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ABSTRACT

For the three-body problem, we consider the Lagrange stability. To analyze the stability, along with integrals of energy
and angular momentum, we use relations by the author from [1], which band together separately squared mutual dis-
tances between bodies (mass points) and squared distances from bodies to the barycenter of the system. In this case, we
prove the Lagrange stability theorem, which allows us to define more exactly the character of hyperbolic-elliptic and

parabolic-elliptic final evolutions.
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1. Introduction

It is known [2-4] that the three-body problem (for mass
points) is considered for the system of three bodies with
masses m,,m,, m,, respectively, that are in the move-
ment in the three-dimensional Euclidean space under the
mutual gravitational attraction. We have to determine
their coordinates and velocities at any time t on the
base of initial data. In this form, despite of significant
progress based on the achievements of Kolmogorov-
Arnold-Moser theory [5], the problem remains unsolved
until now, and therefore a qualitative study of motion in
this system is still important. In particular, it is still im-
portant to obtain an answer for the following question:
What are conditions under which three bodies remans
inside a bounded domain of the Euclidean space. Later,
we will suggest sufficient conditions for the boundedness
of the motion.

Before we start to investigate the motion of the mass
points, we write down the formula for the related
Lagrangian:

1 3
L=T+U :EZmii‘iz

(1.1)
+G(m1m2 Lmmg mzma}

|r12| |r13| |r23|

Here, r are radius vectors of points in the inertial re-
ference system with the origin at the center of masses
m,r =r-r,(i,j=123), G>0 is the gravitation

constant. The motion equations for the Lagrangian (1.1)
take the following form

Copyright © 2013 SciRes.

r, —r r,—r
v 2 1 3 1
B=Gm———=t+m ==

|"12| |"13|
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Passing over to dimensionless time variable
tJGM /r¥? =«

in (1.2), where M=m+m,+m, and r, is a para-
meter with the dimension of the length unit, we obtain
the following equations [6]

o= Ay, 2
2] ||
p=-m B B (13)
2] ||
pr=- Bl B
|| ||

Here, the prime sign denotes the differentiation with
respect to 7,44 =m; /M, p=r/r, are relative radius
vectors.

In what follows, along with Equations (1.3), we will
use the following equations for distances that were ob-
tained in [6]:
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os (1 1 (11
viy +i:_ﬂ2 {plzs (_3__3}“2/’23/)13 {_3__3 ’
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o (1 1 (1 1 1 1
Vi +i: ﬂ{/’zzs [_3__3]+2(P13P23) (_3_ =2pupis| ||
23 P P Pr2 ,013 p12 Pr3
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(stl’is) :1(_\/122 +V2 +V223)—&— i [1+ P 21012 \J+ Hy (1+ Pa zpls}
2 P 2p;, P13 2p;, Pr2
where  p; :|p|j|!vij :|p|j'|' o2 = t (pn+ 1) P+ gty (1 + 11,) P = 155
The system of ten Equations (1.4) is an integral . it
manifold (i.e., a subset) of system (1.3) and it is useful in 4
. . \ 1) PL = 15 p3 + 115 (14 + 1
the study of orbital stability of motions. Pl = 4t 1) Py~ s * s (14 15) P ., (1.10)
In what follows, we will also use the integral of energy ) #hts , ,
13, e bk i = PP M (fa 1) Py + s (1 + 1) P
N up? - L =h=const (1.5) 3= :
2 i iM 5 pu| Hy My
Here Similar equations connect
and the vector integral of angular momentum p2 and p Az |ﬂ]p” |'q’| q
3 / IBased on the key equations and equalities obtained
u(pxA)= (1.6)
Zil (axA)

Next, we will always assume that C =0 .

