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ABSTRACT 

We applied two daily average temperature models to Canadian cities data and derived their derivative pricing applica- 
tions. The first model is characterized by mean-reverting Ornstein-Uhlenbeck process driven by general Lévy process 
with seasonal mean and volatility. As an extension to the first model, Continuous Autoregressive (CAR) model driven 
by Lévy process is also considered and calibrated to Canadian data. It is empirically proved that the proposed dynamics 
fitted Calgary and Toronto temperature data successfully. These models are also applied to derivation of an explicit 
price of CAT futures, and numerical prices of CDD and HDD futures using fast Fourier transform. The novelty of this 
paper lies in the applications of daily average temperature models to Canadian cities data and CAR model driven by 
Lévy process, futures pricing of CDD and HDD indices. 
 
Keywords: Weather Derivatives; Mean-Reverting Process; Lévy Process; Continuous Autoregressive Model; Fast 

Fourier Transform 

1. Introduction 

Over the last decade, weather derivatives have emerged 
as an attractive and interesting new derivative class for 
risk management and other related fields. Since the pur- 
pose of weather derivatives is to allow businesses and 
other organizations to insure themselves against fluctua- 
tions in the weather, a number of insurance, reinsurance 
companies, banks, hedge funds and energy companies 
have set up weather trading desks. It is obvious that there 
are close connections between energy and weather, for 
example, a natural gas distributor may want to buy 
weather derivatives to ensure profits in case of a warm 
winter in which consumers will buy less gas for heating 
purpose. Hence, weather derivatives will provide a fi- 
nancial instrument for companies or organizations to 
avoid some unzealous impact of the “bad” weather ef- 
fects and control the weather risks. Also, additional in- 
struments for hedging in the energy markets require 
quantitative models of both energy and weather deriva- 
tives included. 

The weather derivatives market, in which contracts 
written on weather indices was firstly appeared Over-the- 
counter (OTC) in July 1996 between Aquila Energy and 
Consolidated Edison Co. from United States. After that, 
companies accustomed to trading weather contracts based 
on electricity and gas prices in order to hedge their price 
risks realized by weather during the end of 1990s and the 
beginning of 2000s. Consequently, the market grew rap- 
idly and expanded to other industries and to Europe and  

Japan. Reported from Weather Risk Management Asso- 
ciation (WRMA), an industry body that represents the 
weather market, recently, the total notional value of the 
global weather risk market has reached $11.8 billion in 
last year. With geographic expansion, the OTC market 
boosted nearly 30% in last year. In this article, we will 
concentrate on the futures market of temperature deriva- 
tives found at the Chicago Mercantile Exchange (CME), 
which is one of the largest weather derivatives trading 
platforms. Up to now, the CME has weather futures and 
options traded based on a range of weather indices for 47 
cities from United States, Canada, Europe, Australia and 
Asia. 

As a common sense, weather affects different entities 
in different ways. In order to hedge these different types 
of risks, weather derivatives are written on different 
types of weather variables or weather indices. The most 
commonly used weather variable is the temperature. 
Widely used temperature indices include cumulative av- 
erage temperature (CAT), heating degree days (HDD) 
and cooling degree days (CDD). They are originated 
from the energy industry, and designed to correlate well 
with the local demands for heating or cooling. CAT are 
defined as the sum of the daily average temperature over 
the period  1 2, 



of the contract, the index  

   22

1 1
CAT : d

t
T t T t t



 
    where  is the daily  T t

average temperature. It is mainly used in Europe and 
Canada. In winter, HDD are used to measure the demand 
for heating, i.e. they are a measure of how cold the 
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weather is and usually used in United States, Europe, 
Canada and Australia. In contrast, CDD are used in sum- 
mer to measure the demand of energy used for cooling 
and a measure of how hot the weather is. They are usu- 
ally used in United States, Canada and Australia. The de- 
finitions for HDD and CDD are given by  

