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ABSTRACT 

In this paper we study the problem of model selection for a linear programming-based support vector machine for re- 
gression. We propose generalized method that is based on a quasi-Newton method that uses a globalization strategy and 
an inexact computation of first order information. We explore the case of two-class, multi-class, and regression prob- 
lems. Simulation results among standard datasets suggest that the algorithm achieves insignificant variability when 
measuring residual statistical properties. 
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1. Introduction 

Hyper-parameters estimation is currently one of the ge- 
neral open problems in SV learning [1]. Broadly speak- 
ing, one tries to find those hyper-parameters  mini- 
mizing the generalization error of an SV-based learning 
machine. In this regard, Anguita, et al. [2], comments 
that “the estimation of the generalization error of a learn- 
ing machine is still the holy grail of the research com- 
munity.” The significance of this problem is that, if we 
can find a good generalization error estimate, then we 
can use a heuristic or mathematical technique to find the 
hyper-parameters  via minimization of the generaliza- 
tion error estimate. 

θ

θ

Current efforts involve techniques of  -fold cross 
validation [3], leave-one-out cross validation [2], boot- 
strapping [4], maximal discrepancy [5], and compression 
bound [2,6]. However, most algorithms are problem 
dependent [7]. This statement is confirmed by Anguita, 
et al. [2]. The authors performed a comprehensive study 
on the above techniques and they ranked such techniques 
according to their ability to estimate the true test gene- 
ralization error. Anguita, et al. [2], concluded that most 
of the methods they evaluated either underestimate or 
overestimate the true generalization error. Also, their re- 
search suggests that the -fold cross validation tech- 
nique is one of the less risky techniques for estimating 
the true generalization error. 



In this research we use the -fold cross validation 
technique to estimate the true test generalization error. 
Along with this technique, we define error functions as  



measures of the training generalization error for both 
classification and regression problems. We propose to 
minimize the estimated true generalization error by 
adapting the Newton method with line-search. From the 
optimization point of view, the solution to the problem is 
non-trivial. To illustrate this, Figure 1 shows the output 
root mean squared error of a Linear Programming 
Support Vector Regression (LP-SVR) as a function of its 
hyper-parameters  ,C   θ . Note how the error sur- 
face is non-smooth and has many local minima; therefore, 
it is non-convex. Our aim here is to adapt Newton 
method to provide an acceptable solution to the problem 
of finding the hyper-parameters. Although the LP-SVR 
formulation we discuss here is the one introduced in [8], 
it will be demonstrated that the method can be im- 
plemented for other formulations of support-vector-based 
problems. 

This article is organized as follows: In Section 2, we 
begin our discussion by defining a generalized method to 
minimize a set of error functions that will reduce the 
training generalization error of a generic pattern re- 
cognition problem; therefore, in order to demonstrate the 
potential of this method. Section 3 discusses the usage of 
an LP-SVR formulation. The latter particularization is 
addressed in Section 4 where specific error functions are 
chosen to solve the problem. Section 5 discusses imple- 
mentation details and other considerations in this re- 
search for this particular problem. The results are dis- 
cussed in Section 6, and conclusions are drawn in Sec- 
tion 7. 
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Figure 1. Response of the root mean squared error as a 
function of  ,θ C σ . Note, how the error surface is non- 

smooth and has many local minima. 
 
2. The Minimization of Error Functions 

Let us consider f θ   , such that  and is 
a real function representing some estimate of error; 
where  is a vector of parameters, and  

1
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 ,

N

i idx
i

 defines a training set given by N samples 
of the M-dimensional data vector 


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That is,  represents  different measures of error, 
provided model parameters , and training data  . 
Here, we aim to make 

F m
θ

   T0,0, ,0 F θ 0 . 
In this paper we will address the case when n m , 

that is, when the number of model parameters to estimate, 
is equal to the number of error metrics used to find such 
model parameters:  1 2, , , n  θ  , and 1 2, , , nf f f . 
If , then it has a gradient usually known as 
Jacobian given by 
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where  nf θ   denotes the gradient of the n  th 
function, given by 

 T

1 2 1

.n n n
n

n n

f f f
f

  


   
      

θ     (3) 

Since we want to find the vector of parameters  
that given a training set  produce minimal error 
functions, such that 

θ



  F θ 0  , then we can use 
Newton’s method assuming, for now, that F  is con- 
tinuously differentiable on n . 

2.1. The Algorithm of Newton 

The algorithm of Newton has been used for a number of 
years; it is well known from basic calculus and is perhaps, 
one of the most fundamental ideas in any numerical 
optimization course. This method can be summarized as 
shown in Algorithm 1. 
 