Since, additionally, there are integrals of motion for
the center of mass for this system, without loss of gene-
rality in what follows we can assume in accordance with
the choice of coordinate system that

3 3

Zﬂipu':()’zluiﬂ =0, (1.7
and, as a consequence [3,7,8],

Zﬂ./). =D Mk |p,| : (1.8)

i<j

Finally, we will also use obtained in [1], as a conse-
quence of (1.7), the following equations:

plz =H, (/“2 +/“3),0122 + Uy (,”2 + ﬂa)plza _luzluapzzav
25 = 1 (1 + 1) Pl — pupts i + 15 (14 + 113) P, (1.9)

=4t Pl + i (4 + 1) Pl + 1y (10 + 113 ) PR
By reversing Equations (1.9), we have
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above, further in Section 2 we suggest the basic de-
finitions and auxiliary statements. These definitions and
statements form the foundation to achieve our main goal
that is to prove Theorem 1 on the Lagrange stability in
Section 3.

Theorem 1, which in our view has an intrinsic interest,
is important because of its corollary that reveals im-
portant details of hyperbolic-elliptic and parabolic-elli-
ptic final evolutions, which will be touched upon in
Section 4.

2. Main Definitions and Assumptions

Definition 1. We say that the motion
p(t)=(a.p, ,q,,) of system (1.3) is Lagrange stable if
the following condition is satisfied:

Cl§|pIj (r)|£CZ,VTeR:]—oo,oo[,‘v’i<j, (2.1)

where c;,c, are positive constants.

Definition 2. We say that the motion
p(t)=(a.m.p) of system (1.3) is distal if the fol-
lowing inequality is satisfied:
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g (7)|2 ¢, ¥z eR Vi< j,0<c =const.  (22)

As it was mentioned above, Equations (1.3) contain
relative radius vectors g =r/r, where 1, is a para-
meter that has the dimension of the length unit. Therefore,
without loss of generality in what follows, it is con-
venient for us to put r, at a value, for which we have
¢, =C; =1 ininequalities (2.1) and (2.2).

Definition 3. In accordance with [9], we say that a
fixed pair of points (s, ),i< j, of system (1.3) is
Hill stable if the following inequality is satisfied:

|p|j (T)|<C4,VT€ R,0<c, = const. (2.3)

Definition 4. In accordance with [9], we say that a
fixed pair of mass points (4, u; ),i < j, of system (1.3)
is Hill absolutely stable if the following inequality is
satisfied:

|R(T)| > max(#i”uj) VreR (2.4)
|,0.j (T)| Hi + A, ’ ’ l
where |R(r)| denotes distance from third mass point to

the center of mass of fixed pair of points (ﬂi 7 ) .

As it is proved in [9], if a fixed pair of mass points
(,ui,,uj),i < j, of system (1.3) is Hill absolutely stable,
then it is Hill stable and collisions are possible only for
mass points, which form this fixed pair.

Key points for forming of initial conditions, under
which we have the Hill stability of a pair of mass points,
are integrals of energy and angular momentum [9-11].

Lemma 1. If one of the pairs of mass points in the
three-body problem is Hill stable, then there exists a
closed ball B, in the appropriate configuration space
R? such that none of the vectors g in R°\B, can be
a zero vector.

Proof. The lemma is obvious when it comes to the
triple collision. Therefore, in what follows, we restrict
ourselves to the case where only one of the vectors g
is a zero vector.

As it is known (see e.g. [12]), the following relations
are valid:

A=A — P
P = HPo — P (2.5)
P = Pt 1P

Suppose that g =0. Then due to the first relation of
system (2.5) we have

Py + taPy = 0. (2.6)
Supplementing equality (2.6) with the identity
P2~ Pz =P 2.7

we obtain
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7
2 P3Pz = E— 0, (2.8)
My + fy

and these relations show that if at least one of the dis-
tances p, is bounded, then all three distances are
bounded.

If we have either the equality p, =0 or the equality
p, =0 instead of g =0, we argue similarly.

In what follows, without loss of generality, we assume
that the Hill stable pair is the pair (z4,4,). Then, by
using equalities (1.9), in dependence of which one of the
vectors p is a zero vector, we obtain three different
expressions for the radius of the ball that is referred to
the center of mass of three particles:

22§ 52 g2t () (i=12,3),
r gp, 25 () (i ) 29)

P =0Yi=i,u= (. 1y 115)" .

