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ABSTRACT 

This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event 
may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the 
non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times 
follows a parametric copula model with unspecified marginal distributions. The technique of inverse probability 
weighting (IPW) is adopted to adjust for the selection bias. Large-sample properties of the proposed estimator are de- 
rived and a model diagnostic procedure is developed to check the adequacy of the model assumption. Simulation results 
show that the proposed estimator performs well. For illustrative purposes, our method is applied to analyze the bone 
marrow transplant data in [1]. 
 
Keywords: Copula Model; Dependent Censoring; Quantile Regression; Semi-Competing Risks Data 

1. Introduction 

Quantile regression analysis has received increasing at- 
tentions in the recent literature of survival analysis. 
Compared with conventional regression models such as 
the proportional hazards (PH) model or the accelerated 
failure time (AFT) model, quantile regression models 
provide direct assessment of the covariate effect on dif- 
ferent quantiles of the failure time variable. This model 
also allows covariates to affect both location and shape 
of the distribution. Let T be the failure time of interest, 

 be a  vector and . Consider the 
following linear quantile regression model on 
Z 1p 1,Z  TTZ

 h T

 

, 
where  is a known monotonic function, such that   h 

   0 ,β ZTh T Z

0 1

           (1) 

where    and  Y Z  100  is the  th 
quantile of Y conditional on Z. Note that when we set 

, model (1) is equivalent to     T
0   β Zh T

 Pr 0  Z . Many papers for estimating  0 β  
without specifying the distribution of T Z  or  have 
appeared in the literature. [2-5] considered quantile re- 
gression analysis under a fixed censoring mechanism in 
which all the censoring times are observed. Independent 
right censorship has been assumed by many papers in- 
cluding [6-11]. 

In this paper, we consider semi-competing risks data 

[12] in which the failure time of a non-terminal event T is 
subject to dependent censoring by a terminal event time 
D but not vice versa. Consider an example of bone mar- 
row transplantation for leukemia patients described in [1] 
such that T is the time to leukemia relapse and D is the 
time to death. One important risk factor is the disease 
classification (i.e. ALL, AML low-risk, and AML high- 
risk) which was determined based on patient’s status at 
the time of transplantation. Here we assume that T, the 
time to a non-terminal event, follows model (1). Note 
that [13,14] also considered quantile regression analysis 
for competing risks data and left-truncated semi-com- 
peting risks data respectively. They defined the quantiles 
based on the crude quantity, namely the cumulative inci- 
dence function  Pr ,T t T D  . In contrast, the pro- 
posed regression model (1) is defined based on the net 
quantity  Pr T t  which is not identifiable without 
extra assumption on the dependence structure. There has 
been some controversy over which quantity should be 
used in presence of dependent competing risks. We be- 
lieve that both quantities are important and not mutually 
exclusive as they provide information on different as- 
pects of the data. Here 0  β  measures the covariate 
effect on T after separating the potential influence from 
D. Such analysis is also useful in practical applications. 
For example, a covariate may prolong D so that increase 

 Pr ,T t T D   but have no direct effect on the non- 
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terminal event. The dependence between T and D com- 
plicates the estimation of 0  β

 , , ,X YX Y

. We will adopt a 
semi-parametric copula assumption to model their joint 
distribution and apply the technique of inverse probabil- 
ity weighting (IPW) to correct the bias due to dependent 
censoring in the estimation procedure. The association 
parameter in the copula model will also be estimated 
using existing methods. 

The rest of this paper is organized as follows. In Sec- 
tion 2, we introduce the data structure and model as- 
sumptions. The proposed methodology for parameter 
estimation and model checking is presented in Section 3. 
The proofs of the asymptotic properties are given in the 
Appendix. Section 4 contains simulation results. In Sec- 
tion 5, we apply the proposed methods to analyze the 
bone marrow transplant data in [1] and in Section 6, we 
give some concluding remarks. 

