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ABSTRACT

A class of martingale estimating functions based on the first two moments of the observed process provides a conven-
ient framework for estimating the parameters of diffusion processes [1]. In the Bayesian set up, combined estimating
functions had been studied for diffusion processes in [2] with filtering applications. However, when the conditional
mean and the conditional variance are functions of parameters of interest in a diffusion process model, the basic mar-
tingales generating components of quadratic estimating functions are such that one is an absolute continuous function
with respect to the other [3, p. 94]. Hence, the combined martingale estimating functions cannot be constructed for con-
tinuous-time diffusion processes. In this paper, a general framework for parameter estimation of discretely observed
interest rate models is developed by using the Milstein approximation and closed form expressions for the information
gain are also obtained. The method is used to study the estimates of the parameters for an extended version of the Cox-

Ingersoll-Ross interest rate model.

Keywords: Interest Rate Models; Combined Estimating Functions; Information; Diffusion Processes; Milstein

Approximation

1. Introduction

Inference for discrete-time stochastic processes using
estimating functions was discussed in [4]. In [1] and [5],
estimation for semimartingales was studied using esti-
mating functions. In addition, filtering and prediction
problems were studied in [6] and [2] using estimating
functions in the Bayesian context.

The standard method of estimation for parameters in
the drift coefficient of interest rate models [7] involves
the calculation of a likelihood ratio (Radon-Nikodym
derivative) and hence the maximum likelihood estima-
tor(s). This is less than straightforward for complicated
models, and indeed it is not available at all because of
the non-existence of the Radon-Nikodym derivative. The
estimating function method, however, allows estimators to
be obtained straightforwardly under very general condi-
tions on the first two conditional moments [3, p. 131].
They can deal, in particular, with the situation in which
the Brownian motion in a diffusion is replaced by a gene-
ral square-integrable martingale as in [1]. The combined
estimating function approach used in this paper, based on
selection of an optimal estimating function from within a
specified class of martingale estimating functions, in-
volves assumptions on the first four conditional moments
of the underlying process. In most realistic situations the
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diffusions cannot be observed continuously, so discrete
time approximation to stochastic integrals or a direct
approach using the discrete time observations is required.

Recently in [8], among others, the estimating functions
approach was used to study the estimation problems for
some discretely observed interest rate models. However,
these methods involve the closed form expressions for
the first four conditional moments, obtained by Ito’s ap-
proximations, and these are not available for general
time-homogeneous diffusion process models and in par-
ticular for an extended CIR interest rate model.

In [9], the asymptotic theory of the maximum likeli-
hood estimator for diffusion models was studied, first by
using Milstein’s approximation of diffusion processes
[10], and further by approximating the conditional transi-
tion density by a normal density by ignoring the skew-
ness and kurtosis.

In this paper, we study combined martingale estimat-
ing functions for interest rate models and show that the
combined estimating functions are more informative
when the conditional mean and variance of the observed
process depend on the parameter of interest. This paper
is organized as follows. The rest of Section 1 presents the
basics of estimating functions and information associated
with estimating functions for discrete-time stochastic
processes. Section 2 presents combined estimating func-
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tions for discretely observed continuous-time diffusion
processes based on closed form expressions for the first
four conditional moments via It6’s formula. In Section 3,
the theory of combined estimating functions is applied to
general diffusion processes.

Suppose that {y, = 1,---,n} is a realization of a dis-
crete-time stochastic process and its distribution depends
on a vector parameter € belonging to an open subset
® of the p-dimensional Euclidean space. Let (Q, F, Eg)
denote the underlying probability space, and let § be
the o-field generated by {yl,- LYtz 1} . Let
hy=h(p..,0), 1<t<n be specified q-dimen-
sional vectors that are martingales. We consider the class
M of zero mean and square integrable p-dimensional
martingale estimating functions of the form

M = {g" (6):g, ()= tZ::a,lh,}

where a, | are pxg matrices depending on

Vi Yy, 1<t<n. The estimating functions g, (9)
are further assumed to be almost surely differentiable
with respect to the components of & and such that