Algorithm 1 The Newton algorithm to find θ    that satisfies 

   0F θ   . 

Require: F  to be continuously differentiable on  n
Require: A close initial point 0θ  .  

1: for 0,1,2, ,t    until convergence do  

2: Solve for 0θ   in: Newton direction  

    ort t t  FJ θ θ F θ          (4)

  1

t t


     Fθ J θ F θ  t         (5)

3: Update: 

1t t t   θ θ θ               (6)

4: end for 

 
Newton’s method is known because it has q-quadratic 

rate of convergence, finding a solution θ   in very 
few iterations. Such that   F θ 0  , if and only if 
such a solution exists. 

This method is also known for one of its main dis- 
advantages: it is a local method. Therefore, one need to 
have in advance a vector of parameters that is close to an 
acceptable solution. To overcome this difficulty, we can 
establish a globalization strategy. 

2.2. Globalization Strategy 

In our globalization strategy we use the following merit 
function: 

    2

2

1
,

2fM θ F θ           (7) 

where 
2
  denotes the 2-norm (a.k.a. euclidean norm). 

Then we define the following property. 


     (2) Property 1. θ   is a descent direction for  
 fM θ  . That is,  θ0   in the system given by  

  T
.f fM M   θ θ θ         (8) 
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Proof. Let fM  θ    be the derivative of the merit 
function (7) denoted as: 

    1
.

2

T

fM   Fθ J θ F θ      (9) 

Then, substituting (9) into (8) results 

      2T

0 2

1

2 2
  FF θ J θ θ F θ   

1
 (10) 

which reduces to 

   1

0 .


     Fθ J θ F θ 0       (11) 

Hence,  θ0  . 
Given the fact that the merit function (7) is indeed a 

valid function guaranteeing a descent at every iterate, 
then, we can establish the globalization strategy by de- 
fining the next property. 

Property 2. If θ   is a descent direction of  
fM θ   , then, there exists an  1 0,1   such that 

 
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θ θ

 

  θ 
   (12) 

The proof for this property is already given by Dennis 
et al. in 1996 [9] (see Theorems 6.3.2. and 6.3.3. pp. 
120-123). Thus, substituting (7) into (12), we obtain  

   
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2

2   (13) 

which reduces to 
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1 22
1 2 ,



 

 

  

F θ θ

F θ

 


        (14) 

where 2  is a parameter controlling the speed of the 
line search. Typically  [9]. 4

2 1 10  
Using the line-search globalization strategy, we can 

modify Newton’s method to include a sufficient decrease 
condition (a.k.a. Armijo’s condition). The Globalized 
Newton method is as shown in Algorithm 2. 
 

Algorithm 2 Globalized Newton method to find θ    that 

satisfies    0F θ   . 

Require:  to be continuously differentiable on  F n
Require: An initial point 0θ  .  

1: for  until convergence do 0,1,2, ,t  
2: Solve for 0θ   in: Newton direction  

   t t t  FJ θ θ F θ    

3: Sufficient decrease: Armijo’s condition  
Find 1  that satisfies: 

   1 12 2
1 2t t t

Note that the fact that the algorithm makes progress to 
an acceptable solution t  is due to the new update step 
(15) that considers the new sufficient decrease condition. 
In the following sections it is shown how to find para- 
meters from the LP-SVR model. 

θ 

3. LP-SVR Model Parameters 

In this paper we aim to find the parameter of a linear 
programming support vector regression (LP-SVR) ap- 
proach, that uses an infeasible primal-dual interior point 
method to solve the optimization problem [10]. 

In order to describe the LP-SVR formulation we need 
to start with the 1 -SVR. The formulation of an - 
SVR (i.e. norm-1-SVR) problem is as follows:  

 1

 
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1
, 1
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   (16) 

where  is the Lagrange multiplier associated with the 
support vectors (SVs); the summation in the cost func- 
tion accounts for the 

α

 -insensitive training error, which 
forms a tube where the solution is allowed to be defined 
without penalization;  is a constant describing the 
trade off between the training error and the penalizing 
term 

0C

1
; the variable α i  is a nonnegative slack 

variable that describes the  -insensitive loss function; 
 is the desired output in response to the input vector 
; the variable  is a bias;  is any valid kernel 

function (see [11,12]). The parameter vector  and the 
bias b are the unknowns, and can take on any real value. 

d
x b  ,K  

α

Then, since the requirement of an LP-SVR is to have 
the unknowns greater than or equal to zero, we typically 
decompose such variables in their positive and negative 
parts. Therefore, we denote α = α+ −α−, and b = b+ −b−. 
Then, in order to pose the problem as a linear program in 
its canonical form and in order to use an interior point 
method solver, problem (16) must have no inequalities; 
thus, we need to add a slack variable u, which all- 
together results on the following problem  

2      F θ θ F θ    

4: Update:  

1 1t t t   θ θ θ            (15)

5: end for 
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which is the formulation we used in the analysis we 
presented in this paper, along with an interior point 
solver and a radial-basis function (RBF) kernel with pa- 
rameter  . 

