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ABSTRACT

We applied two daily average temperature models to Canadian cities data and derived their derivative pricing applica-
tions. The first model is characterized by mean-reverting Ornstein-Uhlenbeck process driven by general Lévy process
with seasonal mean and volatility. As an extension to the first model, Continuous Autoregressive (CAR) model driven
by Lévy process is also considered and calibrated to Canadian data. It is empirically proved that the proposed dynamics
fitted Calgary and Toronto temperature data successfully. These models are also applied to derivation of an explicit
price of CAT futures, and numerical prices of CDD and HDD futures using fast Fourier transform. The novelty of this
paper lies in the applications of daily average temperature models to Canadian cities data and CAR model driven by

Lévy process, futures pricing of CDD and HDD indices.

Keywords: Weather Derivatives; Mean-Reverting Process; Lévy Process; Continuous Autoregressive Model; Fast
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1. Introduction

Over the last decade, weather derivatives have emerged
as an attractive and interesting new derivative class for
risk management and other related fields. Since the pur-
pose of weather derivatives is to allow businesses and
other organizations to insure themselves against fluctua-
tions in the weather, a number of insurance, reinsurance
companies, banks, hedge funds and energy companies
have set up weather trading desks. It is obvious that there
are close connections between energy and weather, for
example, a natural gas distributor may want to buy
weather derivatives to ensure profits in case of a warm
winter in which consumers will buy less gas for heating
purpose. Hence, weather derivatives will provide a fi-
nancial instrument for companies or organizations to
avoid some unzealous impact of the “bad” weather ef-
fects and control the weather risks. Also, additional in-
struments for hedging in the energy markets require
quantitative models of both energy and weather deriva-
tives included.

The weather derivatives market, in which contracts
written on weather indices was firstly appeared Over-the-
counter (OTC) in July 1996 between Aquila Energy and
Consolidated Edison Co. from United States. After that,
companies accustomed to trading weather contracts based
on electricity and gas prices in order to hedge their price
risks realized by weather during the end of 1990s and the
beginning of 2000s. Consequently, the market grew rap-
idly and expanded to other industries and to Europe and
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Japan. Reported from Weather Risk Management Asso-
ciation (WRMA), an industry body that represents the
weather market, recently, the total notional value of the
global weather risk market has reached $11.8 billion in
last year. With geographic expansion, the OTC market
boosted nearly 30% in last year. In this article, we will
concentrate on the futures market of temperature deriva-
tives found at the Chicago Mercantile Exchange (CME),
which is one of the largest weather derivatives trading
platforms. Up to now, the CME has weather futures and
options traded based on a range of weather indices for 47
cities from United States, Canada, Europe, Australia and
Asia.

As a common sense, weather affects different entities
in different ways. In order to hedge these different types
of risks, weather derivatives are written on different
types of weather variables or weather indices. The most
commonly used weather variable is the temperature.
Widely used temperature indices include cumulative av-
erage temperature (CAT), heating degree days (HDD)
and cooling degree days (CDD). They are originated
from the energy industry, and designed to correlate well
with the local demands for heating or cooling. CAT are
defined as the sum of the daily average temperature over
the period [7,,7, ] of the contract, the index

CAT=37 T(t)= j:T(t)dt where T(t) is the daily

average temperature. It is mainly used in Europe and
Canada. In winter, HDD are used to measure the demand
for heating, i.e. they are a measure of how cold the
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weather is and usually used in United States, Europe,
Canada and Australia. In contrast, CDD are used in sum-
mer to measure the demand of energy used for cooling
and a measure of how hot the weather is. They are usu-
ally used in United States, Canada and Australia. The de-
finitions for HDD and CDD are given by

HDD := max (T (t)-c, O) and CDD := max (C—T (1), O) ,

where the threshold ¢ takes value of 65°F(18°C).

The pricing of a given weather derivative by calculat-
ing the expected value of its appropriately discounted
payoff is inherently related to weather forecasting and
simulation (see Zeng [1] and Cao and Wei [2]). The
conventional approach is to identify the probability dis-
tribution of the associated index at maturity, and then
integrate the payoff of the derivative with respect to it.
Dornier and Queruel [3] characterized weather dynamics
by mean-reverting It6 diffusions, driven by a standard
Brownian motion, and then resorted to Monte Carlo
simulation. Davis [4] used the geometric Brownian mo-
tion to model the accumulated HDDs (or CDDs). Brody
et al. [5] proposed to replace the traditional Brownian
motion by a fractional Brownian motion, leading to a fra-
ctional Ornstein-Uhlenbeck, allowing incorporate a long
memory effect. Benth [6] used the Fourier transformation
technique to get the explicit expressions of European and
average type of weather contracts, and also showed the
pricing formulas satisfy certain Black-Scholes PDE.
Benth and Saltyté-Benth [7] proposed an Ornstein-Uh-
lenbeck model with seasonal mean and volatility, where
the residuals are generated by the class of generalized
hyperbolic Lévy process rather than Brownian motion
family. The process they used is a flexible class of Lévy
process capturing the semi-heavy tails and skewness
properties of residuals. A similar model driven by Brow-
nian motion was applied for pricing CAT, HDD and
CDD futures in Benth and Saltyté-Benth [8], they also

gave discussions about options written upon these futures.