  HDD : max ,0T t c   and   CDD : max c T t  ,0 ,  

akes where the threshold t value of
 calculat- 

Index 

eck Model 

dex c  
iv

 65 F(18 C)  . 
ative byThe pricing of a g en weather deriv

ing the expected value of its appropriately discounted 
payoff is inherently related to weather forecasting and 
simulation (see Zeng [1] and Cao and Wei [2]). The 
conventional approach is to identify the probability dis- 
tribution of the associated index at maturity, and then 
integrate the payoff of the derivative with respect to it. 
Dornier and Queruel [3] characterized weather dynamics 
by mean-reverting Itô diffusions, driven by a standard 
Brownian motion, and then resorted to Monte Carlo 
simulation. Davis [4] used the geometric Brownian mo- 
tion to model the accumulated HDDs (or CDDs). Brody 
et al. [5] proposed to replace the traditional Brownian 
motion by a fractional Brownian motion, leading to a fra- 
ctional Ornstein-Uhlenbeck, allowing incorporate a long 
memory effect. Benth [6] used the Fourier transformation 
technique to get the explicit expressions of European and 
average type of weather contracts, and also showed the 
pricing formulas satisfy certain Black-Scholes PDE. 
Benth and Šaltytė-Benth [7] proposed an Ornstein-Uh- 
lenbeck model with seasonal mean and volatility, where 
the residuals are generated by the class of generalized 
hyperbolic Lévy process rather than Brownian motion 
family. The process they used is a flexible class of Lévy 
process capturing the semi-heavy tails and skewness 
properties of residuals. A similar model driven by Brow- 
nian motion was applied for pricing CAT, HDD and 
CDD futures in Benth and Šaltytė-Benth [8], they also 
gave discussions about options written upon these futures. 
Benth et al. [9] generalized the analysis in the above OU 
model to higher-order (with lag p) Continuous-time 
Autoregressive models with seasonal variance for the 
temperature, and they found the choice of p = 3 turns out 
to be sufficient to explain the temperature dynamics in 
Stockholm, Sweden by calibrating the model to more 
than 40 years of daily observations. More recently, 
Zapranis and Alexandridis [10] began proposing using a 
time dependent speed of mean reversion parameter in the 
Ornstein-Uhlenbeck model and use neural networks to 
estimate the parameters. 

The remaining of this article is organized as follows: 
In Section 2, we firstly apply existed Lévy driven mean- 
reverting model to the modeling of temperature index of 
Canadian temperature data, and then present Lévy driven 
CAR model and its application to Canadian data. In Sec- 
tion 3, we develop the futures pricing techniques with 

respect to weather futures of CAT, CDD and HDD based 
on the established two models. Finally, in Section 4, we 
illustrate the concluding remarks and some possible fu- 
ture research in this direction. 

2. Modeling of Weather 

2.1. Lévy Driven Ornstein-Uhlenb

As our first proposed model, consider the weather in
 T t , which is the daily average temperature (DAT). We 

suppose the DAT has a generalization of the dynamics: 

             ,dT t ds t T t s t dt s t dL t      (1) 

 s t
ays and 

where  is the seasonal mean level across 
given d

years 
is the speed in which  rev T t  ert to 

 s t .  t  is assumed to be a measurable and bounded 
function represents the seasonal volatility perature. of tem
 L t  lág, adapted, real valued Lévy process with 

independent, stationary increments and stochastically 
nuous. For formal definition of Lévy process, we 

refer the reader to the introduction paper by Papapan- 
toleon [11]. This model was firstly introduced by Dornier 
and Queruel [3] with Brownian motion. We will firstly 
apply this model with Lévy process to Canadian tem- 
perature data. 

From Equation (1), we can directly use Itô formula for 
semimartingale

is cád

conti

s to get the explicit solution 

        0 0 e t

t

T t s t T s   

     
0

e d .t uu L u  
        (2) 

For the purpose of fitting this model to our daily 
age temperatures, we reformulate Equation (2) by sub- 
tra

aver- 

cting  T t  from  1T t  , 

    
     1

e e d
t t u

t

T t s t T t s t

u L u 
 

 

 
 

     1 e   
   (3) 

with the notation     : 1 X t X t X t   
uld be approximated by 

. The sto- 
chastic integral co

        1 eT t s t T t       
   e .

s t

t L t 
    (4) 

Adding      :T t s t T t   to both sides 

       e .t t   1 eT t T t        (5) 

If we define    : e t t   , we will h
lowing three parts for modeling step by step: 

ave the fol- 
 T t  

        ,T t s t c t t             (6) 

where  s t  
 compon

is the seasonal component
clical ent derived from Equation d 

,  c t  is the cy- 
(5), an  t  

is the st ic part. ochast

Copyright © 2013 SciRes.                                                                                 JMF 



A. SWISHCHUK, K. CUI 83

The data sets we are going to analyse include  
average temperatures (m

daily
easured in centigrade) from Cal- 

ga

Empirically, the daily average temperature should have 
ue to some reasons such as global 

all with a  of 10 year

In order to model the seasonality pattern, we use the 
 the form 

ry, AB and Toronto, ON in Canada. The choice of 
these two cities is intuitively based on the location and 
importance of these cities. These data are provided by the 
Canadian National Climate Data and Information Ar- 
chive (NCDIA) over a period ranging from January 1st 
2001 to January 1st 2011, resulting in 3652 records for 
each city. For simplicity, the measurement on each Feb- 
ruary 29th was removed from the sample in each leap 
year to equalize the length of each year. 

2.1.1. Linear Trend 

an increasing trend d
warming, green-house effect and so on. However, from 
Figure 1, we cannot verify significant linear trends for 
both data sets. The slopes for linear fitting of Calgary and 
Toronto are 41.346 10  and 41.806 10  respectively. 
A potential explanation to this is that our sample size is 
reasonably sm period s data. Larger 
sample size will show us relatively more significant 
increasing trend using least square fit. Hence, at this 
stage we will ignore the linear trend, and keep a constant 
mean level in the seasonal trend. 