2. Data and Model Assumptions 

Recall that T and D denote the time to a non-terminal 
event and the time to a terminal event respectively such 
that T is subject to censoring by D but not vice versa. In 
presence of additional external censoring due to drop-out 
or the end-of-study effect, one observes    
such that X T D  C , , XY D C   I T D C    , 

Y I D 
 

C , where  is the minimum operator and 
I   is the indicator function. The covariate vectors can 

be denoted as  and . The sample   1pZ


  1,Z Z

 

TT

Contains  1, ,i, ,i i X , ,
i iYX Y Z i n 

 , , , ,X Y   Z

 0

   which are ran-  

dom replications of X Y . We will assume 
that  and C are independent given Z. The covari-
ate effect on T is specified by model (1) and the major 
objective is to estimate 

 ,T D

β  based on semi-compet- 
ing risks data. 

To handle dependent censoring, we have to make extra 
assumptions about the dependence structure between T 
and D in the upper wedge. According to [15] who ex- 
tended Sklar’s theorem to the regression setting, we con- 
sider the following copula model  

        , ,T Dt S dz z

 

Pr ,T t D d C S    zZ z  (2) 

where ,0 t d   TS tz  and  S dD z  are the mar- 
ginal survival functions of T and D, given Z z , and 

 is a parametric copula function defined on the 
unit square. The association parameter 

 ,C  
  in (2) is 

related to Kendall’s tau defined by  

 
1 1

0 0

4 ,C u v    d ,d 1.C u v  

 

 

In particular, we will assume ,T D Z  in the upper 
wedge follows a popular subclass of copula models, 
namely Archimedean copula (AC), in which the copula 

function can be further expressed as  

     1, , 0 , 1,C u v u v u v             (3) 

where   is a non-increasing convex function defined 
on   1 00,1  with  . Examples of Archimedean 
copula include Clayton’s copula with  

   1s s 
  

   

 

and  
1

, 1C u v u v
 



    ; 

and Frank’s copula with  

     log 1 log 1 ss     

 

 

and  

     , 1 1 1 1log u vC u v         . 

3. The Proposed Inference Methods 

Our major objective is to develop an inference method 
for estimation  0   but, in the mean time, employ 
existing methods for estimating   based on semi- 
competing risks data such as those proposed by [16] and 
[17]. 

 β3.1. Estimation of   for Discrete  
Covariates 

 0In absence of censoring, one can estimate β  by 
solving  

     1 2 T

1

0.
n

i ii
i

n I h T  



   Z β Z

iT iD C

   

 

Since  is subject to censoring by i, it follows 
that  

 
 

    
 

    

T
0

T
0

T
0

,

,

i

i

i

i

i i X

i
i

i i X

i i i
i

i i i

I h X
E

H X

I h T
E E T

H T

E I h T

 

 

 

 
 
 
 
           
    

Z

Z

β Z
Z

β Z
Z Z

β Z Z

 

where the reciprocal of the weight function is given by  

  
 
   
   ,

Pr 1 ,

Pr ,

Pr Pr ,

.

X

D T

H t T t

D C t T t

C t D t T t

G t S t

  

   

    

 

Z

Z Z

Z

Z

Z Z
 

The above derivations yield the following estimating 
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function for β   Kaplan-Meier estimator based on data  

    
 

T

1 2

1 i

n
i i

i
i i

I h X
n

H X










z

β Z
Z 0.iX 


 

 



 

 

This is the so called inverse probability weighting tech- 
nique for bias correction. Since 

iz iH X  needs to be 
estimated, it is natural to modify the estimating equa- 
tion as  

  
   

 
T

1 2

1

,

ˆ
i

n

n
i i

i
i i

S

I h X
n

H X

 








z

β

β Z
Z 0,iX 


 
   
 
 

  (4) 

where the estimated components in the weight can be 
denoted as  

     

 



,
ˆ ˆˆ

Pr >

Pr

i i iz i i D T

i i i

i i

H X G X S

C X

D X T

 

 

 

z z

Z


 , .

i

i

i i i i

X

z

X z Z

C

 

Now we discuss estimation of the weight components. 
We will first address the situation that Z takes discrete 
values, and then briefly discuss possible modification for 
continuous covariates. Since  is independent of T and 
D given Z,  C x z ZPr  can be estimated by the  

  ,1 1, ,
ii YY i n      or  ,1 1, ,

i ii X YX i n   

z

  

with i Z . We will utilize some analytic properties of 
the chosen AC model to derive an explicit expression of 