E{ﬁg”(g) jl} and E[g" (Q)gn(ﬁ)'| "{1} are non-

00

singular for all 8 € ® and for each n>1. The expecta-
tions are always taken with respect to F,. Estimators of
6 can be obtained by solving the estimating equation
g,(0) =0. Furthermore, the px p matrix

E|2,(0)z, (6)

for all € ®. Then in the class of all zero mean and
square integrable martingale estimating functions 91,
the optimal estimating function g,(¢) which maxi-
mizes, in the partial order of nonnegative definite matri-
ces, the information matrix
t-1
oh,

< Oh,
[g (0) = (lzlatlE|:%
-1
(S e )] (S| 2
t=1 t=1
is given by

g: (0) = Zaz*—lhr
P

e Tom] o TV (oF0 ool TV
-5 e[ 2 || (el )}
(=1
and the corresponding optimal information reduces to
£l 2i(0)e: () [5 |

The function g, (6) is also called the optimal esti-

S,;[l} is assumed to be positive definite

!

]
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mating function and has properties similar to those of a
score function in the sense that E[g; (6)]:0 and

g, (0)

E[g: (‘9) g, (9)’} = —E{W} .This is a more general

result in the sense that for its validity we do not need to
assume that the true underlying distribution belongs to
the exponential family of distributions. Moreover, it fol-
lows from [11, p. 916] that if we solve an unbiased esti-
mating equation g, (9) =0 to get an estimator, then the
asymptotic variance of theresulting estimator is the in-
verse of the information I, . Hence the estimator ob-
tained from a more informative estimating equation is
asymptotically more efficient.

2. Combined Estimating Functions for
Discretely Observed Diffusions

In this section, we discuss the discrete time results on
combining estimating functions and obtain the closed
form expression for the gain in information. Assume the
real-valued continuous time process {y,| is recorded
discretely at the time points A, 2h,---, where h is the dis-
crete interval of observations of {y,}. Now we consider
the observable discrete-time process { Vot = 1,2,---}
with conditional moments

H (9) :E[yzh

8] @

o, (0)= Var[yth

S| 22)
7,(0)= E[(yﬂ, —1,(0))

K, (6) = E|:(yth —H (6))4

where 5(:71) , 1s the o-field generated by
ylh,---,y(,fl)h,tzl . That is, we assume that the third

and the forth moments of y, do not contain any addi-

tional parameters. In order to estimate the parameter 6

based on the observations y,,,---,»,,, we consider two

classes of martingale differences

{mt (6)=y,—1,(0).t= 1,-~,n} and

{Mt (0)=m’(0)-0](0),1= 1,~--,n} , where the quad-

S CEY

S(Jj—l)h ] 2.4)

ratic variation and covariation of m, and M, are
2 y 2

<m>r = E|:mt S(/;—l)hj| =0
2|~y 4

M, = E|:Mt S((;—l)h:| =K 0

and

<m’M>, = E|:tht ‘g(}t’—l)h] =7V

respectively. The optimal estimating functions based on
the martingale differences m, and M,, and the corre-
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sponding information are given by

g, (9) = Z Z/; <mt>

t=1

ou, op, 1 (2-3)
I
1,(0)= Z} 06 00’ (m)’
. _ 60‘ M,
Em (9) - p o0 < >t (2 6)

* 9o; 0o, 1

13 O)= 25559 (M)

The following theorem provides optimality of the
combined estimating function based on martingales m,
and M, for the multi-parameter case.

Theorem 1. For a discretely observed process, in the
class of all combined estimating functions of the form

o= {ecl0):.(0)= £l m v ),

t=1

(a) The optimal estimating function is given by
g-(0)= Z:ﬁl(at*flm, +b M, ) , where

; [l (.0 N_au, | oo <m,M>,]
S, O, | 00 ), 00 (), (o),
and

[y ) (o (), a0? 1)
””‘[l <m>,<M>,J [ae (), (MY, 00 <m>,]’

t

(b) the information 1. (6) is given by
:

el )
Ig*c (6) B py {1 <m>t <M>t ]