Note that (17) allows us to define the following equa- 
lities:  

2 4 2

1 1

1 1
N N 

   
    

K K I I
A

K K I I 
 (18) 

2 1N
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N
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   (20) 

 1 4 2
0 0 ,

T

N 
c C1 1 2 0        (21) 

which is an acceptable linear program of the form: 
Tmin

s.t.


 

z
c z

Az b

z 0

               (22) 

Note that this problem has  variables and 
 constraints. 

4 2N  
2N

This is a definition more appropriate than the one 
described by Lu et al. in late 2009 [13] for interior point 
methods; and also it is an extension of the LP-SVM work 
presented by Torii et al. in early 2009 [14] and by Zhang 
in early 2010 [15]. 

Since the LP-SVR definition suffers from an increase 
in dimensionality, it is suggested that in large scale appli- 
cations use the approach presented in [8]. 

4. Error Functions as Model Parameters 
Selection Criteria 

Typically in computational intelligence methods and 
pattern recognition we want to minimize the true test 
error. And the true test error has to be measured in some 
way. The measurement of the test error is in fact model- 
dependent. In the following paragraphs we will chose 
error metrics particular to classification and regression 
problems for the LP-SVR model in (17). 

4.1. Error Functions for Two and Multi-Class 
Problems 

In this paper we want to particularize and estimate the 
model vector of parameters  ,C θ . The error func- 
tions we want to use for multi-class problems are two: a 
modified estimate of sacled error rate (ESER), and the 
balanced error rate (BER). The ESER metric is given by  

   1
1

0.5 ,
N

i i
i

f y d


   θ 

where   is a scaling factor used only to match the 
ESER to a desired range of of values;  denotes the 
outcome of the LP-SVR classifier when an input vector 

 is fed at the LP-SVR’s input; and the function 

y

x    
is denoted by the following equation:  

  1
,

1 e x
x  


         (24) 

that approximates the unit step function. The step func- 
tion is widely used and for this case, the quality of its 
approximation depends directly of the parameter   as 
shown in Figure 2. 

In all of our experiments   is fixed to 
1

N
. If 

1

N
  , 

then the f1 has values only within the interval  1 0,1f  . 
The ESER could become biased towards false positive 

counts, especially if we have a large number of un- 
balanced class examples. Therefore, we use the BER 
which is defined as follows: 

 2

1

2

FP FN
f

TN FP FN TP

 
     

 
   

θ    (25) 

where  stands for “True Positive,” TP FP  “False Po- 
sitive,”  “True Negative,” and TN FN  “False Nega- 
tive.” (The reader may find Tables 1 and 2 useful in 
understanding or visualizing the concepts above using 
multi-class confusion matrices.) 

Whenever there there are equal number of positive and 
negative examples, which is the case when TN + FP = 
FN + TP (see [7]), then the BER becomes equivalent to 
the traditional misclassification rate. 

In the other hand, for a two class approach, it is more 
 

 

Figure 2. An approximation to the unit step function   

was used for convenience in easing computations. A value of 
of γ 95  provides a better approximation than a value of 

γ 15 . Larger values for γ  produce better approxima- 
tions to the step function. 

       (23) 
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Table 1. Illustration of TP, FP, TN, and FN for class 0, 
using a multi-class confusion matrix. 

 LP-SVR’s Output,  y

Known Class, d 0 1 2   j  

0 TP FN FN FN FN 

1 FP TN FN FN FN 

2 FP FN TN FN FN 

  FP FN FN TN FN 

j  FP FN FN FN TN 

 
Table 2. Illustration of TP, FP, TN, and FN for class 2, 
using a multi-class confusion matrix. 