 Pr , iD x T x  Z  . Denote  , PrT zS x T x  Z z ,  

  , PrDS x D x  z Z z  and  

  , PrWS x W T D x    z Z z . It follows that  

   

              

   

            
   

    
    

, ,

, ,

,

1

,

1

,

,

,

Pr ,

.

u ST D

u ST D

D T

x v S x

x v S x

T

W

S x D x T x

u v
u

u

u v

S x

S x
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z z

z

z z z

z

z z z z

zz

zz

Z z

 

We suggest to estimate  S x

 ,
ˆ
WS xz

,D T z  by applying the es- 
timators in [17] for quantities in the right-hand side of 
the above expression. Specifically  is the Kap- 
lan-Meier estimator of  Pr T D x  Z z  based on  

  , 1, ,
ii W i n    <

iW i i iX I T D C   ,  , where 

 ,
ˆ
TS xz

          , ,ˆ ˆ
ˆ ˆ ˆ, 1, ,

i

n

X i W i W ix S X S X       

 is the copula-graphic estimator  
 

   
1

, ˆ
1

T z i
i

S x I X



           
z zz z zZ z

 ̂ z

       

  

where the estimator  is the root of the following estimating equation,  

  
     

, i ji j Z Z

π̂ ,
, > 0 0,

π̂ , 1

ij ij

ij i j i j

ij ij

X Y
C I X X Y Y

X Y









        
  

zz

z zz

 


 ij ij ij ijw X Y I T D     

 

      
    

where ij i jX X X 
ij i jY Y Y  

ij i jD D D 
ij i jC C C   ,w  

           

, , ,  ij i j

, ,  is a weight func-  
T T T 

tion, v v v v      z z z , and  

   

    
1

π̂ , Pr ,

ˆ> , > , ,
n

i i i z z
i

s t T s D t

I X x Y y Z z n G y


   

 

z Z z

 
1

n

z i
j

n I Z z


 

 

where . Then  

,ˆ

,

,ˆ

ˆ
ˆ .

ˆ
T

D T

W

S x
S x

S x














zz

z

zz

          (5) 

This estimator is then used in estimating Equation (4). 
The Equation (4) may not be continuous so that an 

exact solution may not exist. Here we define  ˆ β

   
 

 as a 
generalized solution as in [13,18]. By the monotonic 
property of (4), the set of generalized solutions is convex. 
Using the arguments in [13], the solution of (4) can be 
reformulated as the minimizer of the following function,  

 

   
 T T T

1 1 1

, 2 ,
ˆ ˆ ˆ

l

i

i i

n n n
l Xi i

n X k
i l kz i z i z ll

h X
U M M

H X H X H X


  

  


       

ZZ
b b b b Z  
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where M is a large enough positive value to bound  

 
T l

n
l X

1 ˆ
l

i z lH X




Z
b  and  T 2

n

1
k

k




We suggest using a re-sampling approach for variance 
es

b Z  from above. 

timation since the analytic formula for the variance of 
 ˆ β  is complicated to calculate. Based on the non- 

parametric bootstrap approach, we can sample replica- 
tions   y , , , 1, ,

i ii i xX Y i n        from the original data. 
Given n compute  a bootstrap sample, we ca  ˆ β . Re- 
peating the re-sampling procedure B times, btain 

  ˆ : 1, ,b b B β   and the variance of  ˆ
 we o

β  can be 

estimated by  

      2
,

B   


  
  β β  ˆ

1

1 ˆ
1

B

b
b

V

where    
=

ˆ
B

b
i b

B  β β . Furthermore, we can con-  

the  1



struct   confidence interval for  β  as  

   
1 2
ˆ

ˆ V z1 2 
 β here  , w  1

1 2 1 2z  
    , and      

is the cumulative distribution function of darda stan  
normal random variable. The bootstrap percentile method 
suggests another way of constructing a  1   confi- 
dence interval of  β  with the formula  

      2 1 2
ˆ ˆ,B B    

  
 β β , where    ˆ

b β , 1, ,b B    

are the order statistics of  b
ˆ   for β  1, ,b B . 

es for Discrete 

We  consistency and weak conver- 

3.2. Asymptotic Properti
Covariates  

establish the uniform
gence of the proposed estimator  ˆ β  for  ,L U   , 
a region that  0   is identifia e first st  
regularity condi

(C1) Denote the set of possible covariate Z values as 


ble. W ate the
tions. 

 which is a compact set in 1p . The probability 
nsity function  fZ z  for cov e Z is uniformly 

bounded above and belo  on  .  
(C2) There exists a compact set   in the parameter 

sp

de ariat
w

ace for the copula parameter   such that all true 
values of   z  are interior points o    for all f z  .  