2.1.2. Seasonal Trend 

trigonometric function with

   0 1

2π
sin

365
s t a a

   


0 ,t t 


     (7) 

where  is the mean level, s amplitud
mean period of the os s is one year (365  

0a
. The 

1a i
cillation

e of the 

days neglecting leap year), so the weight 
2π

365
  . 0t   

represents the phase angle. The results o ete  
Ta-

f param rs
estimation using least square method are reported in 

yclical Component 
To remove the adjacent correlation in the time series, 

ary, we model the cyclical 

ble 1. 

2.1.3. C

make the time series station
component by recursive regression based on Equation (5). 
The cyclical component ( )c t can be modeled by: 

        e e ,c t T t T t s t         (8) 

The results of estimated implicitly by an a
sive model and ponding are given in Table 2. 

 c ty 
of

e

 corres
utoregres- 

2R
The autocorrelation function (ACF) plots for the 

squared residuals in Figure 2 learly reveal seasonali
 correlation for both cities. In the squared residuals 

ACF plots, the autocorrelation violated 95%  interval 
for lots of lags, and the wave for the ACF is a sign of 

 

Figure 1. Linear trends of Calgary and Toronto. 
 

T . able 1. Estimated parameters for seasonal function

Parameters Calgary Toronto 

0a  4.614  8.924  

1a  12.03  13.67  

0t  72.85  67.83  

2R  0.6753  0.8331  

 
Tabl  Estimated paramet s in regression. e 2. er

Parameters Calgary Toronto 

e  0.7858  0.7018  

0.6172  2R  0.4924  

 
seasonal pattern. 

olatility 
We consider the seasonal pattern in the residual after re- 

nent as the seasonal volatility. 

2.1.4. Seasonal V

moving the cyclical compo
The motivation behind seasonal volatility is straight for- 
ward. The temperature appears bigger variation in the 
winter and smaller variation in the summer. By Equation 
(5), the random term has the form    e t t  . To get 
the seasonal volatility  t , we have the following 
methods: 
 Organize the data into  groups, one for each day 

of the y
 365

ear; 

s are crude estimation for the expected  

 e estimation, first way  trying the 
hnique. In details, we could take loga- 

 Find the means of the squared data in each group. 
These mean

squared data.       22 t E t t      
; 

To smooth th is
smoothing tec
rithm of the estimation and use moving average 
method to smooth the crude estimation. Then the 
smoothed estimation of  2 t  could be get by ex- 
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Figure 2. Empirical ACF after regression. 
 

ponentiation of the result. Alternativ
cated Fourier series (9) to fit the estimation from pre- 

  (9) 

Figure 3 shows the fitted and smoothed 

ely, use the trun- 

vious two steps. The Fourier series will indicate the 
presence of different cycles in  t  as a determi- 
nistic function. 

  1

N

t c       2 2 1
1

sin cosi i
i

c iwt c iwt


  

 t  by 
 averthree days moving average technique. More age 

sm ther

It 

ot

onal pattern in the ACF plot was re- 
m
od

Then we head to fit the random part 

oothing range will make the estimation smoo , but 
for our Canadian temperature study, the variation of the 
temperature in more days would be relatively larger than 
that of three days. Hence, the choice of three days mov- 
ing average makes sense for both the smoothing and ac- 
curacy purpose. 

After removing the estimated seasonal volatility, the 
ACF for the data and squared data are plotted in Figure 4. 

shows that the seasonality pattern is completely re- 
moved from the squared data. 

On the other hand, we also tried the way of fitting the 
crude seasonal volatility by truncated Fourier series with 

her three. The values of the estimated parameters are 
given in Table 3. 

Corresponding fitted results are shown in Figure 5. 
Again, the seas
oved from Figure 6. So, we could find that both meth- 
s can model the seasonal volatility appropriately. 

2.1.5. Random Noise 
( )t  remained from  

ncated fourier series parameters. 

 

Table 3. Tru

1c  2c  3c  w  

Calgary 4.424  1.633  0.1912  0.0167  

Toro 53  nto 4.33  1.082  0.2108  0.01

 
above. The classical literatu s of temp re mod ling 
su e random oise are dependent and identically 
norm stributed,  Dornier and Quer el [3], Alaton 
et . Howev coul  see from the QQ-plot d 

ormal fit of the random noise for our data, the normal 

olic and so on. This 
w

re eratu e
ggest th  n in

al di
al. [12])

 (see
er, we 

u
d an

n
distributed random noise may lead misdescription to the 
data. Moreover, modeling of random noise using Gaus- 
sian process is not always the case. 

Instead, we try to apply the generalized hyperbolic 
family process to model the random part for our data, 
based on Benth and Šaltytė-Benth [7]. As the name sug- 
gests, it is super-class of processes such as normal-inverse 
Gaussian, variance-gamma, hyperb

ill allow the family better capture the features of the 
data set and relatively easy to analyze from the Lévy 
properties it holds. 