Equalities (2.9) allow us to conclude that if one of the
vectors g is zero vector, then motions can be embedd-
ed into a closed ball B, with the radius defined by re-

\
lations

la| =sup(|p,|), " =max(f,f, f,). (210)

The Lemma 1 is proved.

Corollary 1. The scheme of the proof of Lemma 1
implies that the radius r of the sphere B, can always
be chosen not only in such a way that each of the
variables p, =|g| is not vanish in R®\B,, but also to
exceed some positive constant.

Corollary 2. If the motion in the three-body problem is
outgoing, then surely there is a time z° such that the
segment of the orbit (the projection of the phase trajec-
tory in the configuration space) falls into R°\B, for
>7".

Lemma 2. Let p(z)=(g.p.p) be a Lagrange
unstable motion of system (1.3), for which the pair of
bodies (z4,4,) is Hill absolutely stable.

Then, for this motion, there is a sequence

{r) (k=123
such that the equalities

i {pZZ(rk)]:L i (pﬁm)]: (1+ 1)

Pt () 74

(2.11)

are valid.
Proof. Since the motion under consideration is
Lagrange unstable, there is a sequence

{rj(k=1,23:)

such that
!im 7, =w,!im pi(rk):oo,Vi =12,3. (2.12)
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Let us divide the first equality of system (1.10) by p?.

As a result, for the Lagrange unstable motion we have

—pf(rk)=i{ia(;ﬁ+ﬂz)
pi(7) 2.13)
+ﬂz(%ﬁ+#z)p122§::;—ﬂ32 Z}E::;}

Tending k to infinity in equality (2.13), we obtain
the equality

2 2
P> 2| P
+ —_—c —_ —_
Ho (:ul ﬂz)(plg ]w H (plz lo (2.14)
=~ (4 + 1)

Further, on the base of last two equalities of system
(1.10), we derive

i (py + 1) = 143 p%g’k) (5

=1+ 1ty (1t + 13 1 )+ﬂ3(ﬂz+ﬂ3) ()
k k

Observing
£ = A2+ P+ 200
and taking into account (1.8), (2.12), we obtain
2 2
fim 22 (1) _ |im{—”122 (r)
k_’“’/?zs(Tk) ko st(Tk)

Pr2 (Tk) (A
+2————=-¢0s| p, (7 )P (7 )+1 =1
o (n) 2 (1) (%) }

In the limit, on the base of (2.15), (2.16), we have
2
1o | 15+ 1 (11, + 1) | (%]

1

(2.16)

pz
s ) £ @)
:/’1[/’12 t 4, (/“1+ﬂ3)]-
By Equations (2.14), (2.17) we derive

2
/712 - p12 - ,u;

Lemma 2 is proved.

Lemma 3. Let p(7)=(a.2.2) be a distal and
Lagrange unstable motion of system (1.3), for which the
pair of bodies (4, 4,) is Hill stable.

Then, there is a sequence {7, }(k=12,3,---) such
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that in the limit case one of the equalities

{p_fs_p_;} e e} (2.18)

p122 p122 H

{_p_ngrp_fg} _ i+ (ot )t p)” o o)

o P (t+ 1, ) 1t

2
{p_fa_p_ég} _ ot Hprp) (i) g o0

p122 p122 (/ul"'/uz)/ue
is valid.
Proof. Since the motion under consideration is

Lagrange unstable, there is a sequence {7, }(k =12,3,---)
such that

(2.21)

k—o

3
limz, :w,!ﬁ%pﬁ (7 ) =0,

We rewrite equalities (1.9) in the following form:

1 T RV Y|

H, (:uz +,u3) H, Hy + [y

- ['O—Ziju2+—ﬂ3 viHa g g
,Ul(:ul"‘/%) Pi ot i y

1 [P_{Ju2+lﬁ+ﬂzvz+ﬂ1+ﬂzwzzl
Hith \ Py Ho Hy
where

(2.22)

2 2 2
2 _ P v2:p13 szpzsl

ut =
P12 Pr2 Pr2

(2.23)

As a result, we obtain a system of three equations that
are linear with respect to u?,v®>,w’ and contain variable
coefficients p?/p? and p?/pf , and each one of
these equations can be treated as an equation of a one-
sheet hyperboloid. Moreover, if the first equation descri-
bes a stationary hyperboloid, then the second and the
third ones describe movable hyperboloids, if we take into
account the fact that coefficients p?/pf and p?/p?
are variable. All these hyperboloids have distinct imagi-
nary semiaxes.