Benth et al. [9] generalized the analysis in the above OU
model to higher-order (with lag p) Continuous-time
Autoregressive models with seasonal variance for the
temperature, and they found the choice of p = 3 turns out
to be sufficient to explain the temperature dynamics in
Stockholm, Sweden by calibrating the model to more
than 40 years of daily observations. More recently,
Zapranis and Alexandridis [10] began proposing using a
time dependent speed of mean reversion parameter in the
Ornstein-Uhlenbeck model and use neural networks to
estimate the parameters.

The remaining of this article is organized as follows:
In Section 2, we firstly apply existed Lévy driven mean-
reverting model to the modeling of temperature index of
Canadian temperature data, and then present Lévy driven
CAR model and its application to Canadian data. In Sec-
tion 3, we develop the futures pricing techniques with
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respect to weather futures of CAT, CDD and HDD based
on the established two models. Finally, in Section 4, we
illustrate the concluding remarks and some possible fu-
ture research in this direction.

2. Modeling of Weather Index
2.1. Lévy Driven Ornstein-Uhlenbeck Model

As our first proposed model, consider the weather index
T (t), which is the daily average temperature (DAT). We
suppose the DAT has a generalization of the dynamics:

dT (t) =ds(t)+x(T(t)-s(t))dt+s(t)dL(t), (1)

where s(t) is the seasonal mean level across years
given days and x is the speed in which T (t) revert to
s(t). o(t) isassumed to be a measurable and bounded
function represents the seasonal volatility of temperature.
L(t) is cadlag, adapted, real valued Lévy process with
independent, stationary increments and stochastically
continuous. For formal definition of Lévy process, we
refer the reader to the introduction paper by Papapan-
toleon [11]. This model was firstly introduced by Dornier
and Queruel [3] with Brownian motion. We will firstly
apply this model with Lévy process to Canadian tem-
perature data.

From Equation (1), we can directly use [t6 formula for
semimartingales to get the explicit solution

T(t)=s(t)+(T(0)-s(0))e"
¢ - 2
+,[OO'(U)CK( )dL(u).

For the purpose of fitting this model to our daily aver-
age temperatures, we reformulate Equation (2) by sub-
tracting T(t) from T(t+1),

AT(t)= As(t)—(l —eK)(T (t)-s(t))

+e”'ftt+10'(u)eK(t_u)dL(u) ®
with the notation AX(t):=X(t+1)—X(t). The sto-
chastic integral could be approximated by
AT (t) = As(t)—(1-¢*)(T(t)-s(t)) W
+e“o (t)AL(t).
Adding T(t)-s(t):=T(t) toboth sides
f(t+1):e”f(t)-i—e"a(t)g(t). (%)

If we define &:=¢"o(t)&(t), we will have the fol-
lowing three parts for modeling T (t) step by step:

T(t) e s(t)+c(t)+2(t), (6)

where s(t) is the seasonal component, c(t) is the cy-
clical component derived from Equation (5), and z (t)
is the stochastic part.
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The data sets we are going to analyse include daily
average temperatures (measured in centigrade) from Cal-
gary, AB and Toronto, ON in Canada. The choice of
these two cities is intuitively based on the location and
importance of these cities. These data are provided by the
Canadian National Climate Data and Information Ar-
chive (NCDIA) over a period ranging from January 1%
2001 to January 1* 2011, resulting in 3652 records for
each city. For simplicity, the measurement on each Feb-
ruary 29" was removed from the sample in each leap
year to equalize the length of each year.

2.1.1. Linear Trend

Empirically, the daily average temperature should have
an increasing trend due to some reasons such as global
warming, green-house effect and so on. However, from
Figure 1, we cannot verify significant linear trends for
both data sets. The slopes for linear fitting of Calgary and
Toronto are 1.346x10™* and 1.806x10™* respectively.
A potential explanation to this is that our sample size is
reasonably small with a period of 10 years data. Larger
sample size will show us relatively more significant
increasing trend using least square fit. Hence, at this
stage we will ignore the linear trend, and keep a constant
mean level in the seasonal trend.