 LP-SVR’s Output,  y

Known Class, d 0 1 2   j  

0 TN FN FP FN FN 

1 FN TN FP FN FN 

2 FN FN TP FN FN 

  FN FN FP TN FN 

j  FN FN FP FN TN 

 
convenient to use the area under the receiver operating 
characteristic (ROC) curve, as well as the BER metric. It 
is well known that maximizing the area under the ROC 
curve (AUC) leads to better classifiers, and therefore, it 
is desirable to find ways to maximize the AUC during 
the training step in supervised classifiers. The AUC is 
estimated by means of adding successive areas of tra- 
pezoids. For a complete treatment of the ROC concept 
and AUC algorithm, please consult [16]. Let us define 
the function 1f  for the two class approach as follows: 

   1 ,
1 .        (26) f AUC  

θ
θ




The area under the ROC curve, , is computed 
using Algorithms 1, 2, and 3 from [16]. Let us recall that 
essentially we want 

 AUC 

 1 0f θ  , which evidently in 
(26) means a maximization of the AUC. The function 

2f  for the two-class approach is the same BER as in 
(25). 

For regression problems, the error metrics have to be 
different. The next paragraphs explain functions that can 
be used. 

4.2. Error Functions for Regression Problems 

In regression we want to use a different measure of error. 
The error functions we want to use for classification are 
two: sum of square error (SSE), and balanced error rate 
(BER). The SSE metric is given by 

   2

1
1

N

i i
i

where  is the actual output of the classifier LP-SVR 
when the input vector  is presented at its input. 

y
x

The second metric is based on the statistical properties 
of the residual error given by the difference i iy d . 
From estimation theory it is known that if we have the 
residual error expected value equal to zero, and a unit 
variance, we have achieved the least-squares solution to 
the regression problem, either linear or non-linear. Fur- 
thermore, it is understood that as the variance of the 
residual error approaches zero, the regression problem is 
better solved. Let us denote the expected value of the 
residual error as  

 
1

1
,

N

i i i i
i

E y d y d
N




            (28) 

and the variance of the residual error as follows 

 

 
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2

1

1
,

1

i i

N

i i
i

E y d

y d
N

 




  

  
 

      (29) 

from where it is desired that . Hence, the 
second error metric is defined as:  

2,   0

  2
2f

2  θ            (30) 

where the term 2  has the meaning of the absolute  

value of the mean, since 2   is easier to handle  

in optimization problems. 

5. Particularization and Discussion 

In this section we follow the development presented in 
Section 2, and cope it with the metrics on Section 4, to 
find the model parameters of the formulation in Section 3. 

5.1. Globalized Quasi-Newton Implementation 

Particularizing (1) for the cases presented in Sections 3 
and 4, the formulation of F  simply becomes 

   
 

1

2 2 2

f

f


 
  
  

θ
F θ

θ





          (31) 

where clearly 2: 2 F   and . The 
typical challenge is to compute the Jacobian matrix 

2:θ 

 FJ θ  , since not all the error functions are diffe- 
rentiable, i.e. (25) or (26). Then, the classical approaches 
are to estimate  FJ θ   via finite difference approxi- 
mation, or secant approximation. For convenience, we 
used the finite difference approximation. In this case, 

 FJ θ   corresponds to a finite difference derivate 
approximation which solves (2) using (3) where 

   1 2 1 2

1

, ,n nn f h ff

h

   


 

     (32) f y d



 θ          (27) 
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   1 2 1 2

2

, ,n nn f h ff

h

  


 





    (33) 

allowing  to be sufficiently small, as appropriate. h

5.2. Finding a Good Initial Point 

Although the globalization strategy presented in Section 
3 prevents Newton method from going far away from a 
solution, and guarantees a decrease of the error at each 
iteration, it does not guarantees a global minima since it 
is not a convex problem. As a consequence, we needed to 
implement a common approach to find the initial vector 
of parameters, by varying  and C   and observing for 
the pair of parameter producing the minimum error. In 
this paper, this is achieved by varying  in the 
following interval  and  

. In spite that this approach is 
very powerful to find a good starting point, it requires a 
loop of  iterations, which is sometimes very costly 
depending on the application. 

C
 3 152 , , 2C 
6 72 ,2

5 , 2  13, 2
 2 12 , 2 , ,   

110

5.3. S-Fold Cross Validation 

Estimating the true test error given a training set  is 
not trivial. Two popular approaches to this problem exist: 

-fold, and leave-one-out cross validation. 



S
In our implementation and experiments, we have used 

former approach, which led us to define the following 
rule to find a “good” number of partitions in , that is: S

N
S

q

 
  
 

                (34) 

where  represents the maximum number of con- 
straints in (22) that are computationally tractable; the 
function  represents a round up operation; and 

q

 S  
is the number of partitions in . In the case of a large- 
scale implementation  is directly set to the maximum 
working set size parameter. 

