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ABSTRACT 

For the three-body problem, we consider the Lagrange stability. To analyze the stability, along with integrals of energy 
and angular momentum, we use relations by the author from [1], which band together separately squared mutual dis-
tances between bodies (mass points) and squared distances from bodies to the barycenter of the system. In this case, we 
prove the Lagrange stability theorem, which allows us to define more exactly the character of hyperbolic-elliptic and 
parabolic-elliptic final evolutions. 
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1. Introduction 

It is known [2-4] that the three-body problem (for mass 
points) is considered for the system of three bodies with 
masses 1 2 3  respectively, that are in the move- 
ment in the three-dimensional Euclidean space under the 
mutual gravitational attraction. We have to determine 
their coordinates and velocities at any time t  on the 
base of initial data. In this form, despite of significant 
progress based on the achievements of Kolmogorov- 
Arnold-Moser theory [5], the problem remains unsolved 
until now, and therefore a qualitative study of motion in 
this system is still important. In particular, it is still im- 
portant to obtain an answer for the following question: 
What are conditions under which three bodies remans 
inside a bounded domain of the Euclidean space. Later, 
we will suggest sufficient conditions for the boundedness 
of the motion. 

, ,m m m ,

Before we start to investigate the motion of the mass 
points, we write down the formula for the related 
Lagrangian: 
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Here, i  are radius vectors of points in the inertial re- 
ference system with the origin at the center of masses 

i ij j i ,  is the gravitation 
constant. The motion equations for the Lagrangian (1.1) 
take the following form 
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Passing over to dimensionless time variable  

3 2
0t GM r   

in (1.2), where 1 2 3M m m m    and  is a para-  0r

meter with the dimension of the length unit, we obtain 
the following equations [6] 
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Here, the prime sign denotes the differentiation with  
respect to , i im M   , 0i i r r  are relative radius 

vectors. 
In what follows, along with Equations (1.3), we will 

use the following equations for distances that were ob- 
ained in [6]: t 
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where ,ij ij ij ijv    . 

The system of ten Equations (1.4) is an integral 
manifold (i.e., a subset) of system (1.3) and it is useful in 
the study of orbital stability of motions. 

In what follows, we will also use the integral of energy 
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and the vector integral of angular momentum 
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Next, we will always assume that .  0C
Since, additionally, there are integrals of motion for 

the center of mass for this system, without loss of gene- 
rality in what follows we can assume in accordance with 
the choice of coordinate system that 

3 3

,i i i i
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  0  , 0          (1.7) 

and, as a consequence [3,7,8], 
3 22 .i i i j ij
i i j
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Finally, we will also use obtained in [1], as a conse- 
quence of (1.7), the following equations: 
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Here 

  


,i i ij ij    . Similar equations connect 
2

iρ  and 2
ijρ  [1]. 

Based on  equations and equalities obtained 
ab

 1, which in our view has an intrinsic interest, 
is

2. Main Definitions and Assumptions 

the key
ove, further in Section 2 we suggest the basic de- 

finitions and auxiliary statements. These definitions and 
statements form the foundation to achieve our main goal 
that is to prove Theorem 1 on the Lagrange stability in 
Section 3. 

Theorem
 important because of its corollary that reveals im- 

portant details of hyperbolic-elliptic and parabolic-elli- 
ptic final evolutions, which will be touched upon in 
Section 4. 