2.1.2. Seasonal Trend
In order to model the seasonality pattern, we use the
trigonometric function with the form

. [ 2=m
st)-a +asn[ (1)) )

where &, is the mean level, & is amplitude of the
mean. The period of the oscillations is one year (365

days neglecting leap year), so the weight a):%. t

represents the phase angle. The results of parameters

estimation using least square method are reported in Ta-
ble 1.

2.1.3. Cyclical Component
To remove the adjacent correlation in the time series,
make the time series stationary, we model the cyclical

component by recursive regression based on Equation (5).

The cyclical component c(t) can be modeled by:
c(t)=e"T(t)=e"(T(t)-s(t)), ®)

The results of e” estimated implicitly by an autoregres-
sive model and corresponding R* are given in Table 2.

The autocorrelation function (ACF) plots for the
squared residuals in Figure 2 clearly reveal seasonality
of correlation for both cities. In the squared residuals
ACF plots, the autocorrelation violated 95% interval
for lots of lags, and the wave for the ACF is a sign of
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Figure 1. Linear trends of Calgary and Toronto.

Table 1. Estimated parameters for seasonal function.

Parameters Calgary Toronto
a, 4.614 8.924
a -12.03 -13.67
t, —72.85 —67.83
R 0.6753 0.8331

Table 2. Estimated parameters in regression.

Parameters Calgary Toronto
e* 0.7858 0.7018
R 0.6172 0.4924

seasonal pattern.

2.1.4. Seasonal Volatility

We consider the seasonal pattern in the residual after re-

moving the cyclical component as the seasonal volatility.

The motivation behind seasonal volatility is straight for-

ward. The temperature appears bigger variation in the

winter and smaller variation in the summer. By Equation

(5), the random term has the form ¢“o(t)e(t). To get

the seasonal volatility o (t), we have the following

methods:

e Organize the data into 365 groups, one for each day
of the year;

e Find the means of the squared data in each group.
These means are crude estimation for the expected

squared data. o (t)= E[(a(t)s(t))zJ ;

e To smooth the estimation, first way is trying the
smoothing technique. In details, we could take loga-
rithm of the estimation and use moving average
method to smooth the crude estimation. Then the
smoothed estimation of o7 (t) could be get by ex-
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Figure 2. Empirical ACF after regression.

ponentiation of the result. Alternatively, use the trun-
cated Fourier series (9) to fit the estimation from pre-
vious two steps. The Fourier series will indicate the
presence of different cycles in o (t) as a determi-
nistic function.

o(t)=¢ +i§l;(c2i sin(iwt) +c,., cos(iwt))  (9)

Figure 3 shows the fitted and smoothed o-(t) by
three days moving average technique. More average
smoothing range will make the estimation smoother, but
for our Canadian temperature study, the variation of the
temperature in more days would be relatively larger than
that of three days. Hence, the choice of three days mov-
ing average makes sense for both the smoothing and ac-
curacy purpose.

After removing the estimated seasonal volatility, the

ACEF for the data and squared data are plotted in Figure 4.

It shows that the seasonality pattern is completely re-
moved from the squared data.

On the other hand, we also tried the way of fitting the
crude seasonal volatility by truncated Fourier series with
other three. The values of the estimated parameters are
given in Table 3.

Corresponding fitted results are shown in Figure 5.

Again, the seasonal pattern in the ACF plot was re-
moved from Figure 6. So, we could find that both meth-
ods can model the seasonal volatility appropriately.

2.1.5. Random Noise
Then we head to fit the random part £(t) remained from
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Table 3. Truncated fourier series parameters.

c c, c, w
Calgary 4.424 1.633 0.1912 0.0167
Toronto 4.33 1.082 0.2108 0.0153

above. The classical literatures of temperature modeling
suggest the random noise are independent and identically
normal distributed, (see Dornier and Queruel [3], Alaton
et al. [12]). However, we could see from the QQ-plot and
normal fit of the random noise for our data, the normal
distributed random noise may lead misdescription to the
data. Moreover, modeling of random noise using Gaus-
sian process is not always the case.

Instead, we try to apply the generalized hyperbolic
family process to model the random part for our data,
based on Benth and Saltyté-Benth [7]. As the name sug-
gests, it is super-class of processes such as normal-inverse
Gaussian, variance-gamma, hyperbolic and so on. This
will allow the family better capture the features of the
data set and relatively easy to analyze from the Lévy
properties it holds.

