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ABSTRACT

An inequality describing the difference between Gamma and Gaussian distributions is derived. The asymptotic bound is
much better than by existing uniform bound from Berry-Esseen inequality.
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1. Introduction
1.1. Problem

We first introduce some notations. Denote Gamma dis-
tribution function as

F(k,x):ﬁjtk‘le‘tdt (1)
0

for k>0 and x>0, where F(k) is the Gamma
function, i.e.,

(k)= [t"e"dt.
0
Assume I'(k,x)=0 for x<0. The density of chi-
square distributed random variable y, with n degrees
of freedom is

n, X
x2 e 2,for x>0,

0, otherwise.
It is well-known that the random variable y, can be in-

n
terpreted by y, = 7 with n independent and iden-
K

tically distributed (i.i.d.) random variables 7, ~ N (0,1),
k=1,2,---,n where N (0,1) denotes the standard
Gaussian distribution. The mean and variance of y, is
respectively

Ex,=n,E(z,-n) =2n.

Then, by simple change of variable we find
Zn—N nn \/ﬁ
P <X |=T| =, =+ X = | 2
[ \2n } [2 2 ZJ @)
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On the other side, by the Berry-Esseen inequality to
{(nkz—l)/x/z,kzl,n-,n}, it is easy to find a bound
C >0 such that

<—7= 3)

Xn — n
P <X|-D(x) L )
{ V2n } (x) Jn
where @(x) is the standard Gaussian distribution func-
tion, i.e.,

C

2
1

o(x)= | T e 2dx. )

Then, by Equations (2) and (3) it follows

53 ool

—ﬁv (5)

which describes the distance between Gamma and Gau-
ssian distributions. The purpose of this paper is to derive
asymptotic sharper bound C in Equation (5), which much
improves the constant C by directly using Berry-Esseen
inequality. The main framework of analysis is based on
Gil-Pelaez formula (essentially equivalent to Levy inver-
sion formula), which represents distribution function of a
random variable by its characteristic function.

The main result of this paper is as following.

Theorem 1.1 A relation of the Gamma distribution (1)
and Gaussian distribution (4) is given by

C(n
stip F[g,g+ X\/gJ—CD(X) < \;ﬁ)’ (6)
where
1
C(n)—ﬁ'f'cl(n),
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1 3

C,(n)= +
(n) 3Jmn’ 2427
%
+\/ﬁe 2 +\/ﬁ(n1_n0) 2

+
2 2
N

n 12 1
with nlz\/; and n,=n®3 forany 56(0,5).

Clearly, Cl(n)—>0 as Nn—oo . Thus, the asymp-
totical bound is

1
3Jn

as N — oo . To check the tightness of the limit value of
C(n), we plot in Figure 1 the multiplication

\/ﬁ_\/ﬁsilz\ﬁ F(g,g+ x\/gJ—cD(x)

for n=1,2,---,200, where the straight line is the limit

=0.1881---

C(n)—>

value ! From this experiment it seems that !
W 3Wn
is the best constant. The tendency of the theoretical
formula C(n) is plotted for ne[1,10]x10" in Figure
2, which also shows the tendency to the limit value

1
3Wn
formulated over interval [n,,n] have been weakly es-
timated, e.g., the third and fourth terms of C, (n).

. The slow trend is due to that some upper bounds

1.2. Comparison to the Bound Derived by
Berry-Esseen Inequality

Let {X,,X,,~} be a sequence of independent identi-
cally distributed random variables with EX; = 0 EX12 =1
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Figure 1. Experiment.
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Figure 2. Trend of C(n).

and finite third absolute moment y, = E|X1|3 <o . De-

note
X+ + X,
<

o]

By classic Berry-Esseen inequality, there exists a finite
positive number C, such that

Fn(x)—®(x)|£%. ™

d(F,,®)2sup

The best upper bound C, <0.4785 is found in [1] in
2009. The bound is improved in [2] at some angle in a
slight different form as

cp)g& (8)

(R )< -

with
C, =min{0.33477(y, +0.429),0.3041(y, +1)}.

The inequality (8) will be sharper than Equation (7) for
7, 21.93.
Now let us derive the constant C in (5) by applying

Berry-Esseen inequality to {(77,(2 —1)/\/E,k = 1,2,---}. It
is difficult to calculate the exact value of third absolute
moment of the random variable (7712 —1) / 2. Thus, it is
approximated as
3
e
3 2 \/5

by using Matlab to integrate over interval [O,IOO] di-
vided equivalently 100,000 subinterval for its half value.
By Equation (7) with C;, =0.4785 we have

C,7s =1.4705--

=3.0731---

and by Equation (8) we have
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C, =1.1724---.