Op, O, 1 oo} 007 1

00 660’ (m) 00 00" (M)
o, 00} 907 op, (m,M),
00 660" 06 90" )(m) (M )

(¢) the gain in information I, (9)- I. (0) is given by

o (ma) )
E[l <m>t<M>t]
[8;1, ou, <M,M>t2 oo} o] 1

26 00’ (m) (M) ' 06 00’ (m)

, 007 %J (m. M) }

00 00" )(m) (M), |

N
06 06’
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Example 1 (Combined Estimating Functions for Cox-
Ingersoll-Ross Model). Recently there has been a grow-
ing interest in studying inference for interest rate models.
In most realistic situations, the diffusion cannot be ob-
served continuously, so discrete time approximations to
stochastic integrals or a direct approach using discrete
time observations is required. As a concrete illustration
of the methodology, we shall discuss the estimation for
the Cox, Ingersoll and Ross [12] short-term interest rate
model of the form

dyt:_k(yt_g)dt+77 ythVta (27)

with y,>0, k>0, >0, 7>0 and W, isthe
standard Brownian motion. The unknown parameters of

interest are 0 = (k, :9,772 )’ . Let
a, (’1) =

to note that in this example we can obtain the closed

a,(/l,é?,k) (49 /1yt 111) e ™ It is of interest

form expressions for the first four conditional moments

by using 1t6’s formula for y;',u=2,3,4.The first four
conditional moments of yth are calculated as (see Ap-
pendix A for the details):

1,(0)=6-q,(1), 2.8)
af(e):Z—;(e—za,(l)m,(2)), (2.9)
7(0)= 2L (0-3a,(1)+30,(2)-,(3)). C.10)
and
K, (0) = i’]z (0-4a, (1)+6a, (2)-4a, (3)+a, (4))
+307 ().

(2.11)
Then based on the discretely observed observations
Yoo VisYans'*'> Yo the martingale differences are

m, =y, — 1, (0),and M,=m}-c7(6). Also,
m,=o,(0),M, =x,(0)-0!(0), and

t

(m, M)f =7,(0). The derivatives are given by
U)o mni-eo). @1
_2’7_]:2(9+2(1—hk)a, (1)~ (1-2/k) e, (2))
007 (0) _ 7 (1Y
00 %
262 ()21 (2)

(2.13)
Hence, the optimal estimating functions based on the
martingale differences m, and the corresponding infor-
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mation matrix are given by where
( (-1yn ) 1" =K a,()’
—he™' Y lfe)) T H6(0)
g; (9) = _ n m > Im _h —kh c at (1)
(l_e kh)Zt:l tz(le) 12 ( ¢ )Z:: 3(9)
(2.14) "
0 ]m 1_ —kh z )
oo B=(-<) o (0)
7 |l 1 o Similarly, the optimal estimating functions based on
&n(0) vz ’ the martingale differences M, and the corresponding
0 0 0 . . . :
information matrix are given by
e (0520 M) ()-(1-2)a ()
247 <! (M),
2 —kn')?
. 7 (1-e*) M
gy (0)= - " ;
v (9) 2k Z’=‘(M)t
1 n (9—2&,(1)4—0@(2))]‘4 2.15)
N )
Iy Ly I
L=t omon
Ly 15 Iy
where
IMzn_Z(aJrz(l hk)e, (1)~ (1-2kk)a, (2))°
R = (M), ’
o :_77“(1—6’“)2 v 0+2(1-hk)a, (1)~ (1-24k) e, (2)
w4 ) ’
1M __,,_zi(mz(l—hk)a, (1)-(1-2hk) e, (2))(0-2a, (1) +, (2))
R L= (M), ’
4]t 2(]_ ot 2 0—20 (1 )
v =) e, () s 020 ()@ () e 1 (0-2a(D)+a(2))
I 2 > 1y 2 , I3 =2 — .
4k t=1 <M>t 4k 1=l <M>t 1=1 4k <M>t
The optimal combined estimating function using m, and M, is given by
ge(0)=(a; \m, +b],M,), (2.16)
t=1
where
Cha, (1)’ (0+2(1-hk)a, (1)-(1-2hk)a, (2))(m,M),
(m), 2% (m), (M),
. <m,M>t2 l—ott 772(1 e’“’) (m M>
-1 = | 1T - +
S (m) (), (m), 2k (m), (M),
(0_2a ( )+at (2))< >
26 (m), (M),
JMF

Copyright © 2013 SciRes.