The generalized hyperbolic distribution is an infinitely
divisible distribution which can be defined with the den-
sity function

gh(xA,a,p,6, 1)
=a(4,a,B,0)(6" +(x-u

x K,y (0{,/52 +(X—,u)2 )exp(ﬁ(x—,u))

2(4-1/2)/2
)
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Figure 3. Empirical and smoothed seasonal variation.
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Figure 4. ACF after removing seasonal variation.
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where K, is modified Bessel function of the third kind
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with index S. Parameters of the generalized hyperbolic
distribution can be estimated by maximum likelihood
method. In detail, for a vector of observations

X={X,", %}, the maximum likelihood estimate of the
parameters ¢ =(A,a,f3,5,4) can be obtained by maxi-
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Figure 6. ACF after removing seasonal variation.

mizing the log-likelihood function for generalized hyper-
bolic distribution:
L ( X; 9)

= log(a)+/1_Tl/2izn;10g(52 +()§ _,U)z)

xﬁ;log(K“ (a./&z +(x% —u)’ D+ﬁ()§ - p).

Copyright © 2013 SciRes.

McNeil et al. [13] described a modified EM method,
which is called multi-cycle, expectation, conditional es-
timation (MCECM) algorithm to optimize the log-like-
lihood function. We use this algorithm written as “ghyp”
package in “R” to estimate parameters. Estimated pa-
rameters are presented in Table 4.

In order to check the goodness of fitting, we simulated
a series of generalized hyperbolic distributed random
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Table 4. Estimations of generalized hyperbolic parameters.

A a B o H
Calgary 27.55 26.50 -21.70 0.72 5.39
Toronto 16.81 31.33 24.82 7.49 -10.96

variables using estimated parameters, and plotted the em-
pirical cumulative distribution function, then compared
with our residual observations’ empirical cumulative dis-

tribution function plot. The results are shown in Figure 7.

The result implies our calibration to the model is rea-
sonably fair for Canadian data.

2.2. Lévy Driven Continuous-Time AR Model

Another suitable class of stochastic process we could use
to analyze the evolution of temperature is an extension of
the previous OU process to the multi-factor OU process.
The model is called Continuous-time Autoregressive
(CAR) model, which is also a subclass of the general Con-
tinuous-time Autoregressive Moving-average (CAR-MA)
model introduced by Brockwell and Marquardt [14]. The
intuition behind using this model is the temperature
memory is consistent with high-order AR model, and the
seasonality of mean and volatility is also involved in the
model. In other words, the CAR model combine the
mean-reverting property of OU process and the memory
of AR model together to better capture the features of
temperature.

Empirical CDF
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Followed by the classical stochastic assumption, sup-
pose given a probability space (Q,F,P). Let Y(t) be
a stationary solution to the stochastic differential equa-
tionin RP for p=>1.

a(D)Y(t)=o(t)DL(t), (10)
where the operator D denotes the differential operator
with respect to t, a(D)=DP+¢, D" +--+a, is the

p-order differential operator and {L(t),t > O} is 1-dim
Lévy process. Let X (t) be a column vector defined as

X (£) = (X, (1), X, (£).. X, (1)) -

We could also rewrite the Equation (10) in the state-
space form.

Y(t)=¢€-X(t)=X(t), (11)
dX (t)= AX (t)dt +e,o(t)dL(t), (12)
0 1 0 - 0 0
0 0 1 0 0
A= : St oLe =
0 0 (| 0
_ap _(Zp71 —a p-2 cee _al 1

The vector X (t)e RP is usually recognized as state
vector. The standard deviation of the noise is described
by a continuous function o (t)>0, we usually refer the
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Figure 7. CDF of simulated series and observations.
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function O'(t) as the volatility of the process Y(t) .
The constant p denotes the order of the CAR model.
Assume additionally the seasonal function
A(t):[0T]> R is bounded and continuously differen-
tiable on t. The temperature dynamics is formulated by:

T(t)=A(t)+Y(t), (13)

where Y(t) is the first entry of the state vector X (t)
in Equation (11). Note that for Equation (12), since we
have the function A(t) to capture the deterministic
temperature level, the OU process should ideally revert
to zero. This is the main reason we have only the mean-
reverting rate A but without level in dynamic of
X (t).

Again, by using the It lemma for semimartingale, the
explicit solution for the stochastic differential Equation
(12) has the form

X ()= "X (0)+ [4 e o (u)dL(u)  (14)

If we construct the expectation of the Wiener-Lévy in-
tegral in Equation (14) equals to zero (it is obviously true
for the Itd integral in the special case), once all eigen-
values of the matrix A have negative real parts, the
process X(t) then have a mean equal to zero. We
could still use simple intuition to have the idea, when
eigenvalues of the matrix A have negative real parts
and take t— +o0,e™ — 0, then the expectation goes to
zero. This result implies the temperature dynamic on
average will mainly depend on the seasonal function
A(t) by Equation (13).