Hence, the best constant C in Equation (5) by ap-
plying Berry-Esseen inequality is 1.1724---. Obviously,
the limit bound

limC (n) = —— = 0.1881--

n—oo 3 \/E
found in this paper for chi-square distribution is much
better.
The technical reason is that the Berry-Esseen ine-
quality deals with general i.i.d. random sequences with-
out exact information of the distribution.

2. Proof of Main Result

Before to prove the main result, we first list a few lem-
mas and introduce some facts of characteristic function
theory.

2.1. Some Lemmas

Lemma 2.1 For a complex number z satisfying |z <1,
e’ —1| <|z|(1+]2]).
Proof First show that

ez—l—Z|S|Z|2.

By Taylor’s expansion and noting |Z| <1, we have

2 N2 2 |2
e —1—Z|— éﬁ Sé%
sﬁi(ﬂy <|[’
2 &l 2
Together with
ez—1|—|z|£ ez—l—Z|,

the assertion follows.
Lemma 2.2 For a real number x satisfying |x| <1,

. .
(I+xi)x = exp(l—§+ R, (X)j,

where i is the imaginary unit and

Clearly,
1 1
IR, (%) s§|x|2 +Z|x|3.

Proof. By Taylor expansion for complex function, for
|x| <1 we have
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Xi
=1—5+ R3 (X),

where R, (X) is shown above. By further noting the two
alternating real series above, it follows the upper bound.
We cite below a well-known inequality [3] as a lem-
ma.
Lemma 2.3 The tail probability of the standard nor-
mal distribution satisfies

x 1 bt e 11 Le
" j e? dt<—- "

V2 X \2m

12
e? <

1+ 2

for x>0.

2.2. Characteristic Function

Let us recall, see e.g., [4], the definition and some basic
facts of characteristic function (CF), which provides
another way to describe the distribution function of a
random variable. The characteristic function of a random
variable X is defined by

oy (t) = Ee™,

where i1 is the imaginary unit, and te R is the argu-
ment of the function. Clearly, the CF for random variable
Y =aX +b with real numbers a and b is

@, (1) =0, (at)e™.
Another basic quality is
?; (t) =0y (t)% (t)
for Z=X+Y with X and Y
other.
It is well-known that the CF of standard Gaussian
N(0,1) is

independent to each

p(t)=c ©)

and the CF of chi-square distributed variable y, is
0, (0)=(1-2i) .

-Nn
Thus, the CF for S = Ll is

J2n

. -g it
%(UZ[I—\/\/EHHJ e .

The CF is actually an inverse Fourier transformation

(10)
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of density function. Therefore, distribution function can

be expressed by CF directly, e.g., Levy inversion formula.

We use another slightly simpler formula. For a univariate
random variable X, if X is a continuity point of its
distribution F, , then

—1t>< (Dx (t)

:l+TeltX§0x )
25

dt, 11
2mit (b

which is called Gil-Pelaez formula, see, e.g., page 168 of
[4].

2.3. Proof of Main Result

We are now in a position to prove the main result.

Proof of Theorem 1.1 First analyze CF of S = 0"

J2n
given by Equation (10). Denote X = —@. For |X| <1,
Jn
ie., t| < \/g , by Lemma 2.2,
0 )W2it 2o Y
ws(t){l—ﬁltJ e
ol (12)
2
_exp(—z-l- R, (t)],
where
Jnit
R, (t)=fR3( )
__Jnit(x %
V213 5
_Jnt(x X
L2014 6
Clearly,

|ﬁ3<t>|s%(§|xr+§|xrj
it
N

To make sure |F_23 (t)|<n"" for some &¢€(0,0.5),

15
denote n, =n® 3. Then, it is easy to see that

= o <32,

R

IR, (1)< Sh "
(21 L<L<1
{3 2/n® n®"
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for |t| <n,
Lemma 2.1,

. Hence, by Equations (12) and (13) and

2

|(pS (1) —¢(t)| e 2

eR3() 1‘
(14)

1S}

e _ 2
2|R )|(1+|R3(t)|)§ 2(1+n )|R |
for |t|£n0.