The generalized hyperbolic distribution is an infinitely 
divisible distribution which can be defined with the den- 
sity function 

 ; , , , ,gh x     

      

     22
1 2 expx x

2 1 2 22, , ,a x

K





     

      





  


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Figure 3. Empirical and smoothed seasonal variation. 
 

 

Figure 4. ACF after removing seasonal variation. 
 

 
 

 
22 2

1 2 2 2
, , ,

2π
a

K



 


 
   

    





 

where sK  is modified Bessel func

with index 

tion of the third kind 

s . Parameters of the generalized hyperbolic 
distributi n be estimated by maximum likelihood 
method. In il, for a vector of observations 

on ca
deta

 n1, ,x x x , the maximum likelihood estimate of he    t
parameters  , ,, ,       can be obtained by maxi- 
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Figure 5. Fit of volatility by truncated Fourier series. 
 

 

Figure 6. ACF after removing seasonal variation. 
 
mizing the log-likelihood function for generalized hyper- 
bolic distribution: 

 

    
   1

21

log .i i
i

K x x

22

1

22

;

1 2
log log

2

n

i
i

n

L x

a x



  

    




        
 a series of genera




   

  

  

McNeil et al. [13] described a modified EM method, 
which is called multi-cycle, expectation, conditional es- 
timation (MCECM) algorithm to optimize the log-like- 
lihood function. We use this algorithm written as “ghyp” 
package in “R” to estimate parameters. Estima d pa- 

 in Table 4. 
In order to check the goodness of fitting, we simulated 

lized hyperbolic distributed random 

te
rameters are presented
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Table 4. Estimations of generalized hyperbolic parameters. 

           

Calgary  27.55  26.50 21.70  0.72  5.39  

16.81  31.33  24.82  7.49  10.96Toronto 

 
va

An
to analyze the evolution f temperature is an extension of 
th us OU rocess  the multi-factor OU process. 
Th el is called Continuous-time Autoregressive 
(C del, w  is als a subclass of the eneral Con- 

nuous-time Autoregressive Moving-average (CAR-MA) 

 process and the memory 
of 

riables using estimated parameters, and plotted the em- 
pirical cumulative distribution function, then compared 
with our residual observations’ empirical cumulative dis- 
tribution function plot. The results are shown in Figure 7. 
The result implies our calibration to the model is rea-
sonably fair for Canadian data. 

2.2. Lévy Driven Continuous-Time AR Model 

other suitable class of stochastic process we could use 
o

e previo  p to
e mod
AR) mo hich o  g

ti
model introduced by Brockwell and Marquardt [14]. The 
intuition behind using this model is the temperature 
memory is consistent with high-order AR model, and the 
seasonality of mean and volatility is also involved in the 
model. In other words, the CAR model combine the 
mean-reverting property of OU
of AR model together to better capture the features 
temperature. 

Followed by the classical stochastic assumption, sup- 
pose given a probability space . Let  , , F P  Y t  be 
a stationary solution to the stochastic differential equa- 
tion in  for  pR 1.p 

        ,D Y t t DL t       (10) 

where the operator denotes the differential operator 
with respect to , 

D
t   1

1
p p

pD D D     
  , 0L t t 

 is the 
p-order differential operator and  is 1-dim 
Lévy process. Let  tX  be a column vector defined as 

        1 2, , , pt X t X t X t X  .  

We could also rewrite the Equation (10) in the state- 
space form. 

    1 :Y t t X t  e X 1 ,         (11) 

       ,pd t A t dt t dL t X X e     (12) 

1 2 1

0 1 0 0 0

0 0 1 0 0

, .

0 0 0 1 0

1

p

p p p

A

    

   
   
   
    
   
   

        

e




     



 

The vector   pt X R  is usually recognized as state 
vector. The standard deviation of the noise is described 
by a continuous function , we usually refer the   0t 

 

 

Figure 7. CDF of simulated series and observations. 
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function as the volatility of the process  t   Y t . 

odel. The const denotes the order of the CAR m
Assume additionally the seasonal function  

ant p  

   : 0.t T R  
tiable on t . The te

is bounded and continuously differen- 
mperature dynamics is formulated by: 

      ,T t t Y t             (13) 

where is the first entry of the state vector  Y t   tX  
nce we 

istic 
 revert 

e mean- 

in Equat 11). Note that for Equation (12), si
have t nction  to capture the determin
temp evel, t  process should ideally
to zero. is is th  reason we have only th
reverting  

ion (
he fu

erature l
Th
 rate

 t
he OU

e main
A  but wi

he Itô l

thout level in dynam

usi emma for semimartingal
explicit solution for the stochastic differential Equation 
(12) has the form 

.L u   (14) 