Let us exclude the variable u® from Equations (2.22).
As a result, we obtain equations
2 %2 N

Vv W =

B - B ,
v2 4 Gata 2 _ Hale (2.24)
B B
\/2 +&W2 - ﬁ’
wps Bs
where
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2 2
p p
a1=ﬂl+ﬂ3+ﬂzp—iﬁ Aﬁ+(uz+u3)pi
1 1

2

7=ty (1 + 1) = 11y (145 +ﬂ3)%i

1

2
P

@, :/ﬁ+ﬂz+/“3p_3z’
1

2
Bo= (1 + 1)~ ﬂs(ﬂzws)%
1

2
Jo
=ty U
(v 3)/?12
2
a3:_ﬂ3(/41+,u3)p +,u2(:ul+/12)p_z
dl P
P; P
By =t =5+ (1 + 1) 75,
dl P
2 P
Ve =+ i) =5+ 1,5
P el

Under the conditions of Lemma 3, the considerable
movement is Lagrange unstable. Hence, in accordance
with Lemma 2, varlable coefficients p; (z,) /,o1 (%)
and  pf (r,)/pl(z,) satisfy equalities (2.11) with
K—o.

Let us consider the limit version of Equations (2.24)
when 7e{r}, (k=123 ). Taking equalities (2.11)
into account, in the limit case, on the base of (2.24) we
obtain equalities (2.18)-(2.20). Since the system (2.18)-
(2.20), which is treated as a system of linear equations
with respect to variables (pf/pf,) and (pk/ /312)
is inconsistent, we conclude that onfy one of equalltles
(2.18)-(2.20) for considerable motion is valid.

Lemma 3 is proved.

3. A Theorem on Lagrange Stability

Let us try to use the information obtained in the previous
section in order to carry out a qualitative analysis of the
movement equations. In this connection, it should stress-
ed that distance Equations (1.4) from the first section
contain the term

/313 P23
,012

Along with this fact, similar terms are contained in the
left-hand sides of Equations (2.18)-(2.20), though, it is
true in the limit case where we assume that the move-
ment under consideration is Lagrange unstable. Hence,
there is a point in considering a hypothetical possibility
of the Lagrange unstable movement in the case of ob-
tained movement equations hoping that we obtain some
useful information about qualitative behavior of move-
ments in the system. To this end we represent movement

Copyright © 2013 SciRes.

Equation (1.3) in the form

,Us ﬂz ﬂs( As Pza]
|,Q2| |A3| |/323|

Ag :_(1_#2) A33 _:LIZ[ A23 + pzsg]’ (31)
|H3| |ﬂ2| |pzs|

pz'é :_(1_#1) ,0233 +,ul[ st - A33]'
|p23| |ﬂ2| |ﬂ3|

Equations (3.1) are more appropriate for our further
purposes, though Equations (1.3) will be still considered
as basic ones.

Theorem 1. Let p(z)=(g,p.p) be adistal move-
ment of system (1.3) that belongs to the set

Q={(p,p'):T-U=h<0}.

Then, if masses 4 (i =1,2,3) are different and one
of the pairs of the mass points is Hill stable, then the
movement under study is Lagrange stable.

Proof. Without loss of generality we can assume that
the pair (4, 4,) is Hill stable.

Suppose that under the conditions of the theorem the
movement p(z)=(m.p.p) is Lagrange unstable.