S
q

The partitions in the set  is denoted as S

 1 2, , , kS s s s             (35) 

where k S , and ks  denotes the k th partition and 
contains the indexes of those training data points in  



  1
,

N

i i i
d


 x . Therefore we say that 1, 2, ,k s N    

and . {1, 2, , }S N
It is understood that the main idea behind this method 

is to partition the training set  in  S  groups of data 
(ideally of equal size), then train the classifier with 

1S   and use the remaining data as validation set. The 
process is repeated for all the partitions ks  and the error 
is averaged as follows  

  
1

1
k

S

s
kS 

 F θ F θ


where  ksF θ   is the error obtained for the k  th  

partion;  F θ   is an estimate of the true test error;  

 ,
k k

s i i i s
d


 x  and .  ,S i i i S

d


 x

5.4. Refined Complete Algorithm 

The complete algorithm considering all the refinements 
and particularizations for the particular case study of the 
LP-SVR (shown as Algorithm 3) requires as input the 
indexes S corresponding to the cross validation indexes, 
and also the training set  from which the LP-SVR 
parameters producing the minimum error  will be 
estimated as . 


θ

θ
Then, the algorithm proceeds using the approximation 

to the true Jacobian (31)-(33) shown in Section 5.1. 
However, note that every single function evaluation of 
(31) requires cross validation, as explained in Section 5.3. 
As a consequence, the Jacobian implies internal cross 
validation. The remaining steps are the linear system 
solution, Armijo’s condition, and update. 

 
Algorithm 3. Globalized quasi-Newton method to find parameters 

 for an LP-SVR model. θ 

Require: Cross validation indexes S. Sec. 5.3. 
Require: Training set .  

1: Initial point 0 Sθ  . Iteratively. Sec. 5.2.  

2: for 0,1, 2, ,t    until convergence do 

3: Solve for 0 Sθ   in: Sec. 5.1, and 5.3.  

   t S t S t S   
FJ θ θ F θ    

4: Sufficient decrease: Armijo’s condition  
Find 1  that satisfies: 

 
 

1 2

1 22
1 2

t S t S

t S



 

 

  





F θ θ

F θ

 


         (37)

5: Update: 

1 1t S t S t S   θ θ θ             (38)

6: end for 

Ensure: Model parameters estimate t Sθ θ  . 

 

The linear system in Step 5.4 requires special attention 
specially in a large-scale setting. If this is the case, one 
possible approach is to use any well known direct 
approach such as LU-factorization [17]; or an indirect 
approach such as the classic conjugate gradient algorithm 
by Hestennes 1956 [17,18]. The other special considera- 
tion with the linear system is when the Jacobian matrix is 
non-singular. There is an easy way to test if the Jacobian 
is non-singular, look for the minimum eigenvalue and if 
it is less than or equal to zero, then the Jacobian is non- 
singular. This idea, leads to a trick that consist on shift- 
ing the eigenvalues of the Jacobian so that it becomes 
singular for computational purposes. With this in mind, 
we can modify Step 5.4 of the algorithm as follows: 

       (36) 

Copyright © 2013 SciRes.                                                                                JILSA 



LP-SVR Model Selection Using an Inexact Globalized Quasi-Newton Strategy 25

3.1:  min eig t S    


FJ θ   

3.2: Solution to the linear system 
    if  then 0 

   t S t S t S   
FJ θ θ F θ    

    else 

    t S t S t S       


FJ θ I θ F θ       (39)

    end 

 
where   is the minimum eigenvalue of the Jacobian, 

0 

  

 is a constant sufficiently small that cannot be 
interpreted as zero, and  is the identity matrix of 
identical size to the Jacobian. In (39) we typically chose 

. 

I

81 10

5.5. Stopping Criteria 

The stopping criteria used in this algorithm includes 
three conditions. 

First, a condition that monitors if the problem has 
reached an exact solution to the problem, that is,  

 t S F θ  ε



          (40) 

where  T

1 2, ε . Ideally, 1 0  , and 2 0  . 
Second, the 2  norm of the objective function is 

monitored, which measures the distance to zero (or to a 
certain threshold) from an approximate solution at ite- 
ration t. That is, 



  32t S F θ           (41) 

where 3  is some threshold, ideally 3 0  . 
Third, we set a condition that measures the change 

between solutions at each iterate, as follows 

1 2t t 4  θ θ          (42) 

where 4  is typically set to a very small value. 
Condition (42) states an early stopping criteria if the 

algorithm has no variability in terms of the updates at 
each iteration. However, it may happen that the algo- 
rithm is indeed changing the solution t  at each iterate, 
but indeed this represent no significant progress towards 
a solution. In such case, another classical early stopping 
criteria is used: maximum iterations. The criteria is 
simply 

θ

5t                  (43) 

where 5  is the maximum number of iterations per- 
mitted. 