Notice that we could have a link point of view to this
CAR model from the previous OU model. Consider
CAR(1) model as an example. In this case, p=1 in
Equation (12), the matrix A will simply becomes a
constant —¢, . The process X, (t)=Y(t), and by Equ-
ation (14), the temperature dynamics

T(t)=A(t)+e X, (0)+ [ e Mo (u)dL(u).

Our proposed CAR model is therefore consistent with
the single-factor OU model and also satisfies the require-
ments of regression and mean-reverting properties. For
simplicity of estimation, we connect our CAR model to
the classical AR model. Benth et al. [15] (Lemma 10.2)
provided an explicit way to find the relation between the
coefficients ¢; in CAR model and B in AR model by
induction as

ZE:O(_I)k & X, (t +P- k) == ::1 Apgel
(D) X, (t+g-1-k

k=0

(15)

with coefficients ¢/

:CE:ll CE_I kzls'”ap_ls qzza
and initially ¢} =cf =1,q P
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Next, we will recap the calibration procedure to the
same empirical Canadian daily average temperature data
based on the CAR model.

2.2.1. Linear and Seasonal Trend

As we did for OU model in Section 2.1.2., we could
combine the linear and seasonal trend in the OU model to
construct the seasonal function A(t) in CAR model as

. [ 2m
A(t)=a,+at+a, sm(%(t—to )j. (16)

The coefficients for trigonometric function in Equation
(16) play the same role in Equation (7). Followed by the
description of linear trend in Section 2.1.2., we elimi-
nated the linear part in A(t) again for CAR model, and
the fitted results for seasonal part are the same to that in
Table 1.

2.2.2. Cyclical Component
The PACEF plots in Figure 8 clearly show that the evo-
lution of detrended temperature Y (t)could be modeled
by the classical AR(3) model. Motivated by the PACF
plots, by Equation (15), we have b =3-¢,,
b =20 -a,-3, b=a,+1-0 -0,
The estimated parameters are outlined in Table 5.
PACEF plots in Figure 9 show the significant correla-
tion in the first three lags is removed by regression, but
still a distinct seasonality in the ACF plots of squared
residuals.

2.2.3. Seasonal Volatility

For the CAR model, we will apply the truncated Fourier
series in Equation (9) to model the seasonal volatility.
We choose the degree N = 1 in Equation (9), since there
is no significant improvement for the result by adding
degree. The fitted parameters are shown in Table 6.

In Figure 10 we present the empirical o(t) and
fitted o(t), both of them show that the fluctuation in the
cold season are considerably larger than that of the mild
season.

Figure 11 tells us that seasonal pattern in the
squared residual is removed successfully.

Table 5. Estimations of cyclical component.

b b, b,
Calgary 0.9520 -0.2796 0.0967
Toronto 0.8243 ~0.2373 0.1059

Table 6. Truncated Fourier series parameters.

Cl CZ C! w
Calgary 13.13 8.529 0.6149 0.01636
Toronto 9.712 4.307 0.6857 0.01491
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Figure 8. Empirical ACF and PACF.
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2.2.4. Random Noise

We try again apply the generalized hyperbolic process to
model our random noise part. The method is the same to
that for OU model. Table 7 shows the fitted parameters
for our Canadian cities data.

Also as we did for OU model, we simulated a series of

Copyright © 2013 SciRes.

generalized hyperbolic random variables with estimated
parameters, then compare the empirical CDF with that of
historical data in Figure 12. The empirical CDF coin-
cides with simulated CDF almost perfectly, so we may
expect this model fairly well describe our Canadian
temperature data.

JMF



90

A. SWISHCHUK, K. CUI

50
45

+ Estimation variation for Calga
‘Truncated Fourier series fit

+ Estimation variation for Toront
=—Truncated Fourier series fit

Figure 10. Empirical and fitted seasonal volatility.
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Figure 11. Empirical ACF plot of squared residuals.

3. Pricing of Weather Derivatives

In this section, we will derive the temperature futures
prices written on CAT, CDD and HDD, which constitute
the three main classes of future products at CME market.

3.1. Future Pricing of Lévy Driven OU Model

Consider the price dynamic of future written on CAT
over specific time period [7;,7,], with 7,<7,. Firstly,

Copyright © 2013 SciRes.

assume the daily average temperature follows stochastic
differential Equation (1) with L(t) being Lévy process
and constant continuously compounding interest rate I.
The future price at time 0<t<7, based on CAT under
risk-neutral probability measure Q will be F, adapted
stochastic process Fe,; (t,7,,7,) satisfying

e-'(TZ“)EQ[ :T (u)du-Fe. (t,7,,7,) | F, } =0. (17
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Table 7. Estimations of generalized hyperbolic parameters.

y) a B ) M
ryCalga 8.65 4.28 -1.00 0.59 1.02
Toronto 4.24 2.95 -0.12 0.41 0.13

By adaption of the stochastic process Fe.;(t,7,,7,)

with respect to measure Q, the future price
FCAT(t,rl,rz):EQ[leT(u)du|Ft} (18)

To derive the explicit future price in Equation (18), we
need to specify a risk-neutral probability measure Q.
However, the commodity market is typical incomplete
market, since most of commodity trades impose big
transaction and storage cost. For our case, the underlying

temperature is even not possible to be stored and traded.