A =—(1-

Then there exist a sequence {r,}(k=12,3,---) such
that
3
l!mfk = 0, im;ﬂ; (Tk ) =®. (3.2)
Let us consider the function
;1 '
V=00 _E(ﬂzﬂs) ) (3.3)

which is formed on the base of the structure of the
system of Equations (1.4). Its derivative with respect to
the vector field, which is determined by Equations (3.1),
has the form

"

’ r ! 1
\ :(HZ/%) _E(ﬂzﬂa)

:%{—”—2'+(1— 1) 22 (3.4)

|IQZ |H2|

[,qzﬂs

|

Noticing that

Ao + ﬂsﬂa)[ As LJ
sl el

Hy (l—,u3)AZ’Q3

-2
|RZ| |A2|3

1 P13 /723}
= | (= 1)+ (1 + 2 :
T R~
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we can rewrite equality (3.4) in the form

1 1 /313 P23
V== -
g e |

12

(3.5)
AZAS ,Uzﬂz M3 ( /%3 J }
| 3| | 3| |pz3|

Assuming that the movement under study is Lagrange
unstable and taking into account equalities (3.2), on the
base of (3.5) we obtain in the limit case that

, 1 Pz =P
(v )f—{(ﬂl—#z%(ulwz) 2 23}, (3.6)
4|,Q2| 12
By equality (3.6), considering equalities (2.18)-(2.20),
we derive

NG 1 -
v == , (3.7)
V) =l 7

"2 1
v = Lar iy (3.8)
( )w 4|Rz|ﬂ3

NG 1
v (3.9)
( )w 4|ﬂ2|/13

The upper indices 1, 2, 3 in the left-hand sides of
equalities (3.7)-(3.9) mean that instead of

p13 ,023
,012

in the right-hand side of equality (3.6) we substitute
expressions that are determined by right-hand sides of
equalities (2.18), (2.19), (2.20) respectively.

First let us consider equality (3.7), for which we as-
sume that gz, >, and hence, we assume that the right-
hand side of equality (3.7) is positive. As a consequence
of this fact, on the base of continuity of the right-hand
side of equality (3.5) we can conclude that, for the se-
quence {r,}, there is a sufficiently large number s
such that the inequality

Vv’ >0, VK =5,

re(n}
L — 14, (3.10)
|:q.2| M

takes place for k >s. In accordance with conditions of
the theorem, the movement under study is distal, and
hence velocities of mass points are bounded. From this
fact we can conclude that there is a sequence of time
intervals with growing lengths

{Ti}:[TSH' _Tnj]fsﬂ' E{Tk},

j:112131”'1

0< ¢, =const, o, < ——

Ty, <TeuMy <My <y <--,

s+j?

for which we have the inequality
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V26,V e{T). (3.11)
By integrating (3.11), we obtain the inequality
V|:1 > 51(1—2'1),1' > rl,[rl,r]g {TJ—},
which can be further rewritten in the form

1 '
_E(ﬂzﬂ3)

Azﬂs (T 71) (3.12)

T 1 ,
2 _E(ﬂzﬂ3)

71

The product is bounded on R, due to

~ PP
conditions of the theorem. Therefore, by replacing it with
a certain relevant constant 8, >0, we can strengthen
equality (3.12):
-6,+6,(r—7). (3.13)

n

1 '
_E(ﬂzﬂa)

1 ,
—5 (A1)
By integrating inequality (3.13), we obtain

(r-7,)-6,(r—1,)
g (3.14)

1 T 1 4
_E(ﬂzﬂs) 0 _E(Rzﬂs)

0, 2
+?1(z'—rl)
Let us set 7, =7, T =Ty, in inequality (3.14) and

rewrite it in the form
1

_E(R2H3) — (Hzﬂs) o > (Ts+j Ty )
1 s (3.15)
{_E(AZAS) . 52+El(z-s+1 _Z-nj )}
1="nj
The terms
1 1 ,
E(ﬂz/h) mm; _E(Hzﬂs )

T1:Tnj
in (3.15) correspond to finite time points 7, =17, such

that the sum Zpu ( _ ) reach a critical value at which

i<j

wehave V| >4,
1%"nj

Hence, the quantities

1 1 ,
E(ﬂzﬂa) - v_E(AzR3)

Tl:Tnj

in inequality (3.15) can be always chosen in such a way
that they are finite. Relating to this fact, it is appropriate
for us to rewrite inequality (3.15) in the form

+H i —7T

| -0, +%(Ts+j —7Ty, )}

1 1
_E(ﬂzﬂa) — > _E(ﬂzﬂs)

(3.16)

'{_%(Rzﬂﬂ'

71=Tq
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In accordance with (3.2) and the definition of time
points To the length of the interval PSH. -7, | tends
to infinity as j — oo . Hence, the right-hand side of ine-
quality (3.16) tends to infinity as well.