6. Simulation Results 

To show the effectiveness and efficiency of the proposed 
model selection method, we performed simulations over 
different datasets. The summary of the properties of these 
datasets are shown in Table 3. Note that the simulations 

include classification in two and multiple classes, as well 
as regression problems. The results will be explained in 
the following paragraphs. 

First, let us consider the results shown in Table 4. The 
second column shows the total number of iterations; in 
average we observe that the iterations are around eight, 
which is one of the most important properties of the 
method. Column three and four of Table 4 show the 
hyper-parameters found; while in the fifth column we see 
the 2 -norm of the algorithm at the last iteration. Note 
how variable is this value depending on the dataset. 
Finally, in the sixth column is shown the criteria that 
made the algorithm stop; it is clear that the most common 
is the criteria 4



  described in (42). This latter statement 
means that the algorithm stopped because no progress 
was being made towards the solution. 

A second part of our the simmulation involves using a 
testing sed. For this purpose, let us define  

  1
,

N

i i i
d


 x



  as the testing set, where  is the  N 

number of samples available for testing. The testing set 
 has never been showed to the LP-SVR model before. 

The simulation results in Table 5 show  nf θ   
which represents the result of the -th function (or error 
criteria), evaluated at the approximated solution  
using only the testing set . These results are shown in 
columns two trough six. In column number two is shown 
the modified estimate of scaled error rate (23), which 

n
θ



was used with parameters 
1

N
   and 100  . These 

parameter   was chosen by convenience in order to 

have an error within the interval [0,1]. The third column 
displays results for when the balanced error rate (25) was 
utilized. The area under the ROC curve (26) shown in the 
fourth column also produces a result within the same 
interval as the BER. In contrast, regression error 
functions shown in the fifth and sixth column have a 
wide interval, but is always positive. That is, sum of 
squared error (27) and the statistical properties (30) fall 

into the interval 0,    . Note that classification error 

functions in average are zero for practical purposes, 
which is desirable. 

Moreover, in Table 5 columns six trough seven we 
show statistical properties of the residuals given by 
 y d




θ

. This residual is acquired by showing the test- 
ing set  to the LP-SVR model with hyper-parameters 

 and measuring the output . Ideally, we want the 
average of the residuals to be zero, as well as their 
standard deviation. This desired property is achieved 
during our simulations. 

y

Although statistical properties of residuals based on 
the testing set demonstrate that the approach has an 
acceptable behavior, the reader must be aware that this 
approach has some characteristic properties that may lead 
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Table 3. Summary of the dimensions and properties of the datasets. 

Features Training Testing 
Dataset Classes 

M  N  N   

Ripley 2  2  250  1000  

Sonar 2  60  104  104  

Wine 2  13  110  20  

Spiral 2  2  200  101  

ADA 2  48  4147  415  

GINA 2  970  3153  315  

HIVA 2  1617  3845  384  

NOVA 2  16969  1754  175  

SYLVA 2  216  13086  1308  

Iris 3  4  130  20  

MODIS 4  4  374566  85 + mil 

SincF   1  200  200  

LoadP   8  35064  8784  

 
Table 4. Summary of behavior. 

 7

1 2 3 4, , , 1.1921 10      , and  5 100 

Dataset t  tC  t   
2t SF θ   Stop Crit. 

Ripley 12  5.047  0.2501  0.0021  4  

Sonar 8  5.413  1.5041  0.0013  4  

Wine 1  0.031  0.2500  0.0000  1 2,   

Spiral 5  8.287  0.2515  0.0001  1 2,   

ADA 7  0.460  117.82  0.9813  4  

GINA 8  0.125  157.49  0.1658  4  

HIVA 11  0.500  8.0730  0.0954  4  

NOVA 15  2.004  4.7045  0.0313  4  

SYLVA 7  1.125  4096.1  0.1512  4  

Iris 6  11.46  1.7726  0.0019  4  

MODIS 14  0.501  0.1249  0.0813  4  

SincF 6  959.1  0.9978  0.0011  3  

LoadP 7  0.499  0.1254  0.0210  4  

Avg. 8.2        4  

 
to unexpected results. First, the algorithm works with an 
approximation to first order information, that in the worst 
case may also be singular. Second, the algorithm is not 
convergent to a global minimum; however a “good” 
initial point is obtained as explained in Section 5.2. Third, 
the globalization strategy may become computationally 
expensive if the first order information leads far away 
from the solution. A good way to reduce the compu- 
tational expense in finding a 1  that produces a suffi- 
cient decrease at each iterate can be found in text books 
[9,17]; in these, the most common state-of-the-art app- 

roach is is to have 1  decrease in the following pattern  
1 1 1 1

, , , ,


, 0
2 4 8 16

 
 

