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ABSTRACT 

Telecloning and its reverse process, referred to as remote quantum-information concentration (RQIC), have been at- 
tracting considerable interest because of their potential applications in quantum-information processing. The previous 
RQIC protocols were focused on the reverse process of the optimal universal telecloning. We here study the reverse 
process of ancilla-free phase-covariant telecloning (AFPCT). It is shown that the quantum information originally dis- 
tributed into two spatially separated qubits from a single qubit via the optimal AFPCT procedure can be remotely con- 
centrated back to a single qubit with a certain probability by using an asymmetric W state as the quantum channel. 
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1. Introduction 

It is well known that an unknown quantum state can not 
be perfectly copied because of the quantum no-cloning 
theorem [1,2]. Since the seminal work of Bužek and Hil- 
lery [3], however, approximate (the fidelities of clones 
are less than one) or probabilistic quantum cloning has 
been attracting much attention (see [4] for a review and 
outlook), due to the fact that it has wide potential appli- 
cations in quantum-information science as well as could 
help us understand quantum mechanics itself more well 
(see, e.g. [5-9]). The quantum cloning process can be in 
fact regarded as the distribution of quantum information 
from an initial system to final ones. For realizing the re- 
mote information distribution with quantum cloning, Mu- 
rao et al. [10,11] introduced the concept of telecloning, 
which is the combination of quantum cloning and quan- 
tum teleportation [12]. Telecloning functions as simulta- 
neously distributing the copies of an unknown quantum 
state to spatially separated sites, i.e., realizing nonlocal 
quantum cloning, via a previously shared multipartite en- 
tangled state. Telecloning has been widely studied and 
many idiographic schemes have been proposed [13-18]. 
As the reverse process of telecloning, remote quantum- 
information concentration (RQIC) was first introduced 
by Murao and Vedral [19]. They demonstrated that the 
quantum information originally distributed into three spa- 
tially separated qubits from a single qubit by the optimal 
universal telecloning procedure [10] can be remotely con- 
centrated back to a single qubit via a four-qubit unlock- 

able bound entangled state [20] assisted by local opera- 
tions and classical communication (LOCC). Telecloning 
and RQIC processes could be regarded as, respectively, 
remote quantum-information depositing and withdrawing 
processes, or remote quantum-information encoding and 
decoding processes, which are expected to find useful ap- 
plications in network-based quantum-information pro- 
cessing [19]. A scheme for implementing the reversal of 
the optimal 1→2 universal telecloning via a four-qubit 
Greenberger-Horne-Zeilinger (GHZ) state [21] has also 
been proposed [22]. Recently, RQIC has been generali- 
zed to many-particle and high-dimensional systems [23- 
25].  

All the previous RQIC protocols were focused on the 
reverse process of the optimal universal telecloning. In 
this paper, we investigate the reverse process of ancilla- 
free phase-covariant telecloning. Particularly, we present 
a scheme for implementing 2→1 RQIC, i.e., the reversal 
of the optimal 1→2 ancilla-free phase-covariant tele- 
cloning (AFPCT) for qubits. The entangled channel used 
in our RQIC protocol is the same as that used in the op- 
timal 1→2 AFPCT [14], a tripartite asymmetric W state. 
This result indicates that both the telecloning and RQIC 
tasks can be realized by utilizing the same entangled 
channel. However, it will be shown that the W state can 
only implement the RQIC probabilistically, in contrast to 
fact that it can implement the optimal 1→2 AFPCT de- 
terministically.  

Before describing our RQIC protocol, we briefly sum- 
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marize the forward process, the optimal 1→2 AFPCT 
[14]. Such an AFPCT scheme aims at simultaneously 
distributing two optimal clones of a phase-covariant state 

 i1
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                (1) 

from a distributor (Alice) to two spatially separated recei- 
vers (Bob and Charlie) with only LOCC. Here  0 , 1  
represents the computational basis for a qubit and δ is an 
unknown phase. The entangled channel is a three-qubit asy- 
mmetric W state [26]  
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where qubit A

is the input port of the distributor Alice, and 

qubits and C are the output ports for the clones held, res- 
pectively, by the two receivers Bob and Charlie (through- 
out the paper, if necessary, the subscripts of the kets or the 
operators denote the qubit index). Here we have adopted 
the notation