114

and
hey (1)(m. M),
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(6+2(1-hk)a, (1)-(1-27k)a, (2))

(m), (M),

L (m), (1)

24 (),

o () )
b“‘[l <m>,<M>,]

Further, let W,(0) be the matrix

2 2
" (6)- [ayéée) aaé;’a) . aaée(e) 8205'9)]
Wi Wi W @17
S|l W2 Wn Wy,
W3 Wy Wiy
where
2
=24 g 21 h)a, () -(1-268), (2)]
n2h(l_e—kh )2 a, (1)
Wi = 2%
2 —kh
n (l—e )
_T[mz(l—hk)a, (1)-(1-2hk)e, (2)],
h(1-e™ '
w2 ),
1-e*
Wy = % [9_2at(1)+a’(2)]’
wy, = 0.

The information associated with the optimal combined
estimating function is

1gZ~(<9) = i[l _MJ-
(m.M)

Al (m), (M),
|
W, (@W}

ou, (6)ou, (0) 1
00 00" (m)
Note: If we allow n in (2.7) to be a function of k, then
the estimating function g, (6’) and the combined esti-
mating function g, (49) become intractable.

oo, (0) 007 (0) 1
+
00 06’ <M>l

3. Combined Estimating Functionsfor
General Models

For extended versions of the CIR model, closed form

Copyright © 2013 SciRes.

{m), (M),

2k (M),
(0-20,(1)+a,(2))

2k(M)

t

expressions for the first four conditional moments cannot
be obtained easily by using Itd’s formula, as was done
for the CIR model. Recently, the Milstein’s approxima-
tion was used in [9] to obtain the first two conditional
moments of the diffusion. In this section, we use Mil-
stein’s approximation to obtain the first four conditional
moments and construct the optimal estimating functions.
Consider the diffusion process given by the time-ho-
mogeneous stochastic differential equation of the form

dyt:a(a,yt)dt—i-b(ﬁ,yt)th. 3.1

Where a and b are the drift and diffusion functions, re-
spectively, and W, is the standard Brownian motion.

A special case of (3.1) is the Brownian motion with
constant drift and diffusion:

dy, = adt + AW,

where [ > 0. In this case, the conditional distribution of
y, given y, =y 1is a normal with mean y+at and
variance f°t. If we consider the geometric Brownian
motion given by

dy, =vy,dt+ 0y dW,,
with @ >0, then log(y,) becomes a Brownian motion
with drift with & =v-©?/2 and f=w. In this case,
the conditional distribution of log(y,) given

log(y,)=log(y) is also normal. The CIR process can
be re-parameterized to the following form:

dyt :(al +0!2y[)dt+ﬂ ythVt

In this case, we have computed the first four condi-
tional moments of the process to use in an estimating
function framework. Extended versions of the CIR pro-
cess model have been proposed for modeling interest rate
processes. For example, some consider the constant clas-
ticity of variance process of the form

dy, = (al ta,y, )dt + ﬂytﬂdeVt
or the nonlinear drift diffusion process [13] given by

dy, = (al Ta,y, +a3yt2 +a4)’t_1 )dt

+ B+ By, + Byl W,
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For more general extended models, the diffusion is a
function of the observation y, and hence, closed form
expressions of the conditional distributions, as well as
closed form expressions for the conditional moments
cannot be easily obtained by solving differential equa-
tions obtained by repeated application It6’s formula.
However, Milstein’s approximation can be used to obtain
the first four conditional moments.