  . This approach has demon-  

strated to be efficient and is widely used in the com- 
munity. However, further research must be conducted in 
the three aspects mentioned above. 

Furthermore, different or more error functions may 
also be studied we well as the case when more LP-SVR 
parameters are being estimated, such as  . Moreover, 
the concepts discussed in this paper can also be applied 
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Table 5. Summary of Experiments. Note that the symbol “ ” indicates that the error function does not apply to that 
particular dataset depending if it is multi-class, regression, or two-class. 

  nf θ    y d


 

Dataset ESER (23) BER (25) 1-AUC (26) SSE (27) STAT (30)     

Ripley   0.0852  0.0261      0.0660  0.4023  

Sonar   0.0507  0.0632      0.0385  0.2760  

Wine   0.0000  0.0000      0.0008  0.0007  

Spiral   0.0000  0.0000      0.0001  0.0008  

ADA   0.1484  0.0669      0.0012  0.2001  

GINA   0.0026  0.0000      0.0069  0.0397  

HIVA   0.1710  0.0457      0.0270  0.1609  

NOVA   0.0000  0.0000      0.0003  0.0189  

SYLVA   0.0058  0.0000      0.0016  0.1980  

Iris 0.0009  0.0001        0.0001  0.0022  

MODIS 0.0071  0.0318        0.0704  0.3109  

SincF       0.0003  0.0012  0.0001  0.0008  

LoadP       0.0097  0.1151  0.0402  250.29  

Avg. 0.0040  0.0451  0.0224  0.0050  0.0582  0.0029    

 
to other support vector (SV)-based learning machines 
with little or no modification. 

7. Conclusions 

An algorithm for LP-SVR model selection has been dis- 
cussed in this paper. We propose a quasi-Newton method 
for function minimization, that uses a globalization 
strategy and an inexact computation of first order infor- 
mation. This Jacobian is computed via finite differences 
techniques. We have explored the case of two and multi- 
class problems including regression. 

Simulation results suggest that the algorithm achieves 
insignificant variability when measuring residual statis- 
tical properties. These simulations included mostly stan- 
dard benchmark datasets from real-life applications, and 
fewer synthetic datasets. 

This paper discussed discussed a particularization of a 
generalized method that was introduced at the beginning 
of this paper; this method can be used to train other types 
of SV-based formulations. This research significantly 
advances the natural problem of model-selection in most 
of today’s SV-based classifiers that have the hyper-pa- 
rameters out the problem formulation. 

8. Acknowledgements 

The author P. R. P. performed part of this work while at 
NASA Goddard Space Flight Center as part of the 
Graduate Student Summer Program (GSSP 2009) under 
the supervision of Dr. James C. Tilton. This work was 
supported in part by the National Council for Science and 

Technology (CONACyT), Mexico, under Grant 193324/ 
303732 and mentored by Dr. Greg Hamerly who is with 
the department of Computer Science at Baylor University. 
Finally, the authors acknowledge the support of the 
Large-Scale Multispectral Multidimensional Analysis 
(LSMMA) Laboratory (www.lsmmalab.com). 

REFERENCES 
[1] A. J. Smola and B. Scholkopf, “A Tutorial on Support 

Vector Regression,” Statistics and Computing, Vol. 14, 
No. 3, 2004, pp. 199-222. 
doi:10.1023/B:STCO.0000035301.49549.88 

[2] D. Anguita, A. Boni, S. Ridella, F. Rivieccio and D. 
Sterpi, “Theoretical and Practical Model Selection Meth- 
ods for Support Vector Classifiers,” Support Vector Ma- 
chines: Theory and Applications, Vol. 177, 2005, pp. 
159-179. doi:10.1007/10984697_7 

[3] K. Duan, S. Keerthi and A. Poo, “Evaluation of Simple 
Performance Measures for Tuning SVM Hyperparame- 
ters,” Neurocomputing, Vol. 51, 2003, pp. 41-59. 
doi:10.1016/S0925-2312(02)00601-X 

[4] Z. Hui-ren and P. Zheng, “Method for Selecting Parame- 
ters of Least Squares Support Vector Machines Based on 
GA and Bootstrap,” Journal of System Simulation, Vol. 
12, 2008. 