These features break down the classical hedging ap-

proach used to derive the unique fair price of derivatives.

Because of the incompleteness of the temperature market,
any probability measure Q being equivalent to the real
measure P is a risk-neutral measure. Next, following the
analysis in Benth and Saltyté-Benth [16], we will specify
a class of risk-neutral measure via Esscher transform.
Before using the Esscher transform, we need an inte-
grable condition for the Lévy measure to ensure the ex-
istence of moments of underlying asset process.

Condition 1. [Benth et al. ([15], p. 74)] Ik >0 such

tion f:[0,t]
tion and Condition 1 holds for k:=sup | f(s)

almost surely.
that is finite for the underlying process. With this condi-
tion, we recap the following results from several sources

The constant k determines the order of the moment
that we will use in our further analysis (see Section 3.2).

Lemma 1. [Benth and Saltyté-Benth [16]] Let func-
— R be a bounded and measurable func-
then

B

t t
E[exp(fo f (s)dL(s))} —exp([iw(f(s))ds). 20)
where w (u)=7(-iu) is the cumulant function of the
Lévy process L(t), n(u) is the Lévy symbol defined
by map R C such that the characteristic function of
the Lévy process ¢(u) e’
Now assume 6:[0,T]> R is a measurable and
bounded function. Let us consider the stochastic process

2! —exp([,0(s)dL(s) - [w(6(s))as). D)

The probability measure Q° can be defined by the
Esscher transform

Q' (A)=E[1,Z/], (22)
where 1, is the indicator function over a probability
space A. Obviously this measure is equivalent to the
real measure P, and transformed from the probability
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measure P, so an equivalent risk-neutral measure. A
way to get a more flexible class of equivalent martingale
measure is to use time varying 6 when fitting the ob-
served forward curve. Note that the market price of risk
is represented by @ in this case.

Then, consider the existence of the fair forward price
dynamics F,; (t,7,,7,) given by Equation (18). We
need to have another condition such that

E? Urz T(t)dt| FtJ is finite almost surely.
7

Condition 2. [Benth and Saltyté-Benth [16]] Assume
a constant k satisfies k=1+sup |6(s) such that
Condition 1 holds, then the price dynamics

E? Urz T(t)dt| Ft} <oo almost surely.
7

With the existence of explicit risk-neutral probability
measure and fair pricing technique, we could derive
the following results for the future price written on
CAT.

Lemma 2. [Benth and Saltyté-Benth [7]] Given a
measurable and bounded function f(t), the expecta-
tion of Lévy integral under risk-neutral measure over

[7,.7,] is
EQ| [T F(0)atIF, |=[7 f (0w (o(t))dt

With these lemmas, we could get the explicit formula
for the future price written on CAT.

Theorem 1. [Benth and éaltyté-Benth [7]1] The fu-
ture price F..; (t,7,,7,) at time t<7, <7, written on
CAT index is given by

Fear (t,T],TZ)

= J‘lz s(u)du+x (T (t)- s(t))(e’“(“") - e’“("’l))
w7 [P o (u)(e Y -1)p(0(u))du
—x! :‘a(u)(e”("’“)—l)z//'(e(u))du.

Next, for pricing of CDD and HDD futures, recall that
the CDD and HDD over a measurable time [7,,7,] is

CDD:J:2 max (T (t)- C,O)dt = J:z (T (t)—C)+ dt;
HDD:[ " max(c-T(t),0)dt = [*(c~T(t)) dt.

Before introduce the pricing technique for the CDD
and HDD future, we should notice that there is a parity
relation between futures prices of CAT, CDD and HDD.
This relation will help us to get one of future price of
CDD or HDD, once we have the CAT future price and
the other one of them.

Theorem 2. [Benth et al. ([15], p. 279)] The relation
between futures prices of CAT, CDD and HDD is

Feon *+ Fupp = C(Tz -7 )_ Fear- (23)

Copyright © 2013 SciRes.

With this theorem, we will focus on the pricing of
CDD future, but the pricing technique for CDD future is
also analogously applicable to HDD future.