If we construct the expectation of the Wiener-Lévy in- 
tegral in Equation (14) equals to zero (it is obviously true 
for the Itô integral in the special case), once all eigen- 

alues of the matrix

ic of 

e, the 
 .tX
Agai

 
n, by ng t

         
0

e 0 e d
t

A t uAt
pt u  X eX  

v  A  have ne
. W

ei

gative real parts, the 
process  then have a mean equal to zero e 
could still use simple intuition to have the idea, when 

 tX
 

genvalues of the matrix A  have negative real
,e 0,At   then the expectation goes to 

zero. This result implies the temperature dynamic on 

 parts 
and take 

average  the seaso
 by

o this

t 

will main
 Equat
ha



ly d e
ion (1

ep
3). 

nd on nal function 
 t
Notice t t we could have a link point of view t  

CAR model from the previous OU model. Consider 
CAR(1) model as an example. In this case, 1p   in 
Equation (12), the matrix A  will simply becomes a 
constant 1 . The process    1 ,X t Y t  and by Equ- 
ation (14), the temperature dynamics 

     1 0
e 0 e d .  

Our proposed CAR model is therefore consistent with 
the single-factor O

     11
t t utT t t X u L u     

U model and also satisfies the require- 
ments of regression and mean-reverting properties. For 
simplicity of estimation, we connect our CAR m
the classical AR model. Benth et al. [15] (Lemma 10.2) 
pr

odel to 

ovided an explicit way to find the relation between the 
coefficients i  in CAR model and ib  in AR model by 
induction as 

   

   
1 11

1 1
10

1

1 1

kp pp
k p qq

kq q
kk

c X t p k

c X t q k

  

 


    

   

 


   (15) 

with coef 1 1
1 , 1, , 1, 2,q q q

kc k p q 
      

0k

ficients 
and initially 

Next, we will recap the calibration procedure to the 
same empirical Canadian daily average temperature data 
based on the CAR model. 

2.2.1. Linear and Seasonal Trend 
As we did for OU model in Section 2.1.2., we could 
combine the linear and seasonal trend in the OU model to 
construct the seasonal function  CAR model as 

k kc c
1, 0, , .q q

q q p     0c c

( )t in

   0 1 2 0

2π
sin .

365
t a a t a t t

      
 

    (16) 

The coefficients for trigonometric function in Equation 
(16) play the same role in Equation (7). Followed by the 
description of linear trend in Section 2.1.2., we elimi- 
nated the linear part in  t  

nal p
again for CAR model, and 

the fitted results for seaso art are the same to that in 
Table 1. 

2.2.2. Cyclical Component 
The PACF plots in Figure 8 clearly show that the evo- 
lution of detrended temperature could be modeled 
by the classical AR(3) model. Mo ated by the PACF 
plots, by Equation (15), we have 

 Y t
tiv

b1 13 ,    

2 1 22 3,b      3b 2 11 .3       
The estimated parameters are outlined in Table 5.  
PACF plots in Figure 9 show the significant correla- 

tion in the first three lags is removed by regression, but 
 distinct seasonalitysti

a
 seaso

n (9), since there 
is no significant improvement for the result by ad ng 
degree. The fitted parameters are shown in Table 6. 

ll a  in the ACF plots of squared 
residuals. 

2.2.3. Seasonal Volatility 
For the CAR model, we will pply the truncated Fourier 
series in Equation (9) to model the nal volatility. 
We choose the degree N = 1 in Equatio

di

In Figure 10 we present the empirical ( )t  and 
fitted ( )t , both of them show that the fluctuation in the 
cold season are considerably larger than that of the mild 
season. 

Figure 11 tells us that seasonal pattern in the 
squared residual is removed successfully. 
 

Table 5. Estimations of cyclical omponent.  c

 1b 2b  3b

0.9520  0.2796  0.0967  Calgary 

0.8243  0.2373  0.1059  Toronto 

 
Table 6. Truncated Fourier series parameters. 

 1c 2c  3c  w  

Calgary 13.13  8.529  0.6149  0.01636  

Toronto 9.712  4.307  0.6857  0.01491  
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Figure 8. Empiric
 

al ACF an  d PACF.

 

Figure 9. Empirical ACF and PACF. 
 

.2.4. Random Noise 
We try again apply the generalized hyperbolic process to 
model our random noise part. The method is the same to 
that for OU model. Table 7 shows the fitted parameters 
for our Canadian cities data. 

Also as we did for OU model, we simulated a series of 

generalized hyperbolic random variables with estimated 
parameters, then compare the empirical CDF with that of 
historical data in Figure 12. The empirical CDF coin- 
cides with simulated CDF almost perfectly, so we may 
expect this model fairly well describe our Canadian 
temperature data. 

2

Copyright © 2013 SciRes.                                                                                 JMF 



A. SWISHCHUK, K. CUI 90 

 

 

Figure 10. Empirical and fitted seasonal volatility. 
 

 

Figure 11. Empirical ACF plot of squared residuals. 
 