(C3) Th exists 0ere    such that  Pr C   , 
P

0
0 r 0C   ,   inf  , ,T DS S  z 


z z

 .  
 and  

   1sup S S , ,T Dz z

 
z 

(C4) 1) 0 β  is Lipschitz continuous for  ,L U   ;  

2) The den  sity  , ,

d
T Td

f t S t z z  is bou e  
t

nded abov

uniformly for  0,t   and z  ; 3) The copula gen- 
erator function  u  has con us derivatives tinuo  u ,  

 u ,  u ,   u u
  and  u  which   


do not e r all 



qual 0 fo    and  0,1u .  

(C5)  0
inf b   eigmin   0cA b , for some 0 0    

and 0c , wh e   2 1 T
,TE h    ZA b Z Z

 

0  er   b ,  

   1
,L U   0: infpB R  β  b b  , 

2 T u a vector u.  
Condition C1 assumes the boundedness of covariates 

and is satisfied for finite discrete covariates. T  as- 
sumption is only used to derive the asymptotic prop  

and uu  for 

his
erties

of ˆ
D ,T z  for p  Condition C2 assumes 

th

S roving Theorem 1.

at the true value of   is an interior point in the pa- 
rameter space which is a common regularity condition. 
Condition C3 is assumed to simplify theoretical argu-
men milar to condition C1 in [13], and generally ts si   
is the study end time in ractical applications. Conditions 
C4 1) and 2) assume the smoothness of coefficient proc- 
esses, and the uniform boundedness on the density of T, 
which are standard for quantile regression methods. 
Condition C4 3) imposes the smoothness requirement on 
the copula generator function similar to the regularity 
conditions in [17,19]. Condition C5 is similar to condi-
tion C4 in [13] which ensures the identifiability of 

 p

 0 β  and is needed for proving the consistency of 
 ˆ β . 
Therefore with finite  , we prove the following 

result.  
Theorem 1 If conditions C1-C5 hold, then  

     0,m sup 0
L Un         , 

and 

ˆ pβ βli

    ˆ1 2n  0   mean- 
ze

The detailed proofs are presented in the Appen x. 

Model Checking 

 [20-22] in which complete data 
ar

β β  converges weakly to a
ro Gaussian process.  

di

3.3. and Model Diagnosis 

Motivated by the work of
e considered, we define the residual quantities as  

     Tˆ
i ii i i X z ie I h X H X      β Z  

for 1, ,i n   and consider  

     
1

,n i i
i

n q e1 2
n

  Z

  

re  qwhe   i ed weight function. Simi- 
o the argu  n

s a known bound
lar t ments in [13,23],   converges weakly 
to a zero-mean Gaussian process if model (1) is specified 
correctly and the covariate takes discrete lues. There- va
fore we propose the following test statistic  

  1 2

1

,
ˆ

n

n
i e

q e
T n i i 






 
Z

 

where ˆe  is an estimator of the standard deviation of 
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 n   which can be obtained by applying the bootstrap 
approach mentioned earlier. Thus, we have that Tn con- 
verges to the standard normal random variable asymp- 
totically as the model is correct. On the o er hand, when 
the model is mis-specified, Tn will deviate from zero. 

ing

th

Accord ly we can reject the model assumption if 

2n Z , where T  2Z  is the quantile of  0,1N  and 
  is the level of significance. If there are K candidate 
models under consideration, we compute the absolute 
value of Tn for each model for 1, ,k K   and choose 
the one with the smallest value. 

mation for Continuous Covaria

We briefly discuss how to extend our estimation method 
for continuous covariates. One can apply a smoothing 
approach to estimate the proba tions condi- 
tional on z. Following [24], wi

3.4. Esti tes 

ility func
ss of generality, 

b
thout lo

assume that  0,1Z   and 1 2 nZ Z Z    a
dered. Let  

re or- 

    

