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ABSTRACT 

A class of martingale estimating functions based on the first two moments of the observed process provides a conven- 
ient framework for estimating the parameters of diffusion processes [1]. In the Bayesian set up, combined estimating 
functions had been studied for diffusion processes in [2] with filtering applications. However, when the conditional 
mean and the conditional variance are functions of parameters of interest in a diffusion process model, the basic mar- 
tingales generating components of quadratic estimating functions are such that one is an absolute continuous function 
with respect to the other [3, p. 94]. Hence, the combined martingale estimating functions cannot be constructed for con- 
tinuous-time diffusion processes. In this paper, a general framework for parameter estimation of discretely observed 
interest rate models is developed by using the Milstein approximation and closed form expressions for the information 
gain are also obtained. The method is used to study the estimates of the parameters for an extended version of the Cox- 
Ingersoll-Ross interest rate model. 
 
Keywords: Interest Rate Models; Combined Estimating Functions; Information; Diffusion Processes; Milstein  

Approximation 

1. Introduction 

Inference for discrete-time stochastic processes using 
estimating functions was discussed in [4]. In [1] and [5], 
estimation for semimartingales was studied using esti-
mating functions. In addition, filtering and prediction 
problems were studied in [6] and [2] using estimating 
functions in the Bayesian context. 

The standard method of estimation for parameters in 
the drift coefficient of interest rate models [7] involves 
the calculation of a likelihood ratio (Radon-Nikodym 
derivative) and hence the maximum likelihood estima- 
tor(s). This is less than straightforward for complicated 
models, and indeed it is not available at all because of 
the non-existence of the Radon-Nikodym derivative. The 
estimating function method, however, allows estimators to 
be obtained straightforwardly under very general condi- 
tions on the first two conditional moments [3, p. 131]. 
They can deal, in particular, with the situation in which 
the Brownian motion in a diffusion is replaced by a gene- 
ral square-integrable martingale as in [1]. The combined 
estimating function approach used in this paper, based on 
selection of an optimal estimating function from within a 
specified class of martingale estimating functions, in- 
volves assumptions on the first four conditional moments 
of the underlying process. In most realistic situations the  

diffusions cannot be observed continuously, so discrete 
time approximation to stochastic integrals or a direct 
approach using the discrete time observations is required. 

Recently in [8], among others, the estimating functions 
approach was used to study the estimation problems for 
some discretely observed interest rate models. However, 
these methods involve the closed form expressions for 
the first four conditional moments, obtained by Ito’s ap- 
proximations, and these are not available for general 
time-homogeneous diffusion process models and in par- 
ticular for an extended CIR interest rate model. 

In [9], the asymptotic theory of the maximum likeli- 
hood estimator for diffusion models was studied, first by 
using Milstein’s approximation of diffusion processes 
[10], and further by approximating the conditional transi- 
tion density by a normal density by ignoring the skew-
ness and kurtosis. 

In this paper, we study combined martingale estimat- 
ing functions for interest rate models and show that the 
combined estimating functions are more informative 
when the conditional mean and variance of the observed 
process depend on the parameter of interest. This paper 
is organized as follows. The rest of Section 1 presents the 
basics of estimating functions and information associated 
with estimating functions for discrete-time stochastic 
processes. Section 2 presents combined estimating func- 
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tions for discretely observed continuous-time diffusion 
processes based on closed form expressions for the first 
four conditional moments via Itô’s formula. In Section 3, 
the theory of combined estimating functions is applied to 
general diffusion processes.  

Suppose that  is a realization of a dis- 
crete-time stochastic process and its distribution depends 
on a vector parameter 

 , 1, ,ty t n  

  belonging to an open subset 
 the p-dimensional Euclidean space. Let  of  , , P 

y
tF

 
denote the underlying probability space, and let  be 
the σ-field generated by . Let  

1t t t

 , 1ty y t 1, ,
 ,y, ,h h y 

M

 , be specified q-dimen- 
sional vectors that are martingales. We consider the class 

 of zero mean and square integrable p-dimensional 
martingale estimating functions of the form 

1 t n 
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ces, the information matrix  

 

  

1 1
1

1

1 1 1 1 1
1 1

n
yt

g t t
t

n n
y yt

t t t t t t t
t t

h
I a E

h
E a h a h a E






 




    
 

  
     

               



 

F

F F

 

is given by 

 

 

1
1

1

1 1
1

n

n t t
t

n
y yt

t t t t
t

g a h

h
E E h h





 






 




           



 F F th

 

and the corresponding optimal information reduces to 

    1
y

n n nE g g  


 
  

F . 

The function  ng   is also called the optimal esti- 

mating function and has properties similar to those of a  
score function in the sense that   0nE g      and 

     n
n n

g
E g g E


 




              

.This is a more general  

result in the sense that for its validity we do not need to 
assume that the true underlying distribution belongs to 
the exponential family of distributions. Moreover, it fol-
lows from [11, p. 916] that if we solve an unbiased esti-
mating equation   0ng    to get an estimator, then the 
asymptotic variance of theresulting estimator is the in-
verse of the information 

ng . Hence the estimator ob-
tained from a more informative estimating equation is 
asymptotically more efficient. 

