity. 

The argument might be that these Type I errors are 
acceptable—more so than Type II—because they are 
more precautionary and lead to protection of public 
health even if they lead to incorrect beliefs. But Type I 
errors do have adverse consequences. They cause limited 
resources to be devoted to compounds that are of little or 
no risk, diverting those resources from other compounds 
posing higher risk. They cause regulatory costs to an 
economy, which in turn has health implications due to 
economic inefficiencies that can decrease welfare [22]. 
They are not, in short, truly precautionary. 

As mentioned, the promise of advanced biological 
methods lies in their rapid and high throughput nature, 
enhancing their ability to explore the web of diverse 
causal events leading to a suite of diseases. This means 
many dozens of assays could be performed on a given 
compound. On the surface, this appears to be a laudable 
advance. A richer base of scientific information should 
improve the evidential base for risk assessments and re-
duce the need to apply uncertainty factors related to in-
adequate data. However, there remain unresolved issues 
of how to treat problems of “data dredging” in dealing 
with rich bodies of data, in which decision rules as to 
when a body of data suggests a risk exists can lead to 
false negatives and false positives in such decisions. 

In traditional risk assessment, this issue is addressed 
through the criterion of statistical significance. The NO-
ELs and LOELs described previously are not simply lev-
els of exposure at which an elevation in effect is ob-
served, but rather levels where that elevation has statisti-
cal significance. There are well established methods for 
calculating statistical significance in a single measure-
ment [23]. The very rich set of data on advanced bio-
logical effects, however, means that one must understand 
not only the rates of false positives and false negatives in 
a particular measurement, but the rate in complex en- 
sembles of measurements across diverse endpoints. The 
rationality of applying such arrays of data in risk assess-
ment requires development of decision rules that recog-
nise that despite a rate of false positives that is low for 
any single measurement (the classical role of measures of 
statistical significance), there can be a much higher pro- 

bability that one or more of the assays will show a false 
positive in the array. Even if there is no true relationship 
between exposure to a compound and disease, the partial 
randomness of assay results will produce at least one or 
more false positives in a suitably large array. 

The frequency and implications (for decisions) of both 
Type I and Type II errors in complex arrays must be 
characterised for the use of advanced biological informa-
tion and methods if the rationality of their use is to be 
strong, and suitable decision rules developed analogous 
to the use of statistical significance in traditional risk 
assessment. At present, neither rates of errors nor deci-
sion rules are well characterized for arrays of advanced 
biological information. 

6. Conclusions and Discussion 

The discussion in this paper suggests that advanced bio-
logical data might play a significant role in improving the 
rationality of regulatory assessments and decisions, but 
that there remain important issues to be resolved. The 
most significant conclusions are that: 
 It will be problematic if methods of dealing with un- 

certainty developed for application to whole organism 
data, such as application of traditional uncertainty 
factors to Points of Departure, are applied uncritically 
to PODs obtained from advanced biological data. 
Such an approach would be likely to lead to unneces- 
sary degrees of conservatism in risk-based standards, 
and given strong legal scrutiny. 

 Any use of advanced biological data will require a 
significant research effort to examine their prognostic 
ability across diverse settings (species, levels of bio- 
logical organisation, compounds, exposure levels, ex- 
posure routes), with well defined sets. The science is 
in only the earliest stages of this process of develop- 
ing and assessing the required database. 

 For advanced biological data to be fully useful in in- 
forming Semi-Empirical Extrapolation from high to 
low exposures, or across species and exposure routes, 
it will be necessary to replace simple curve fitting 
models (such as the multistage model) with more 
“first-principle” models in which terms have meaning 
that can show where specific bodies of data can be 
used to constrain model forms and/or parameter va-  
lues. It will be crucial to incorporate pharmacokinetic 
and pharmacodynamic considerations into such mo- 
dels. 

 Regulatory decisions are often based on the concept 
of Weight of Evidence (WOE [24]), where the analyst 
considers not one body of data but rather the cumula- 
tive impact of multiple—potentially conflicting— 
bodies of data. WOE determinations are already com- 
plex and subjective (however informed they might be 
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 The shortest term applications of advanced biological 
data are likely to be in rapid screening approaches 
such as the first step in the CCL process. This is be- 
cause the conservatism built into such data (since they 
are data on precursor effects that are not fully estab- 
lished to lead reliably to the critical adverse effects of 
regulatory interest) makes them at present a less con- 
tentious means of screening than of providing quanti- 
tative estimates of risk. 

Finally, a decision framework is needed to define how 
and when advanced biological information can supplant 
or supplement traditional, whole organism data. A can- 
didate decision framework for the use of advanced bio- 
logical data is shown in Figure 3 below. This framework 
was developed initially for the NexGen programme of 
the US EPA [15], which is leading the US effort at in- 
corporating such data (called Next Generation or Nex- 
Gen) into the regulatory process. It contains within it all 

by expert judgment), with external reviewers of a 
regulatory decision often unable to understand how a 
particular claim in a risk assessment is supported by 
the full body of evidence. Since advanced biological 
data can be generated in large numbers, there is even 
greater opportunity to selectively report those studies 
that are supportive of a claim to risk (or against such 
a claim). A more formal WOE procedure will be 
needed if the addition of advanced biological data is 
not to further cloud this picture. 

 At least in the short term, meaning over the next dec- 
ade, advanced biological data are not likely to sup- 
plant traditional whole organism data, or be used 
when the latter are not available, but will rather be 
supplementary to the traditional data. The most obvi- 
ous examples are in using the advanced biological 
data to improve extrapolation equations and in iden- 
tifying sensitive subpopulations. 

 

 

Figure 3. A candidate decision framework for determining when advanced biological data might play a role in risk assess-
ment, and the nature of that role. Development of the decision rules and analytic methodologies for the various Yes/No deci-
sions in the framework remains the challenge of future research if advanced biological data are to enhance the rationality of 
risk assessments. “Corrections” in this figure refer to dosimetric, exposure-response and other corrections applied to the re-
sults of whole organism data. 



The Role of Advanced Biological Data in the Rationality of Risk-Based Regulatory Decisions 249

 
of the potential applications of advanced biological data 
within a full risk assessment. 
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