 

1

0

1 1
d , 1, , ,

,

1
, d ,

i

n

n n n nt Z

Z

n n
n nt Z

z t
K t i n

c z h h h

z t
c z h K t

h h





 
 
 

 
  

 







 

where 0 0Z

,
iZ

ni nw z h  

 , 0nh   is the bandwidth and K  is the 
kernel. Then  

     

   

W i
 

 
, 1

1

,
ˆ 1 ,

1 ,i

nn i

W z i
W x

nn i
j

w z h
S x

w z h






 
 
  
  
 




 

where          , , , 1, ,
iW ni n iW w z h i n    are the re-  

ment    arrange   sorted ac- 
cording t

, , , 1, ,
ii W ni nW w z h i n  

o W , where i i iW T Di   and  

 
iW i i iI T D   ula-graphic  

estimator in [24]  

C , and  ,
ˆ
TS xz  is the cop

      , ,ˆ
ˆ ˆ , ,W i W i ni nS X w z h



 

       1
, ˆ ˆ

1

ˆ , 1
i

n

T z i X
i

S x I X x   


 X S            

z zz           (6) 

z z

and  ˆ z  solv  es estimating equation 

          
    

π̂ ,
, 0

π̂ , 1

z ij ijji
ij ij ij ij i j i j

z ij ij

X Yz Zz Z
K K Y I T D C I X X Y Y

X Y









             
  

 
 

 
z

z

he asymptotic 
 covariates. For ex- 

ons of 

0.  ijw X




 

d to derive t
ntinuous
thed versi

i j n nh h   

Special techniques are neede
properties for the case of co
ample properties of the smoo



 

   0 1log 1 ,T b b Z               (8) 

where    0 1, 1.5,0.5b b    and  Ber 0.5Z  , 
,

ˆ
D TS z  and 

z ̂  are not fully available yet. The 1 2n  convergence 
rate for the normality proof may not be directly extended 
since the smooth version of ,

ˆ
D TS z  may not be 1 2n  

asymptotic normal. However the estimator for uan- 
gression parameter may still be

 the q
 tile re 1n

erformance of the proposed methods with R 

2  asymptotic 
normal even when some component converges at a slow- 
er rate.  

4. Simulation Studies 

We conduct simulation studies to examine the finite- 
sample p
software. Here we consider 
we consider the model,  

two cases. For the first one, 

         1 2
0 0log ,T Z               (7) 

where  Ber 0.5Z   and        0 0

 ich follow the Clayton copula 
and Frank copula with 

   1 2, 1, 1       . 
We generate  , D  wh

  marginally follow
 0.5 ,0.5 0.5U

ing  
    so that Pr  0   , and 

ginally following exp(2)  t nd case, we con- 
sider  

D mar- 
. For he seco

 , D  
generated from the Clayton copula and Frank copula 

 following with   U  and  exp 2D  . In this 
  

0,0.5

case,        1
0 0 0 1 10.5 ,0.5b b b2,      . Three lev- 

els of association τ = 0.3, 0.5, 0.7 are considered
 follows istribution on 



. The 
censoring variable C a uniform d
 0,12 . 

We evaluate the performances for γ = 0.1, 0.3, 0.5 and 
d on 400 sim
 the proposed r, we

the sample size n = 100 base
he standard e r of

ulation runs. To 
obtain t rro estimato  
use the bootstrap method with B = 50. Based on the set- 
tings, we also present a naive estimator of  0 β , which 
is con tructed under th ng assu t T is in- s e wro mption tha

at is, depen we estimate dently censored by D C . Th
 0 β  by solving the estimating Equation (4) with  

   

 

 
1

1

,

.

n

j j i j i
j

n

j i
j

ˆ PrH X D C X Z z
iz i i i

I D C X Z z

I Z z





  








  

Tables 1-4 report the average bias of the proposed  
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sults f ression parameters under model (7) with Clayton copula. 