I

2. Combined Estimating Functions for 
Discretely Observed Diffusions 

In this section, we discuss the discrete time results on 
combining estimating functions and obtain the closed 
form expression for the gain in information. Assume the 
real-valued continuous time process  ty  is recorded 
discretely at the time points where h is the dis- 
crete interval of observations of 

, 2 , ,h h 
 ty . Now we consider 

the observable discrete-time process  , 1, 2,y t  th  
with conditional moments 

   1
y

t th t hE y  
   F            (2.1) 
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where is the σ-field generated by   1
y
t hF  
  1 1h t h . That is, we assume that the third 

and the forth moments of t  do not contain any addi-
tional parameters. In order to estimate the parameter θ 
based on the observations 1h n , we consider two 
classes of martingale differences  

, 1t , ,y y
y

, ,y y h

    , 1, ,t th tm y t      n  and 

      ,t t t
2 2 , 1,M m      t n , where the quad- 

ratic variation and covariation of  and tm tM  are 

 
2 2
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t tt ht

m E m 
   F  

 
2 4

1 ,y
t t tt hM E M к t

   F   

and 

 1, ,y
t t tt ht

m M E m M 
   F  

respectively. The optimal estimating functions based on 
the martingale differences  and tm tM , and the corre- 
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sponding information are given by 
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The following theorem provides optimality of the 
combined estimating function based on martingales  
and 

tm

tM  for the multi-parameter case.  
Theorem 1. For a discretely observed process, in the 

class of all combined estimating functions of the form 
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Example 1 (Combined Estimating Functions for Cox- 
Ingersoll-Ross Model). Recently there has been a grow- 
ing interest in studying inference for interest rate models. 
In most realistic situations, the diffusion cannot be ob- 
served continuously, so discrete time approximations to 
stochastic integrals or a direct approach using discrete 
time observations is required. As a concrete illustration 
of the methodology, we shall discuss the estimation for 
the Cox, Ingersoll and Ross [12] short-term interest rate 
model of the form 

  ,t t t tdy k y dt y dW            (2.7) 

with 0 0y  , 0k  , 0  , 0   and tW  is the  
standard Brownian motion. The unknown parameters of  

interest are  2, ,k    . Let 

      1, , e kh
t t t hk y        

   . It is of interest  

to note that in this example we can obtain the closed 
form expressions for the first four conditional moments 
by using Itô’s formula for 

itional moments of yth d

u
ty ,

 are
2,3, 4u  .

 calculate
The first four 
 as p-cond (see A

pendix A for the details): 
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Hence, the optimal estimating functions bas
martingale differences and the corresponding infor- 

(2.13) 
ed on the 

tm  
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mation matrix are given by 
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Similarly, the optimal estimating functions based on 
the martingale differences tM  and the corresponding 
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The optimal combined estimating function using  and tm tM  is given by 
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Note: If we allow η in (2.7) to be a function of k, then 
the estimating function  Mg   and the combined esti- 
mating function  Cg   become intractable. 

3. Combined Estimating Functions for 
General Models 

For extended versions of the CIR model, closed form 

expressions for the first four conditional moments cannot 
be obtained easily by using Itô’s formula, as was done 
for the CIR model. Recently, the Milstein’s approxima- 
tion was used in [9] to obtain the first two conditional 
moments of the diffusion. In this section, we use Mil- 
stein’s approximation to obtain the first four conditional 
moments and construct the optimal estimating functions. 

Consider the diffusion process given by the time-ho- 
mogeneous stochastic differential equation of the form 

   d , d , dt t ty a y t b y W    .t     (3.1) 

Where a and b are the drift and diffusion functions, re-
spectively, and is the standard Brownian motion. 

A special case of (3.1) is the Brownian motion with 
constant drift and diffusion: 
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 1d d d .ty y t y W      2 t t t

In this case, we have computed the first four condi-
tional moments of the process to use in an estimating 
function framework. Extended versions of the CIR pro- 
cess model have been proposed for modeling interest rate 
processes. For example, some consider the constant elas-
ticity of variance process of the form 

  2
1 2d d dt t t ty y t y W      

or the nonlinear drift diffusion process [13] given by  
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For more general extended models, the diffusion is a 
function of the observation yt and hence, closed form 
ex

r the conditional moments 
cannot be easily obtained by solving differential equa- 
tions obtained by repeated application Itô’s formula. 

the first four cond

pressions of the conditional distributions, as well as 
closed form expressions fo

However, Milstein’s approximation can be used to obtain 
itional moments. 

Milstein’s approximation applied to (3.1) produces 
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The combined estimating function and the corre- 
sponding information follow from Theorem 1 by 
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Example 2 (NLD Process).The nonlinear drift (NLD) 
diffusion process for modeling interest rates was intro-
duced in [13]. Here we consider the following NLD 
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The information for the combined estimating function 
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4. Conclusion 

For discretely observed general interest rate models, the 
ed estimating function method allows estimators 

to be obtained straightforwardly unde very general con- 
ditions on the first four conditional m ments. In this pa- 
per, we have studied inference for interest rate models, 
first by using the Milstein approximation, and then com- 
bining estimating functions using marting  differences 
and have obtained the closed form expression for the 
information gain. 
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Moments of the CIR Process 

The first four conditional moments of the CIR process 

 d dt t ty k y t y W     d ,t  

may be obtained by using Itô’s formula on successive 
powers of the process. This gives  

 d dt t ty k y t y W     d ,t  

2 21
d 2 d 2 d

2t t t ty y y y  ,t  
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with  0y x  as an initial condition. We let 
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j

j tm t E y y x  , so that the first four conditional 
moments of ty  satisfy the following differential equa-
tions: 
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equations in turn yields: 
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Hence, the first four conditional centered moments are 

given as 
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