Now let us consider the difference between g (t)
and ¢(t), i.e., the CF (9) of Gaussian distribution, over
the interval [0,n,]. By Equation (14)

J' ﬂlx(‘ﬂs() ¢(t))dt

I/\

0 2mit
I TAURIG ST e IO/
0 2mt B 21 0 t
1+n°| 2 ™ -
< 2n [3\/5-[ d + .H | ]
Note that

© t2
jtze 2dt = ,
0

) t?
@,Htf e 2dt =—3“/2ﬂ
0

it follows
1 (o 0-00)
5 2mit
(15)
Len [ 1, 3 }
Jn |6vn 42an
Similarly,
J' ™ (¢ (1)~ ¢(_t))dt
0 2mit
(16)

_L+n [ 1, 3 }
~ Jn L6V 42mn |
Below let us analyze the residual integrals over the
interval [n,,). By Lemma 2.3,

t2
0 e—itx t o T
[ ﬁdt <[S—dt
h  2mit h 2t
- 2 17)
1 fe? e 2
dt< .
2z, o V21 2mn;
Similarly,
o
. 18
r;[ ant 271:n (1)

It is somewhat difficult to analyze the residual integral
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over [ny,0) for ¢ (t). We divide it into two subin-
tervals as following:

n n

V2it| 2 22\ 4
1—7 dt 1+— | dt
Jn n

: r{ 2mt

—1t><

dt <

2mt

S =38

ﬁ[ 2n1t

n

2\g
1+2t] dt

=1, +1,,

=(I$;'+I§f)[

n

where n, = \/g .
2t

Observe that :[1+—J decreases on interval
n

X+1
[no,nl] and (1+—) >e for x>1, we have
X

2l < — 1=
2 \4
n
n —ny n—n
- n 8(ng)
[ 2n§][zn.%”]b(”“) Mo
n| 1+
n
where
n
n nn nn n’
s(ny)=—3—=—2" > 00
1+L2 2(2n0+n) 2(2n+n) 6
2n

The fact n; <n isused in above formula. Thus,

| <= (19)
27rrloe”"/6

-N

For the other interval [n,,), we proceed as

27, j <

n, 2 n 2 %
20 2
n n (20)
_ (E) " ar- [nj .2(2}4 _2
2) 5 2) n2 n

By Equations (19) and (20)
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—itx

te t n —n

[ 25 (V) gl < o 1 @1)
p 2wt 27n,e™ /o nx

Similarly,
© ltX
n,—n

j L L (22)
o 27t1t 21tr1oe"°/6 n

By Equation (15), Equation (17), Equation (21) and
Equation (16), Equation (18), Equation (22)

p(-t)]-e™[os ()¢ (V)]

2mit

dt

Tenx [q)s (-t)-

e Los(-1)-¢(-1)]

dt
0 2mit
[, ()-9(0)] |_c(n)
+'(|; 2mit dtg\/ﬁ’
where
1
C(n)zm-l-cl(n),
C(n)=—»t 43
T 3dan? 242

i
Jne 2 Vn(n-n,) 2
+ —+ = + .
M, nn,e AL

In view of Formula (11) , the formula to be proved fol-
lows directly.

REFERENCES

[1] I S. Tyurin, “On the Accuracy of the Gaussian Approxi-
mation,” Doklady Mathematics, Vol. 80, No. 3, 2009, pp.
840-843. doi:10.1134/S1064562409060155

[2] V. Koroleva and 1. Shevtsova, “An Improvement of the
Berry-Essen in Equality with Application to Possion and
Mixed Poison Random Sums,” Scandinavian Actuarial
Journal, Vol. 2012, No. 2, 2012, pp. 81-105.
doi:10.1080/03461238.2010.485370

[3] R.D. Gordon, “Values of Mills’ Ratio of Area to Bound-
ing Ordinate and of the Normal Probability Integral for
Large Values of the Argument,” The Annals of Mathe-
matical Statistics, Vol. 12, No. 3, 1941, pp. 364-366.
doi:10.1214/aoms/1177731721

[4] K. L. Chung, “A Course in Probability Theory,” 3rd Edi-
tion, Probability and Mathematical Statistics, Academic,
New York, 2001.

AM


http://dx.doi.org/10.1134/S1064562409060155
http://dx.doi.org/10.1080/03461238.2010.485370
http://dx.doi.org/10.1214/aoms/1177731721