Definition 1. We say that the motion  
   T

1 2 3, ,      of system (1.3) is Lagrange stable if 

2

2

2
3

           

           

           

    

    

     

(1.9) 

the following condition is satisfied: 

   1 2 , , ,ij i j,c c R             (2.1) 

where  are positive constants. 
n  

1 2,c c
itionDefin  2. We say that the motio

   T

1 2 3, ,      of system (1.3) is distal if the fol-  

lowing inequality is satisfied: By reversing Equations (1.9), we have 
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  3 , ,ij c R i      3,0 const.j c      (2.2) 

As it was mentioned above, Equations (1.3
re

) contain 
lative radius vectors 0i i r r  where 0r  is a para- 

meter that has the dimensio f e length u t. Therefore, 
without loss of generality in what follows, it is con- 
venient for us to put 0r  at a value, for which we have 

1 3 1c c   in inequalities (2.1) and (2.2). 
on 3. In accordance with [9], we say that a 

n o th

fix

ni

Definiti
ed pair of points  , , ,i j i j    of system (1.3) is 

Hill stable if the follow  is satisfied: 

 
ing inequality

4 4, ,0 const.ij c R c            (2.3) 

Definition 4. In accordance with [9], w
fix

e say that a 
ed pair of mass points  , ,i j i j   , of system (1.3) 

is Hill absolutely stable ng inequality is 
satisfied: 
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where  R  denotes distance from third mass point to  

ter of mthe cen ass of fixed pair of points  ,i j  . 
As it is proved in [9], if a fixed pair  poi


of mass nts 

, ,i j i j   , of system (1.3) is Hill absolutely stable, 
stable and collisions are possible only for 

mass points, which form this fixed pair. 
Key points for forming of initial conditions, under 

w

then it is Hill 

hich we have the Hill stability of a pair of mass points, 
are integrals of energy and angular momentum [9-11]. 

Lemma 1. If one of the pairs of mass points in the 
three-body problem is Hill stable, then there exists a 
closed ball rB  in the appropriate configuration space 

9R  such that none of the vectors i  in 9 \ rR B  can be 
a zero vector. 

Proof. The lemma is obvious n it c s to the 
tri

whe ome
ple collision. Therefore, in what follows, we restrict 

ourselves to the case where only one of the vectors i  
is a zero vector. 

As it is known (see e.g. [12]), the following relations 
are valid: 
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Suppose that 1 0
ave 

. Then due to the first relation of 
system (2.5) we h

2 12 3 13 .    0              (2.6) 

Supplementing equality (2.6) with the identity 
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and these relations show that if at least one of the dis- 
tances ij  is bounded, then all three distances are 
bounded. 

If we have either the equality 2  0  or the equality 

3  0  instead of 1  0 , we argu larly. 
I hat follows, without loss of generality, we assume 

e simi
n w

that the Hill stable pair is the pair  1 2,  . Then, by 
using equalities (1.9), in dependence of whi  one of the 
vectors i

ch
  is a zero vector, we obtain three different 

expressions for the radius of the ball that is referred to 
the center of mass of three particles: 
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Equalities (2.9) allow us to conclude that if one of the 
vectors i  is zero vector, then motions can be embedd- 
ed into a closed ball rB  with the radius defined by re- 
lations 

   12 12 1 2 3sup , max , , .f f f f
       (2.10) 

The Lemma 1 is proved.  
f the proof of Lemma 1 

im
Corollary 1. The scheme o
plies that the radius r  of the sphere rB  can always 

be chosen not only in uch a way that each of the 
variables 

 s  

i i    is not vanish in 9 \ rR B , but also to 
exceed some p si ive constant. 

Corollary 2. If the motion in the three-b y problem is 
ou

o t
od

tgoing, then surely there is a time    such that the 
segment of the orbit (the projection of t  phase trajec- 
tory in the configuration space) falls into 

he
9 \ rR B  for 

   . 
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stem (1.3), for w
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Then, for t motion, there is a sequence  his 
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are valid. 
Since the motion under consideration is Proof. 

Lagrange unstable, there is a sequence  

  1, 2,3,k k    

such that   (2.7) 

we obtain 
 , lim , 1, 2,3.k i k
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Let us divide the first equality of system (1.10) by 2
1 . 