B

xyz  lecloning can be ac- 
complished by the following simple procedure: 1) Alice 
performs a Bell-state measurement on qubits A and 

x y z . The te

A , 
aining one of four Bell states, and informs Bob and 

Charlie of the outcome; 2) depending on Alice’s measure- 
ment outcome, Bob and Charlie perform appropriate local 
unitary operations on the qubits they hold, obtaining the 
clones of

obt

 with the optimal fidelity 22121 F  
[27,28]. The collective output state of qubits BandC is 
the entangled state  

1 1
00 01 10

22
i

B C B C 
B C

e       
        (3) 

We now describe our RQIC protocol for implementing 
the reversal of the aforementioned telecloning. After tele- 
cloning operations, the initial single-qubit (A) quantum 
information is remotely distributed into two spatially sepa- 
rated qubits (  and C ), represented by the collective 
quantum state in Equation (3). The ownership of parti- 
cles  andC is the same as before; i.e., they are still held 
by Bob and Charlie, respectively. The RQIC is aim to con- 
centrate the information initially distributed in two-qubit 
cloning state of Equation (3) back to a remote particle D 
(held by Diana) with only LOCC: 

B





B

.
B C D  We 

also consider employing the following tripartite asymmet-
ric W entangled state as the quantum channel: 

 

 1 1
001 010 100

22BCD BCD BCD
W       (4) 

where particles B, C, and D belong to Bob, Charlie, and 
Diana, respectively. The RQIC task can be accomplished 
by three steps: (S1) Bob and Charlie perform Bell-state 
measurements on their own particles, respectively; (S2) 
Each of them tells Diana the measurement outcome by 
sending 2 bits of classical information; (S3) Diana per- 
forms a conditional local operation on particle D. 

The detailed explanation for the above procedure is as 
follows. According to Equations (3) and (4), the state of the 
whole system (qubits { B , C ,B, C, D}) is given by 
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With the Bell-basis states 
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The total quantum state 
B C BCD   can be expanded as 
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It can be seen from Equation (7) that when the combina-
tional Bell-state measurement outcome is in the set 
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the particle D will be projected in the state  , meaning the 
success of RQIC. If the double Bell-state measurement 
outcome belongs to the following set 2 , the particle D 
can also be prepared in the state

S
 , by suitable local uni- 

tary transformations (see Table 1): 
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Table 1. The correspondence between the local unitary ope- 
rations needing to be performed on qubit D and the Bell- 
state measurement outcomes in the set 

2
S on the two pairs 

of qubits  and   .  ,B B ,C C x,y,zσ denote conventionally 

the Pauli operators and I is the identity operator. 

Measurement outcomes Transformations 
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As to the physical realization of the above RQIC 

scheme, one mainly needs to consider three points: 1) 
preparation of the entangled channel, i.e., the asymmetric 
W state of Equation (4); 2) realization of the optimal 1→ 
2 ancilla-free telecloning (or cloning) of the phase-co- 
variant state  in Equation (1); 3) implementation of 
the Bell-state measurement. Recently, some schemes for 
generating the asymmetric W state of Equation (4) have 
been presented in different physical systems [29-33]. 
Several physical schemes for realizing the optimal 1→2 
ancilla-free phase-covariant telecloning or cloning have 
also been proposed [33,34]. Based on the current tech-
niques [35,36], these schemes are experimentally achiev- 
able. The Bell-state measurement can be well realized for 
both atomic and photonic qubits [37,38]. Very recently, 
we have also proposed a near deterministic scheme [39] 
for realizing nondestructively the photonic Bell-state (or 
GHZ-state) measurement with the two-photon parity gate 
based on cross-Kerr nonlinearity (see Ref. [40] and the 
references therein). All these achievements may con- 
tribute to our RQIC scheme in physical realization. 

In conclusion, we have presented a new RQIC scheme 
for implementing the reversal of the optimal 1→2 AFPCT, 
in contrast to the previous RQIC schemes for imple- 
menting the reversal of the optimal universal telecloning. 
The entangled channel used in our protocol is an experi- 
mentally realizable three-qubit W state. Such a RQIC 
protocol is expected to find useful applications in the 
field of modern multiparty quantum-information process- 
ing. In addition, the idea may open another perspective 
for the applications of the W states. 

There are two open questions that deserve further in- 
vestigating in the future. 1) Whether the reverse process 
of the optimal 1→2 AFPCT could be implemented de- 
terministically? 2) Whether the reverse process of 1→n 
AFPCT could be realized? 
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