 

 
 Table 1. Finite-sample re or estimating the quantile reg

 1ˆ      2ˆ    
τ γ Method 

Bias EmpSd MSE CP Bias EmpSd MSE CP 

Proposed 0.0059 0. 0.0007 0.975 0.0011 0.0369 0.0013 0.980 0263 
0.1 

Naive 0.0129 0.0284 0.0009 0.975 −0.0019 0.0380 0.0014 0.975 

Proposed 0.0024 0.0383 0.0014 0.940 −0.0001 0.0498 0.0024 0.945 
0.3 

Naive 0.0183 0.0379 0.0017 0.947 −0.0115 0.0487 0.0025 0.942 

14 0.935 0.0024 0.0546 0.0029 0.922 

0.3 

Proposed 0.0074 0.0300 0009 0.955 −0.0007 0.0422 0.962 

Proposed 0.0001 0.0380 0.00
0.5 

Naive 0.0163 0.0386 0.0017 0.915 −0.0078 0.0554 0.0031 0.930 

0. 0.0017 
0.1 

0 0. 0. −0. 0. 0.

−

−

0.5 

−

Naive .0240 0.0318 0015 891 0124 0.0404 0017 932 

Proposed 0.0064 0.0391 0.0015 0.925 0.0024 0.0500 0.0025 0.962 
0.3 

Naive 0.0369 0.0384 0.0028 0.817 −0.0232 0.0511 0.0031 0.922 

Proposed 0.0001 0.0381 0.0014 0.912 0.0025 0.0497 0.0024 0.957 
0.5 

Naive 0.0259 0.0357 0.0019 0.867 −0.0139 0.0495 0.0026 0.942 

Proposed 0.0087 0.0323 0.0011 0.945 0.0008 0.0440 0.0019 0.967 
0.1 

Naive 0.0420 0.0335 0.0028 0.802 −0.0260 0.0432 0.0025 0.920 

Proposed 0.0073 0.0371 0.0014 0.925 0.0004 0.0519 0.0026 0.927 
0.3 

Naive 0.0475 0.0358 0.0035 0.707 −0.0254 0.0528 0.0034 0.902 

Proposed 0.0065 0.0378 0.0014 0.937 −0.0029 0.0521 0.0027 0.945 

0.7 

0.5 
Naive 0.0314 0.0344 0.0021 0.845 −0.0159 0.0477 0.0025 0.942 

The results are based on 400 si ns e sam 0. 

 
Table 2. Finite-sample  for ting nti ssion ete  mo with n co

   1

mulation ru ach with a ple size 10

 results  estima  the qua le regre  param rs under del (8)  Clayto pula. 

̂     2 ̂   
τ γ Method 

Bias EmpSd MSE CP Bias EmpSd MSE CP 

Proposed −0.0025 0.0330 0.0011 0.922 −0.0094 0.1261 0.0160 0.957 
0.1 

P
0.3 

0.0005 0.927 0.0042 0.0584 0.0034 0.940 

Proposed 0.0004 0.0201 0.0004 0.920 0.0001 0.0442 0.0019 0.942 

0.3 

Proposed −0.0015 0.0326 0010 0.925 −0.0133 0.1291 0.960 
 

0. 0. 0. 0. 0.

0.5 

− −

−

Naive 0.0032 0.0270 0.0007 0.957 −0.0076 0.1252 0.0157 0.965 

roposed 0.0002 0.0194 0.0003 0.942 0.0005 0.0415 0.0017 0.932 

Naive 0.0071 0.0210 

0.5 
Naive 0.0058 0.0199 0.0004 0.877 0.0070 0.0444 0.0020 0.915 

0. 0.0168 
0.1

Naive 0030 0.0288 0008 952 0011 0.1060 0.0112 977 

Proposed 0.0028 0.0196 0.0003 0.912 −0.0007 0.0425 0.0018 0.913 
0.3 

Naive 0.0129 0.0189 0.0005 0.880 0.0098 0.0437 0.0020 0.915 

Proposed 0.0010 0.0199 0.0004 0.917 0.0001 0.0418 0.0017 0.935 
0.5 

Naive 0.0098 0.0183 0.0004 0.891 0.0104 0.0387 0.0016 0.935 

Proposed 0.0011 0.0331 0.0011 0.927 0.0087 0.1293 0.0167 0.957 
0.1 

Naive 0.0086 0.0264 0.0007 0.952 0.0103 0.1655 0.0275 0.942 

Proposed 0.0022 0.0166 0.0002 0.942 0.0032 0.0383 0.0014 0.932 
0.3 

Naive 0.0166 0.0178 0.0005 0.877 0.0169 0.0413 0.0019 0.912 

Proposed 0.0022 0.0180 0.0003 0.917 0.0007 0.0367 0.0013 0.957 

0.7 

0.5 
Naive 0.0122 0.0174 0.0004 0.867 0.0108 0.0366 0.0014 0.932 

The results are based on 400 simulation runs each with a sample size 100. 
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Table 3. Finite-sam  fo atin ant ssio mete r m  wit  cop