Based on risk-neutral pricing theory, the CDD future
price satisfies

e*’(TZ*l)EQ

U (T(u)-c) du=Fepy (7,7, )| FJ 0

with risk-free interest rate r and risk-neutral measure
Q. Given the risk-neutral measure derived from Esscher
transform, since the CDD future under the measure is
adapted, the risk-neutral CDD future price is derived as

Foop (17,7, ) = E [jz (T(u)-c) du| Ft}, (24)
Theorem 3. [Benth and Saltyté-Benth [71] For
X(z):=][ o(t)e"dL(t),
E? [exp(iﬂx (r)):| =exp(¥(2)). the logarithm of cha-

racteristic function W(A) of X(7) under measure
Q’ is given by

¥(2)=[ v (2o(t)e ) —io(t))dt

~[w (o)

where y is the cumulant generating function of L(1).

This theorem provides us a way to get the characteris-
tic function of Lévy integral of the type X(7) under
the risk-neutral measure Q’. With the characteristic
function, the pricing approach we could try is using the
celebrated Fourier inversion theorem to get the numerical
probability density function of X(7) under Q’ mea-
sure, and then using the density function to price CDD
future.

Theorem 4. (Fourier Inversion Theorem) [Hewitt
and Stromberg ([17], p. 409)] Let F(x) denote the
cumulative density function of random variable X (z’),
the corresponding probability density function f(x) is
integrable in Lebesgue sense, i.e. f(x)e L. The char-
acteristic function of X (z) is defined as

#(t) = jj: e™f (x)dxe L. Then,

(25)

f(x)= € e g(t)dt
o (26)
_ i
- [T ™p(t)dt.
To calculate the probability density function from cha-

racteristic function, consider the density f(X) and the
discrete Fourier transform (DFT)

N-1 —ik2Zn
— N
X = ano X.e .

approximate the integral in Equation (26).

We could use the trapezoid rule to
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720
e—it0x¢(t0) +e—itNx¢(tN)
A o
+Z e "g(t, ) At
1 N-1
IR (IS
T k=0
1/2, k=0,

where 0, :{ The last step of approxi-

1, otherwise.

mation is because when we take t, to be large enough,
tc >, e ™y(ty)—>0. The purpose to have the
upper bound of summation as N—1 is to match with
the form of DFT.

Now we propose an approach to calculate the prob-
ability density function analytically based on the con-
struction of Chourdakis [18]. Note that the application of
DFT will result in a set of integral approximation which
have the form of Equation (27) based on
X;,]=0,--,N—1. Let 7=At, then t, =pk. For the
return values X;, these values are setting to be also
equidistant with the grid spacing A. By contrasting

Equation (27) and DFT, we have A7 = N T 1= ’?ﬁ )
Then set the return grids
X;=-b+4j,j=0,--,N-1, (28)

where b is a parameter to control the return range. For

the center returns around zero, we could set b=%.

With these settlements, from Equation (27), the probabi-
lity density function has the form

1S o ink(-bea))
f(xj)z—Z§ke K Vg (nk)

N1y k2T
=3 L5 N (k) (29)
k=0 TC
N-T 2
=) fe NV,
k=0

where f, :%5kei'7kb¢(77k)77,j =0,---,N—1. This sum-

mation has the form of DFT, could be computed effi-
ciently.
Theorem 5. Numerically, the CDD future

Feop (t’TI > Tz)
-3y [ +(s(u)+(T (0)~5(0))e™~ ) | f (%.u)Au

where d=c—s(u)+(T(0)—s(0))e’““, f(x,u) is

given by Equation (29) and X, are constructed by
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Equation (28) in the approach of fast Fourier transform.

Proof. Recall the CDD future is priced by Equation
(24). By Fubini theorem, the definition of expectation
and property of Riemann integral,

Fepp (t: 7157, )

- 7B [( )+ (s(u)+(T(0)-(0))e~)) | Ft}du
362 (X 0)+ (s(0)+(T(0)-0)e )] 1, |
3 3 [ (s(0)+(710)-s(0)e)] (.0

>d

3.2. Future Pricing of Lévy Driven CAR Model

Now we assume the temperature dynamic follows Lévy
driven CAR model, introduced by Equations (11) and
(12). The risk-neutral measure Q’ is given by Equation
(22), and the Existences of futures prices for CAT, CDD
and HDD are preserved under Condition 2.

Based on the derivation of futures prices of CAT,
CDD and HDD indices under Lévy driven OU model, we
have the following results for the futures prices of these
indices under the Lévy driven CAR model.

Lemma 3. The cumulated temperature on the time in-
terval [7,,7,] under Lévy driven CAR model is

[T (t)at
= [T A(t)dt+g A" (™ —e* ) X (0)+gA”
<[, [e"(”’” S T (3 0 (t)} e, (t)dL(t).