Now let us analyze the left-hand side of inequality
(3.16) in a more detailed way. To this end we note that

1
A=A 5= PR,
and represent it in the form

1
_E(ﬂzﬂs)

T=Ts+j

(3.17)

T=Ts+j

As j tends to infinity, by equality (2.18) the terms
inside the square brackets tend to the expression

{q§+—(ﬂl_ﬂ2)gg}. (3.18)

H

Thus, in accordance with our assumption g4 > u, , the
left-hand side of inequality (3.16) tends to a negative
value as j — . We arrive to a contradiction.

So, if equality (3.7) holds true and z4 > 4, , then the
assumption on the Lagrange instability of the movement
p(t)=(g.p.p)" isnottrue.

In an absolutely similar way we can obtain a con-
tradiction in the case where equality (3.9) is satisfied.
Note only the fact that an analogue of expression (3.18)
in this case is the expression

s ot () (),
>t Ao |
(,Ul"‘/uz),”s

Now consider Equation (3.7) in the case where
4 < u,, and hence, its right-hand side is negative. In
this case, similarly to the case that was studied above,
due to continuity of the right-hand side of equality (3.5)
we can assert for the sequence {7, } that there exist a
sufficiently large number s* such that the inequality

A <-6,,Vk=5s",

refa)
1 |ﬂ1—ﬂz| (3.19)
4|Rz| Hs

takes place for k>s". From this, by distality of the
motion, we can conclude similarly to the case studied
above that there exist a sequence of time intervals

{Tj*} _ [rs*ﬂ_ —r:j ],z’s*ﬂ_ € {rk},

j:1,2,3,---,r,fj ST oM<y <ng<ee

0< 6, =const, & <

with growing lengths for which the inequality
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V<=5, Vre(T]} (3.20)
is satisfied.

By using almost literally the same scheme of argu-
ments that was used for equality (3.7) in the case where
M > 1, , We arrive to an analogue of inequality (3.16):

. +(2',, ,—r:_)
leTnj S +]) ]

1 1
_E(Hzﬂs) e, < _E(ﬂzﬂe)
S +]j

{_%(ﬂzﬂs ),

0< 6, =const.

* +6, —521* (rs*ﬂ. —r:j )} (3.21)

Z'l:Tnj

Due to (3.18), we can conclude that, as j— o, the
left-hand side of inequality (3.21) tends to a bounded
value and the right-hand side tends to minus infinity.
Hence, we arrive to a contradiction.

Thus, the assumption on the Lagrange instability of the
movement under study is also not true in the case where
equality (3.7) isvalid as g4 < g, .

Finally, it remains to consider the case where equality
(3.8) is satisfied. In this case, we can apply the arguments
that were used for Equation (3.7) under the condition
M < i, . 1t should be note only the fact that an analogue
of expression (3.18) in this case will be represented by
the expression

o s+ (i) (1) |
i (14 + 14,) 11 i

Thus, if we assume that the movement under study is
Lagrange unstable, then we arrive to a contradiction in
all three cases where equalities (3.7)-(3.9) take place.
This contradiction give us a possibility to conclude that
the theorem is true.

Remark 1. As it is implied by the structure of Equa-
tions (1.4) and the scheme of proof of Theorem 1, the Lag-
range stability remains to be true also in the case where
only different masses are ones that form a Hill stable pair.
For the third particle, it is admissible that its mass is equal
to the mass of a particle from the Hill stable pair.

Remark 2. If we take into account the fact that

, 1 !
V=p,0, _E(Hzﬂa)
! '
=(s—2s) A~ (P2 +R5 - 2%
4
;1 '
=—pups =5 (PR i)
then we can consider the derivative of the function
* 12 1 !
V' =—pup -~ (A - RS- )
with respect to the vector field that is determined by
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Equations (1.4). However the function V in the form
(3.3) is more appropriate. It is the function V in the
form (3.3) which is predetermining the use of Equations
(3.1), though in the construction of the function V we
are based on the structure of the system of Equations
(1.4).