As a result, for the Lagrange unstable motion we have 
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Tending to infinity in equality (2.13), we obtain 
the equality 
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Further, on the base of last two equalities of system 
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Observing 
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In the limit, on the base of (2.15), (2.16), we have 

2 2
13 12

2 2
lim limk k   

 

 

 

 

2
2 2

2 2 1 2 3 2

    
 

     
1

2
2 3
3 1 2 2

1

2
1 1 2 1 3 .



  


    





 

 
   

 

    

         (2.17) 

By Equations (2.14), (2.17) we derive 
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Lemma 2 is proved. 
Lemma 3. Let 
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Proof. Since the motion under consideration is 

 unstable, there is a sequence 
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Lagrange   1, 2,3,k k    

ch that 
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We rewrite equalities (1.9) in the following form: 
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As a result, we obtain a system of three
are linear with respect to  and contain variable 
co

 equations that 
2 2 2, ,u v w

efficients 2 2
2 1   and 2 2

3 1  , and each one of 
these equations can be tr n equation of a one- 
sheet hyperb oreove e first equation descri- 
bes a stationary hyperboloid, then the second and the 
third ones describe movable hyperboloids, if we take into 
account the fact that coefficients 

eated as a
r, if tholoid. M

2 2
2 1   and 2 2

3 1   
are variable. All these hyperboloids have distinct imagi- 
nary semiaxes. 

Let us exclude the variable 2u  from Equations (2.22). 
As a result, we obtain equations 
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Under the conditions of Lemma 3, the considerable 
movement is Lagrange unstable. Hence, in accordance 
with Lemma 2, variable coefficients    2 2

2 1k k     
and    2 2

3 1k k     satisfy equalities (2.11) with 

Let us consider the limit version of Equations (2.24) 
when . Taking equalities (2.11) 
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8)-(2.20). Since the system (2.18)- 
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Lem  3 is proved. 
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 (1.4) from irst sectio

3. A Theorem on Lagrange Stability 

Let us try to use the information obtained in the previous 
section in order to carry out a qualitative analysis of the 
movement equations. In this
ed that distance Equations  the f n 
contain the term 
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quations hoping that we obtain some 
useful information about qualitative behavior of move- 
ments in the system. To this end we represent movement 
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Along with this fact, similar terms are contai
left-hand sides of Equations (2.18)-(2.20), though, it is 
true in the limit case where we assume that the move- 
ment under consideration is Lagrange unstable. Hence, 
there is a point in considering a hypothetical possibility 
of the Lagrange unstable movement in the case of ob- 
tained movement e

uation (1.3) in the form 
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Equations (3.1) are more appropriate for our further 
purposes, though Equations (1.3) will be still considered 
as basic ones. 
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we can rewrite equality (3.4) in the form 
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Assuming that the movement under study is Lagrange 
unstable and taking into account equalities (3.2), on the 
base of (3.5) we obtain in the limit case that 
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In accordance with (3.2) and the definition of time 
points 

jn , th  the interval e length of
js j n 

   tends  
ht-hand side to infinity as  Hence

quality (3
j  . , the rig of ine- 

.16) tends to infinity as well. 
the left-hand side of inequality 
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As tends to infinity, by equality (2.18) the terms 
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   T

1 2 3, ,      is not true. 
milar way we can obt in a con- 

tradiction in the case where equality (3.9) is satisfied. 
Note only the fact that an analogue of expres
in this case is the expression 

In an absolutely si a

sion (3.18) 
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motion, we can conclude similarly to the case studied 
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ments that was used for e ality (3.7) in the case where 
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Due to (3.18), we can conclude that, as , the 
left-hand side of inequality (3.21) tends to ded 
value and the right-hand side tends to minus infinity. 

ility of the 
movement under study is also not t

) is valid as 
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Hence, we arrive to a contradiction. 
Thus, the assumption on the Lagrange instab

rue in the case where 
equality (3.7 1 2  . 