Milstein’s approximation applied to (3.1) produces

Yo = V- )+a(ayt1 )h+b(ﬁy,1 )\/Zet

(3.2)
+Eb(ﬂ,J’(t—1)h )by (ﬂ’ MG )(Etz _l)h’

where b, = Z—JIZ and ¢ ~N(0,1), iid. Unlike the Euler
approximation for diffusion processes, the Milstein ap-
proximation does not yield a conditional normal distribu-
tion for y, - V- The distribution implied by the
Milstein approximation is a mixture of a normal and chi-
square distributions. By using (3.2), the first four condi-

tional moments of y, given Yoy are approximated

by
Hy ((Z) = y(t—l)h + a(av y(,,l)h )h, (33)
o7 (B) =0 (B )
1 (3.4)
+5b2 (ﬂ,y(l_,)h )bf (ﬂ,y(l_])h )hZ’
7 (B) =30 (B3 )by (B (3.5)

e LACE A

K (B) =156 (B, 3, )0 ( Bo v )1
+—b4(ﬂ Vi )5 (Bovi ) 3:6)
36 (B3 )1

Then based on the discretely observed observations

VosVnsVans---» V> the martingale differences are
m =y, —i(a), and M, =m} —o’(B). In this case,
we have

(m), =0} (@), (3.8)
(B)

(3.10)

Copyright © 2013 SciRes.

_ {mm)
{m), (M),

In addition, if we let ,o,2 , then

4D’ (.7, 1y)
248 (B3 )]

(940687 (B3 15 (Bt )1 |
[4 +28b’ ( BV )h +7b, (ﬁa Y-ty )hz} |

P =
3.11)

X

The optimal estimating functions based on the mar-
tingale differences m, and M,, and the corresponding
information are given by

o) = S O My
gm( ) Z@a <m>

t=1

(3.12)
I ()= O o 1
e = 0a oa' < > ’
. » 0o M,
gM(ﬂ)_ P 8ﬁ <M>ta s
L pygieiie 1 O
g\ =68 op (M)’

The combined estimating function and the corre-
sponding 1nformat10n follow from Theorem 1 by taking
0= (a iy )

Example 2 (NLD Process).The nonlinear drift (NLD)
diffusion process for modeling interest rates was intro-
duced in [13]. Here we consider the following NLD

dy, = (al +a,y, )dt+ B+ By, dw,

where B,>0, B,>0, 0<a, <f,/2,and a,> /2.
These parameter ranges are chosen to guarantee a posi-
tive recurrent solution to the SDE. For this process,

a(a,y)=(a+a/y). B(a,y)=p+ By, and

b, (a,y)=1/2(5 +ﬂ’2y)7l/2 . The Milstein approxima-
tion gives the following discretized version of the pro-
cess:

(3.14)

Yo = Vie-1yn +(“1 +a2y(;1—1)h )h

+ B+ Bori e+ 8o 1)

In this case, we have the following for the first four
conditional moments of the discretized process:

(3.15)

/ut( ) Vie-1yn +(0‘1+%y( ))h, (3.16)
1

(m), =B+ Boyi )+ g B30, (37)
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7 7
(M), =2 g AL B,

7
+_ﬁ;h4 +2h2ﬂ12 +4h2ﬁ1ﬂ2y(,71)h (3.18)
+2h* ﬁ’ yt i
<m’M>t =7 ('B)
(3.19)

3 1
=SB+ Bo ) B+ B

The estimating function and corresponding informa-
tion based on m, are given by

aom,
) _th:I O_tz (ﬂ)
g, (@)= .

AN _m
hI ) (3.20)

y(t—l)ho-t
o
Ig;:z (a) = [lm J i ?
12 22

Iy = h;a()

where

Iy =h Z
: =1 V(1)1 01 (/’7)

Iy=h
P

Moreover, the estimating function and corresponding
information based on M, are given by
n M
_hz =1 t
“H(m),
(y(t—l)h + 1/4ﬂ2h)Mz
(M),

g (B)=
_hz;

L[
i (B) o

where

(3.21)

n 1
M=y
R,

n yt—l i +1/4ﬂ2h)
M2 ( (1) ’
R )
2
o (Vi +1/480)

M =n
SR )

In this case, 0=(a,,a,,B,5,) and the optimal

Copyright © 2013 SciRes.

combined estimating function using m, and M, is
given by g (0)= z:’zl(af_]mt +bt*_1M,) , where

- > (m,M)
*=1_21_%1 6G1<m’ t
= (1=#7) ( 20 To), 20 () (), )
(1. A2 ! a/ut <m’M>t _ao-tz 1
t=(1-27) (ae OXTIATH)

with

ou _ !