4. On Hyperbolic-Elliptic and
Parabolic-Elliptic Final Evolutions

As it is known [13], hyperbolic-elliptic and parabolic-
elliptic final evolutions are accompanied by a motion of a
bounded pair of particles and the third outgoing remote
particle. In this case, we can apply Lemma 2 in order to
conclude that relations (2.11) take place.

By using the Jacobi decomposition, we can represent
the motion of the bounded pair in the following con-
venient form:

"”2_(1_:”3)%

Il

(4.1)
R—pr/(mm+uy) R+ /(s + 1) ]

VR rar /(i + i, )[R+ paor [+ )]

Here, as it is usual, we have r=g, and |R| denotes
the distance from the third mass point to the center of
masses of the pair (s, s, ). As we can see, vector equa-
tion (4.1) represents the two-body problem with a de-
creasing perturbation since the third particle is outgoing.

Since |R|—>o, we see that r(r) tends to the
elliptic Kepler motion with the relevant limit integrals of
the motion [10]:

2

Mty Y A2 _h (r)—>h, <0; (4.2)
oty 2 |r|
rxv=c (t)>c,,. (4.3)

Let r,(r) denote the asymptotic Kepler motion with
integrals h., and ¢, . In this case, in accordance with
[10], we have

O(r‘z),cmio; »
r(z)-r(7)= o) 6. -0, (4.4)

if the evolution is hyperbolic-elliptic, and

()=r, (7) O(z”l),cm #0;

r(r)-r(7)= (4.5)
0(7_2/3),cm =0,

if the evolution is parabolic-elliptic.

It turns out that Theorem 1 provides a possibility to
correct equalities (4.4) and (4.5) respectively. In par-
ticular, we can obtain the following statement.

Corollary of Theorem 1. Let masses x (i=12,3)

Copyright © 2013 SciRes.

in the three-body problem be differentand T -U =h<0.
Then in cases of hyperbolic-elliptic and parabolic-
elliptic final evolutions, the following equalities are re-
spectively valid:

HE, :r(7)-r, (1)20(174/3) ¢, =0, (4.6)

PE :r(c)-r,(1)=0(c*).c., =0, (47)

i.e., going over to the limit, the modulus of the angular
momentum |rxv| of the bounded pair (z,4,) can not
exceed a positive constant.

Proof. Let us suppose the contrary, ¢, =0, and
consider the limit energy integral for the pair (,ul,,uz)

2
fubl, v
e Y M2 h, <0, (4.8)
bty 2 |r|

which, in its turn, can be rewritten in the form

) |r|’2+(”v)2 S )
2 |t |r|2 |”| "~

Since h._ <0, due to (4.9) we have

1 |c”°|2 _2 <0
(:ul+/u2) |r|2 |"| ,

and this implies

lev.
2(/“1 + 4, )

In accordance with inequality (4.10), we conclude that
if ¢, =0, then hyperbolic-elliptic and parabolic-elliptic
final evolutions are accompanied by a distal motion.
However, according to Theorem 1, for T-U =h<0
the distal motion with a fixed bounded pair is Lagrange
stable. We obtain a contradiction and this implies that the
corollary is true.

|| > (4.10)

5. Conclusion

Summarizing the above represented results, we can state
that the key requirements of the proved theorem that
provide Lagrange stability are existence of a pair of
points that are Hill stable and distality of the movement.
Unfortunately, the problem of choice of initial conditions
and parameters of the system that provide the distal
movements is still open. In this relation, it is interesting
to note that conditionally periodic motions, the existence
of which in the three-body problem is proved in the
Kolmogorov-Arnold-Moser theory, belong to the class of
distal motions. This means that Theorem 1 is construc-
tive. Corollary of Theorem 1 deepens our understanding
of hyperbolic-elliptic and parabolic-elliptic final evolu-
tions in the three-body problem.
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