Finally, it remains to consider the case where equality 
(3.8) is satisfied. In this case, we can apply the arguments 
that were used for Equation (3.7) under the condition 

1 2  . It should be note only the fact that an analogue 
on (3.18) in this case will be represented by 

the expression 
of expressi
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Thus, if we assume that the movement under study is 
Lagra radiction inge unstable, then we arrive to a cont n 
all three cases where equalities (3.7)-(3.9) take place. 
This contradiction give us a possibility to conclude that 
the theorem is true.  

Remark 1. As it is implied by the structure of Equa- 
tions (1.4) and the scheme of proof of Theorem 1, the Lag- 
range stability remains to be true also in the case where 
only different masses are ones that form a Hill stable pair. 
For the third particle, it is admissible that its mass is equal 
to the mass of a particle from the Hill stable pair. 

Remark 2. If we take into account the fact that 
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then we can consider the derivative of the function 
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with respect to the vector field that is determined by 
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4. On Hyperbolic-Elliptic and 
Parabolic-Elliptic Final Evolutions 

As it is known [13], hyperbolic-elliptic and parabolic- 
elliptic final evolutions are accompanied by a m tion of a 
bounded pair of particles and the third outgoing remote 
particle. In this case, we can apply Lemma 2 in order to 
conclude that relations (2.11) take place. 

esent 
the motion of the bounded pair in the following con- 
venient form: 

uations (1.4). However the function V  in the form 
(3.3) is more appropriate. It is the function V  in the 
form (3.3) which is predetermining the use of Equations 
(3.1), though in the construction of the function V  we 
are based on the structure of the system of Equations 
(1.4). 

o

By using the Jacobi decomposition, we can repr
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Here, as it is usual, we have 12r   and R  denotes 
the distance from the third ma t to the center of ss poin
masses of the pair  1 2,  . As we can see, 

n (4.1) represents the two-body problem with
vector equa- 

tio  a de- 
creasing perturbation since the third particle is outgoing. 

Since R , we see that  r  tends to the 
elliptic Kepler motion with the relevant limit integrals of 
the motion [10]: 
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if the evolution is hyperbolic-elliptic, and 
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t Theorem 1 provides a possibility to 
correct equalities (4.4) and (4.5) respectively. In par- 
ticular, we can obtain the following statemen

Corollary of Theorem 1. Let masses

in the three-body problem b
Then in cases of

nal 

if the evolution is parabolic-elliptic. 
It turns out tha

t. 
  1, 2,3i i   

e different and 0T U h   . 
 hyperbolic-elliptic and parabolic- 

elliptic fi evolutions, the following equalities are re- 
spectively valid: 
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i.e., going over to the limit, the modulus
momentum r v  of the bounded pair  1 2,   can not 

 
exceed a positive constant. 

Proof. Let us suppose the contrary, r c 0 , and 
consider the limit energy integral for the pair  1 2,   
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which, in its turn, can be rewritten in the form 
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In accordance with inequality (4.10), we conclude that 
if r c 0 , then hyperbolic-elliptic and parab tolic-ellip ic 

ns are accompanied by a 
Ho  according to Theorem 1, for

Lagrange 
 

corollary is true. 

5. Conclusion 

Su ults, we can state 
that the key requirements of the proved theorem that 
provide Lagrange stability are existence of a pair of 
points that are Hill stable and distality of the movement. 

 of choice of initial conditions 
of the system that provide the distal 

movements is still open. In this relation, it is interesting 
to note that conditionally periodic 
of which in the three-body problem is proved in the 
K

tal mot

 final evolu

final evolutio
wever,

distal motion. 
 0T U h    

the distal motion with a fixed bounded pair is 
stable. We obtain a contradiction and this implies that the

mmarizing the above represented res

Unfortunately, the problem
and parameters 

motions, the existence 

olmogorov-Arnold-Moser theory, belong to the class of 
dis ions. This means that Theorem 1 is construc- 
tive. Corollary of Theorem 1 deepens our understanding 
of hyperbolic-elliptic and parabolic-elliptic - 
tions in the three-body problem. 
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