—a =yl y,.00)

and
oo}

- (0, 0,1,y y, +1/4 g1 ) :

The information for the combined estimating function
1. (0) is given by
C

oo’ 0o} 1
00 00’ <M>t

_ C -1 a/ut a/ut 1
1, (0)=2(1-p]) {5 6 (m), "

t=1

alut ao-tz ao—tz a:ut <m’M>t
+ — + — .
00 00" 96 96" )(m) (M),
4. Conclusion

For discretely observed general interest rate models, the
combined estimating function method allows estimators
to be obtained straightforwardly under very general con-
ditions on the first four conditional moments. In this pa-
per, we have studied inference for interest rate models,
first by using the Milstein approximation, and then com-
bining estimating functions using martingale differences
and have obtained the closed form expression for the
information gain.
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Moments of the CIR Process m,;(1)= E(y[ [y = x) , so that the first four conditional
The first four conditional moments of the CIR process moments of y, satisfy the following differential equa-
tions:
dy, =—k(y, —0)dt+ aw,,
W (yt ) Ny aw, iml (t)z—k(ml (l‘)—@),

may be obtained by using It6’s formula on successive dr

powers of the process. This gives
dt

dy,:—k(yt—e)dt+77 y,aw,, q

de

1
dy,2 =2y,dy, +—2772y,dt,
2 d

dy] =3y’dy, +3n°y}dt,

Ly (1) = 2o, (1) + (266 + 7 )m, (1),
—my (t) = =3kmy (¢)+(3k0+ 37> )m, (1),

o, (1) =~k (1) (460 + 67 )m, (1),

with initial conditions m, (0) = x,m, (0) =x*,

dy = 4yidy, + 61’y my(0)=x’, and m,(0)=x". Solving the differential
with y(O) =x as an initial condition. We let equations in turn yields:
m (1)=0-¢"(0-x),
e (2k0+7)0 (2k0+777)(0-x) s (2k0+7°)(0—2x)+ 2k’ i
: 2k k 2k ’
. (2k9+772)(3k6+3773)6_(2k6’+n2)(3k9+3773)(0—x) o
’ 6k 2k?
. (30 +35° )((2k0+ 7 )((0—2x) + 2x” ) i (3%0+35° )((2k0 -+ ) (0-3x) + 6k’ e
2k? 6k’ ’
. (2k60+7°)(3k0+ 37" ) (4k0+ 61> )0 ) (2k0+7°)(3k0+ 37" ) (4k0+ 61° ) (0 - x) -
I 24k 6k
(3k0+ 30 ) (4k0 + 60 ) (260 + 1" ) (0-2x) + 2" )
+ e
4k*
3k0+3n% )(4k6 + 6n° )((2k6 +1n* )(6 —3x) + 6kx* — 6k*x°
— ( ) e—3kt
6k
. (4k0+ 67 )((3k0+37° )((2kz :sz )(0-4x)+12k* ) - 248 e
gi\f—;zn:se, the first four conditional centered moments are E[(y, _ ﬂ)4] _ Ktz ( 9)
E[(J’, _ﬂ)zJ =02 (0) =m, (t)—4m, (t)m, (t)+6m] (t)m, (t)=3m/ (¢)
— oy ()= (1) - i’]z( (0-4(0-x)e™ +6(0-2x)e
:i(e—z(e—x)e*’“ +(0-2x)e), —4(0-3x)e™" +(0—-4x)e ) +30, (0).

2k
E|(y,-u) |=7(0)
=m, (t)—:’tm1 (t)m, (t)+ 2m; (t)

4
:2’7?(9—3(0—x)e*’“ +3(6-2x)e?

—(0-3x)e™" ),
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