3. Pricing of Weather Derivatives 

In this section, we will derive the temperature futures 
prices written on CAT, CDD and HDD, which constitute 
the three main classes of future products at CME market. 

3.1. Future Pricing of Lévy Driven OU Model 

onsider the price dynamic of future written on CAT 
over specific time period 
C

 1 2, ,   with 1 2.   Firstly,  

assume the daily average temperature follows stochastic 
differential Equation (1) with being Lévy process 
and constant continuously co ding interest rate 
The future price at time 

 L t  
mpoun

1

.r  
0 t    b

e Q
ased on CAT und

risk-neutral probability  will be 
er 

measur tF  adapted 
stochastic process  2CAT 1, ,F t    satisfying 

0.     22

1
CAT 1 2e E d , , |r t Q

tT u u F t



        F   (17) 
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Figure 12. Empirical ACF plot of squared residuals. 
 
Table 7. Estimations of generalized hyperbolic parameters. 

           

Calgary  8.65  4.28  1.00  0.59  1.02  

Toronto 4.24  2.95  0.12  0.41  0.13

 
By adaption of the sto processchastic   , ,tCAT 1 2F    

with respect to measure ,Q  the future price 

   2

1
CAT 1 2, , E d | .Q

tF t T u u



       F     (18) 

To derive the explicit future price in Equation (18), we 
need to specify a risk-neutral probability measure 
However, the commodity market is typical incomplete 
market, since most of commodity trades impose big 
transaction and storage cost. For our case, the underlying 
temperature is even not possible to be stored and traded. 
These features break down the classical hedging ap- 
proach used to derive the unique fair price of derivatives. 
Because of the incompleteness of the temperature market, 
any probability measure Q being equivalent to the real 
measure P is a risk-neutral measure. Next, following the 
analysis in Benth and Šaltytė-Benth [16], we will specify 
a class of risk-neutral measure via Esscher transform. 
Before using the Esscher transform, we need an inte- 
grable condition for the Lévy measure to ensure the ex- 
istence of moments of underlying asset process. 

Condition 1. [Benth et al. ([15], p. 74)]  such 
that the Lévy measure satisfies the integrabl

.Q  

0k 
e condition v

 
1z

z v


             (19) 

almost surely. 

d
k

z 

The constant determines the order of the moment 
that is finite for the underlying process. With this

on, we recap the following results from several sources 
at we will use in our further analysis (see Section 3.2). 
Lemma 1. [Benth and Šaltytė-Benth [16]] Let func- 

tion 

k  
 condi-

ti
th

 : 0,f t R  
and Condition 1 hol

be a bounded and measurable func- 
tion ds for    0,: sup ,s tk f s  then 

        0 0
E exp d exp d ,

t t
f s L s f s s        (20) 

where    iu u    
Lévy process 

is the cumulant function of the 
  ,L t   u  

at



p R C  such th
vy process  u

sume 

is the Lévy symbol defined 
by ma  the characteristic function of 
the Lé

Now as

 e .u  
 : 0 ,T  R  is a measurable and 

bounded function he stochastic process . Let us consider t

       0 0
exp d d .

t t

tZ s L s s s         (21) 

The probability measure Q  can be defined by the 
Esscher transform 

  E 1 ,A TQ A Z                (22) 

where is the indicator function over a probability 
space 

1A  
A . Obviously this measure is equivalent to the 

real m and transformed from the probability easure ,P  
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measure  so an equivalent risk-neutral measure. A 
way to  more flexible class of equivalent martingale 
measure is  use time varying 

,P
get a

 to   when fitting the ob- 
served fo d curve. Note that the market price of risk 
is represe by 

rwar
nted   

er th

1

in this case. 
Then, id e existence e fair forward price 

dynamics 
 cons of th

 CAT 2, ,F t    
not  cond

given  Equation (18). We 
need to ition s  that  

is finite alm st surely. 

Condi  [ enth and Šalt -Benth [16]] Assume 
a constant 

 by
uch

o

ytė

have a

 E dT t

tion 2.
k

her

t
 
  

 

B
 satisfies 

2

1
|Q t



 F

   0,1 sup
price dynam

ė-
n 

s Tk s   such that 
en the ics  

 almost surely. 

With t is of explicit risk-neutral probability 
measure and fair pricing technique, we could derive 
the following results for the future price written on 
CAT. 

and Šaltyt Benth [7]] Given a 
measura  unded functio

Condition 1 holds, t

 E dT t

he ex

Lemma 2. [B
ble and

h

t
 
  

tence 

enth 
bo

2

1
|Q t




  F

  ,f t
utral m

 the expecta- 
tion of Lévy nder risk easure over  integral u -ne
 1 2,   is 

Q  E d     d .2 2

11 1
|f t t

 
 

 F f


CAT. 

t t t   


price written 
 1. [Benth 

1

With these lemmas, we could get the explicit formula 
for the future on 

Theorem and Šaltyt -Benth [7]] The
tu

ė  fu- 
re price  CAT 2F t, ,   at time t 1 2   written n 

CA

t

a

o
T index is 

1

1

1

t

F t











gi by ven 

 

 



 
 

     
     

1

2 2

1 1

CAT , ,

e 1 d

e 1 d .

u

u

u u u

u u u

 

 

 

 
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 






 

        2 2

1

2

1d e ets u u T t s t
  


     

t
 

Next, for pricing of CDD and HDD futures, recall th t 
the CDD and HDD over a measurable time 1 2[ , ]









   is 

     

     

2 2

1 1

2 2

1 1

CDD: max , 0 d d ;

HDD: max , 0 d d .