Proof. Integrating the original Equation (12) over the
time interval [7,,7,], we have

X(TZ)_X(TI)
—Aj X (t dt+ej

o(t)dL(t).

Then, by using the solution of Lévy stochastic model,
Equation (14), Equations (11) and (13),

[ (T(0)-A(1))dt

=[TeX(t)dt=¢/[ " X (t)at

A (X(5)-X(7)-&, [ o(t)dL (1))

—en’ ((eATZ —e) X (0)+ [ ¥ Ve o (t)dL(t)

)-[7 e, (t)dL(t)).

So, the result is proved. mi

—_[ et ea( t)dL(t
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Theorem 6. The future price of CAT
Fear (t: 7157y )
_ (7 r AL [ AA(m-t) Az t)
= [ A(u)du+ g AT (M0 - M) X (1)

N
B efAilf:' (eA(n—u) _ l)epg(u)l//'(a(u))du.

Proof. By Equation (18), we could use Lemma 3 to ex-
pand each term separately, and then use Lemma 2 to get
the final explicit formula. o

For CDD or HDD futures pricing, by using Theorem 3,

the characteristic function of J'OT e,o(t) A gL (t) could
be found as exp(W (1)) where

¥(2)= [ w(2ee" Ve,o(t)-i0(1))dt

JvlEe()a

Then, followed by the approach in the OU model, we
have
Theorem 7. Numerically, the CDD future price

Feop (t» 7157, )

72
=33 [xk +(A(u)+el’eA“X (O)—c)] f (%, u)Au,
7 Xe=d
where f(X,u) is given by Equation (29) and X, are
constructed by Equation (28) in the approach of fast Fou-
rier transform to compute  f (X, u)
The proof of this theorem is similar to that of Theorem
S.

4. Summary, Conclusion and Future Work

This paper investigates the problem of modeling and
pricing weather derivatives and their application to Ca-
nadian data. We have shown that two models, including
Ornstein-Uhlenbeck model and Continuous-time Auto-
regressive model, both driven by Lévy process are fairly
suitable to capture the evolution of Canadian cities tem-
perature. Also, based on these two models, we derived
approaches for risk-neutral prices of future contracts
written on CAT, CDD and HDD.

For the Ornstein-Uhlenbeck model, we followed the
analysis developed in Benth and Saltyté-Benth [7], and
calibrated the model to empirical study of our Canadian
temperature data. As an extension, we derived a numeri-
cally explicit pricing formula for futures written on CDD
and HDD futures. For the Continuous-time Autoregres-
sive model, we extended the original model introduced
by Benth et al. [15] to the one with Lévy process as the
random variable instead of Brownian motion. And we
also, calculated the explicit formulas for futures written
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on CAT, CDD and HDD indices under the structure. We
would like to mention that our approaches and results
could be applied to other temperature data set rather than
Canadian ones with some modifications and adjustments.

This work can be extended in several ways. For in-
stance, based on our empirical studies of Canadian data,
the volatility possesses significant seasonal behaviour
under the existed models. One could consider using re-
gime-switching techniques to model this seasonal volatil-
ity under the structure of the established models in this
paper. For instance, depending on the local appearance of
the weather in Canadian cites, one can intend to use two-
state Markov chain for modeling of Calgary’s volatility
and four-state one for Toronto’s.

As an application to risk management in industries, we
could also consider the dynamic hedging strategy of
other futures by using weather future. Take the energy
futures for example, if we consider a portfolio at time t
containing one unit of energy (e.g. heating oil) future
Fc and g, units of weather futures F,, both with
maturity at time T. Assume the portfolio has value TII(t)
attime t, then

m(t)=e" TV F(t)+ ARy (1)].

If the portfolio is self-financing, the change in this
portfolio in a small amount of time dt is given by

dri(t)=rri(t)dt+e O [dr. (t) + AR, (1)].

Assume the energy future and weather future followed
by a model we have built in this paper, the future hedge
ratio

dFe (t)
CdRy (1Y)

In this case, the stochastic component of portfolio van-
ishes and the portfolio value is hedged. Thus, in order to
hedge an energy future, we can short f, shares of wea-
ther futures and the portfolio is hedged dynamically.

Future discussion about this idea will be centered on
two viewpoints. Firstly, further research need to be done
for the dynamics of energy future and weather future. As
such, explicit dynamic hedging conclusion regarding to
hedging risks of energy commodities could be founded.
The other point of view is allowing other closely related
derivatives to be involved into the constructing of portfo-
lio. For instance, we could also take the newly burgeon-
ing carbon dioxide derivatives into account in the portfo-
lio. These considerations will be a comprehensive tool to
integrate into hedging of energy commodities’ risks.
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