[5] D. Anguita, S. Ridella, F. Rivieccio and R. Zunino, “Hy- 
perparameter Design Criteria for Support Vector Classifi- 
ers,” Neurocomputing, Vol. 55, No. 1-2, 2003, pp. 109- 
134. doi:10.1016/S0925-2312(03)00430-2 

[6] L. Wang and S. O. Service, “Support Vector Machines: 
Theory and Applications,” Studies in Fuzziness and Soft 
Computing, Springer-Verlag, Berlin, 2005. 

Copyright © 2013 SciRes.                                                                                JILSA 

http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1007/10984697_7
http://dx.doi.org/10.1016/S0925-2312(02)00601-X
http://dx.doi.org/10.1016/S0925-2312(03)00430-2


LP-SVR Model Selection Using an Inexact Globalized Quasi-Newton Strategy 28 

[7] G. Cawley, “Leave-One-Out Cross-Validation Based Mo- 
del Selection Criteria for Weighted Ls-Svms,” IEEE In- 
ternational Conference on Neural Networks, 16-21 July 
2006. doi:10.1109/IJCNN.2006.246634 

[8] P. R. Perea, “Algorithms for Training Large-Scale Linear 
Programming Support Vector Regression and Classifica- 
tion,” Ph.D. Thesis, The University of Texas, El Paso, 
2011. 

[9] J. Dennis and R. Schnabel, “Numerical Methods for Un-
constrained Optimization and Nonlinear Equations,” So-
ciety for Industrial Mathematics, 1996.  
doi:10.1137/1.9781611971200 

[10] M. Argaez and L. Velazquez, “A New Infeasible Interior- 
Point Algorithm for Linear Programming,” Proceedings 
of the 2003 Conference on Diversity in Computing, ACM, 
New York, 2003, pp. 12-14.  
http://doi.acm.org/10.1145/948542.948545 

[11] J. Mercer, “Functions of Positive and Negative Type, and 
Their Connection with the Theory of Integral Equations,” 
Philosophical Transactions of the Royal Society of Lon-
don. Series A, Containing Papers of a Mathematical or 
Physical Character, Vol. 209, No. 441-458, 1909, pp. 
415-446. doi:10.1098/rsta.1909.0016 

[12] R. Courant and D. Hilbert, “Methods of Mathematical 
Physics,” Interscience, New York, 1966. 

[13] Z. Lu, J. Sun and K. R. Butts, “Linear Programming Sup- 
port Vector Regression with Wavelet Kernel: A New Ap- 
proach to Nonlinear Dynamical Systems Identification,” 
Mathematics and Computers in Simulation, Vol. 79, No. 
7, 2009, pp. 2051-2063.  
doi:10.1016/j.matcom.2008.10.011 

[14] Y. Torii and S. Abe, “Decomposition Techniques for 
Training Linear Programming Support Vector Machines,” 
Neurocomputing, Vol. 72, No. 4-6, 2009, pp. 973-984. 
doi:10.1016/j.neucom.2008.04.008 

[15] L. Zhang and W. Zhou, “On the Sparseness of 1-Norm 
Support Vector Machines,” Neural Networks, Vol. 23, No. 
3, 2010, pp. 373-385.  
http://www.sciencedirect.com/science/article/B6T08-4XV
BP5J-1/2/b032646ea72f40e7025a40b499134a21 

[16] T. Fawcett, “Roc Graphs: Notes and Practical Considera- 
tions for Researchers,” Machine Learning, Vol. 31, 2004, 
pp. 1-38. 

[17] J. Nocedal and S. Wright, “Numerical Optimization,” 
Springer Verlag, New York, 1999. doi:10.1007/b98874 

[18] M. Hestenes, “Pseudoinversus and Conjugate Gradients,” 
Communications of the ACM, Vol. 18, No. 1, 1975, pp. 
40-43. doi:10.1145/360569.360658 

 

 

Copyright © 2013 SciRes.                                                                                JILSA 

http://dx.doi.org/10.1137/1.9781611971200
http://dx.doi.org/10.1098/rsta.1909.0016
http://dx.doi.org/10.1016/j.matcom.2008.10.011
http://dx.doi.org/10.1016/j.neucom.2008.04.008
http://dx.doi.org/10.1007/b98874
http://dx.doi.org/10.1145/360569.360658