T t c t T t c t

c T t t c T t t

 

 

 

 





  

  

 

 
 

Before introduce the pricing technique for the CDD 
and HDD future, we should notice that there is a parity 
relation between futures prices of CAT, CDD and HDD. 
This relation will help us to get one of future price of 
CDD or HDD, once we have the CAT future price and 
the other one of them. 

Theorem 2. [Benth et al. ([15], p. 279)] The relation 
between futures prices of CAT, CDD and HDD is 

  .F F c F          (23) 

With this theorem, we will focus on the pricing of 
CDD future, but the pricing technique for CDD future is 
also analogously applicable to HDD future. 

Based on risk-neutral pricing theory, the CDD future 
price satisfies 

0

C HDD 1 CATDD 2

 

    

2

2

1
CDD 1 2

e E

d , , |

r t Q

tT u c u F t






 

 

       F
 

with risk-free interest rate  and risk-neutral measure 
Given the risk-neutral measure derived from Esscher 

transform, since the CDD future under the measure is 
adapted, the risk-neutral CDD future price is derived as 

r
.Q  

    2

1
CDD 1 2, , E d ,Q

tF t T u c u



 

     F|   (24) 

Theorem 3. [Benth and Šaltytė-Benth [7]] For  

,       
0

: e dtX t L
       t

     E exp i exp ,Q X        the logarithm of cha- 

racteristic function  of  X    under measure 
Q  is given by 

        
  

0
e i

i d ,

tt t

t t

  



   

 

  

 




 

0

where 

dt
  (25) 

  is the cumu ant generating function of l  1 .L  
This theorem provid way to get the characteris-es us a 

tic function of Lévy integral of the
 

 type  X   under 
the risk-neutra .Q  With the acteristic  charl measure 
function, the pricing approach we could try is using the 
celebrated Fourier inversion theorem to get the numerical 
probability density function of  X   under Q  mea- 
sure, and then using the density function to price CDD 
future. 

Theorem 4. (Fourier Inversion Theorem) [Hewitt 
and Stromberg ([17], p. 409)] Let  F x  denote the 
cumulative density function of random able  vari   ,X   

 f x  is the corresponding probability density function 
  .f x L  Theintegrable in Lebesgue sense, i.e.  char- 

acteristic function  X of  is defined as  

  ie txt f


 dx x


.L  Then, 

 

 

 

 i1
e d .tx

i

0

1
e d

2π

π

txf x t t



 

To calculate the probability density function fr
racteristic fu  the de

t t
  

          (26) 



om cha- 
nction, consider nsity  f x  and the 

discrete Fourier transform (DF )  T
2πi1

e .N
kN

X x
  0

n

k nn
 We could use the tr

approximate the integral in Equation (2

apezoid rule to 

6). 
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   

 

 

 i1
e ,kt x

k kt t  

0

i

0

i i
0

1
i

1

1

1
e

π

e ( ) e
1 2
π

e
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k
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t x t x
N

N
t x

k
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N

f x t

t t

t t



 


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 










 
 
 
 
  
 




     (27) 

0π k

where 
1 2, 0;k 
1, ok  


of approxi- 

m
0  Th rpose to

match with 
the form of DFT. 

Now we propose an ulate the prob- 
ab

therwise.
 The last step 

ation is because when we take kt  to be large enough, 
,kt    ie Nt x

Nt   have the 
upper bound of summation as 1N   is to 

. e pu

approach to calc
ility density function analytically based on the con- 

struction of Chourdakis [18]. Note that the application of 
DFT will result in a set of integral approximation which 
have the form of Equation (27) based on 
x , 0, , 1.j j N   Let ,t    then .kt k  For the 
return values ,jx  these values are s g to be also 
equidistant with the grid spacing .

ettin
  By contrasting  

n (27)Equatio  and DFT, we have 2π 2π .
N N

 


    

Then set the return grids 

,, 0, , 1x b j j Nj           (28) 

he return range. For  where b  is a parameter to control t

the center returns around zero, we could set .
2
Nb   

With these settlements, from Equation (27), the probabi- 
lity density function has the form 

   
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1
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2π1 ii
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N

f x k
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
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
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
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

 
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



       (29) 

where 



 

 i1 kbe , 0, , 1.
πk kf k j N       This sum-  

mation has the form of DFT, could be computed effi- 
ciently. 

Theorem 5. Numerically, the CDD future 

 

         
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where       0 0 e ,ud c s u T s       ,kf x u  is 
given by Equation (2 c by 

Eq
uation 

(24). By Fubini theorem, the definition of e
and property of Riemann integral, 

onstructed 9) and kx  are 

uation (28) in the approach of fast Fourier transform. 
Proof. Recall the CDD future is priced by Eq

xpectation 
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(12). The risk-neutral measure 

. Future Pricing of Lévy Driven CAR Model 

Now we assume the temperature dynamic follows Lévy 
driven CAR model, introduced by Equations (11) and 

Q  
res pr

is given by E
(22), and the Existences of futu ices for CAT, CDD 
an

AT, 
CDD and HDD indices unde vy driven OU model, we 
have the following results for the 
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d HDD are preserved under Condition 2. 
Based on the derivation of futures prices of C

r Lé
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 model.indices under the Lévy n CA  
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Proof. Integrating the original Equation (12) over the 
time interval  1 2, ,   we have 
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Then, by using the solution of Lévy stochastic model, 
Equation (14), Equations (11) and (13), 
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So, the result is proved.                         
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Theorem 6. The future price of CAT 
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Proof. By Equation (18), we could use Lem
pand each term separately, and then use Lemm
the final explicit formula.                       

For CDD or HDD futures pricing, by using Theorem 3,  

the characteristic function of t  could  

be found as 

ma 3 to ex- 
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Then, followed by the approac the OU model, we 
have 

Theorem 7. Numerically, the CDD future price 
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where  ,kf x u is given by Equation (29) and k x  are 
constructed by Equation (28) in the ap oach of fast Fou- pr

rier transform to compute  ,kf x u
The proof of this theorem is sim

 
ilar to that of T eorem 

5. 

4. Summary, Conclusion and Future

n to Ca

vy process are fairly 
suitable to capture the evolution of Canadian cities tem- 
perature. Also, based on these two models, we derived 
approaches for risk-neutral prices of future contracts 
written on CAT, CDD and HDD. 

For the Ornstein-Uhlenbeck model, we followed the 
analysis developed in Benth and Šaltytė-Benth [7], and 
calibrated the model to empirical study of our Canadian 
temperature data. As an extension, we derived a numeri- 

plicit pricing formula for futures writ

he 
ra n. And we 
also, calculated the explicit formulas for futures written  

on CAT, CDD and HDD indices under the structure. We 
would like to mention that our approaches and results 
could be applied to other temperature data set rather than
Canadian ones with some modifications and adjustments. 

work can be extended in several ways. For
ud

ocal appearance of 
the weather in Canadian cites, one can intend to use two- 
state Markov chain for modeling of Calgary’s volatility 
and four-state one for Toronto’s. 

As an application to risk management in industries, we
could also consider the dynamic hedging strategy of
other futures by using weather future. Take the energy 
futures for example, if we consider a portfolio at time 
containing one unit of energy (e.g. heating oil) futu

h

 Work 

This paper investigates the problem of modeling and 
pricing weather derivatives and their applicatio - 
nadian data. We have shown that two models, including 
Ornstein-Uhlenbeck model and Continuous-time Auto- 
regressive model, both driven by Lé

cally ex ten on CDD 
and HDD futures. For the Continuous-time Autoregres- 
sive model, we extended the original model introduced 
by Benth et al. [15] to the one with Lévy process as t

ndom variable instead of Brownian motio

 

This  in-
stance, based on our empirical st ies of Canadian data, 
the volatility possesses significant seasonal behaviour 
under the existed models. One could consider using re-
gime-switching techniques to model this seasonal volatil-
ity under the structure of the established models in this 
paper. For instance, depending on the l

 
 

t  
re 

EF  units of weather futures ,WF and t  both with 
)maturity at time T. Assume the portfolio has value (t  

at time ,t  then 

       e .r T t
E t Wt F t F t       

If the portfolio is self-finan g, the change in this 
portfolio in a small amount of time dt  is given by 

cin
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E t Wd t r t dt dF t dF t         

Assume the energy future and weather future followed 
by a model we have built in this paper, the future hedge 
ratio 

 
 

.E
t

dF t
    

WdF t

In this case, the stochastic component of portfolio van- 
ishes and the portfolio value is hedged. Thus, in order to
hedge an energy future, we can short 

 

t  shares of wea- 
ther futures and the portfolio is hedge namically. 

Future discussion about this idea will be centered on 
tw

ics of e  and weather future. As 
such, explicit dynamic hedging conclusion regarding to 
hedging risks of energy commodities could be founded. 
The other point of view is allowing other closely related 
derivatives to be involved into the constructing of portfo- 
lio

nt in the portfo- 
lio. These considerations will be a comprehensive tool to 
integrate into hedging of energy commodities’ risks. 
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