  1

ple results r estim g the qu ile regre n para rs unde odel (7) h Frank ula. 

̂    2 ̂   
τ γ Method 

Bias EmpSd MSE CP Bias EmpSd MSE CP 

Proposed 0.0077 0.0316 0.0010 0.937 0.0021 0.0428 0.0018 0.947 
0.1 

Naive 0.0230 0.0314 0.0015 0.887 −

−

Proposed 0.0001 0.0380 0.0014 0.957 −0.0005 0.0519 0.0027 0.947 

0.3 

 

Proposed 0.0109 0.0324 0.0011 0.932 −0.0014 0.0438 0.0019 0.935 

0.0104 0.0411 0.0017 0.942 

Proposed 0.0045 0.0366 0.0013 0.945 0.0003 0.0517 0.0026 0.955 
0.3 

Naive 0.0272 0.0376 0.0021 0.892 0.0155 0.0500 0.0027 0.930 

0.5 
Naive 0.0203 0.0361 0.0017 0.932 −0.0127 0.0501 0.0026 0.930

0.1 
0.0399 0.0325 0026 0.770 −0.0213 0.0443 0.925 

Proposed 0  0  −  0  
0.3 

P

0.5 

0.5 

P

Naive 0. 0.0024 

.0073 0.0388 0.0015 .937 0.0022 0.0524 0.0027 .942

Naive 0.0429 0.0360 0.0031 0.790 −0.0233 0.0507 0.0031 0.930 

roposed 0.0050 0.0366 0.0013 0.947 −0.0033 0.0515 0.0026 0.962 

Naive 0.0296 0.0343 0.0020 0.852 −0.0171 0.0484 0.0026 0.952 

roposed 0.0261 0.0309 0.0016 0.885 −0.0130 0.0426 0.0019 0.937 
0.1 

P
0.3 

P

0.7 

0.5 

Naive 0.0586 0.0325 0.0044 0.572 −0.0311 0.0443 0.0029 0.907 

roposed 0.0331 0.0323 0.0021 0.867 −0.0236 0.0452 0.0026 0.915 

Naive 0.0575 0.0329 0.0043 0.582 −0.0362 0.0449 0.0033 0.862 

roposed 0.0210 0.0361 0.0017 0.902 −0.0158 0.0533 0.0030 0.947 

Naive 0.0312 0.0341 0.0021 0.830 −0.0195 0.0512 0.0030 0.955 

The results are based on 400 sim uns ea  sam 0. 

 
Table 4. Fi samp ts fo atin ant ssio met  m  wit  cop

  1

ulation r ch with a ple size 10

nite- le resul r estim g the qu ile regre n para ers under odel (8) h Frank ula. 

̂   2 ̂    
τ γ Method 

Bias EmpSd MSE CP Bias EmpSd MSE CP 

Proposed −0.0049 0.0331 0.0011 0.937 −0.0114 0.1031 0.0107 0.977 
0.1 

Naive 0.0018 0.0288 0.0008 0.922 0.0028 0.1013 0.0102 0.987 

Proposed 0.0022 0.0179 0.0003 0.947 −0.0001 0.0400 0.0016 0.937 
0.3 

Naive 0.0092 0.0196 0.0004 0.942 0.0082 0.0401 0.0016 0.955 

Proposed 0.0016 0.0187 0.0003 0.940 0.0012 0.0417 0.0017 0.950 

0.3 

0.5 
 

Proposed 0.0001 0.0313 0.0009 0.930 −0.0126 0.1317 0.0175 0.980 

Naive 0.0084 0.0183 0.0004 0.920 0.0117 0.0396 0.0017 0.937

0.1 
0.0082 0.0316 0.0010 0.927 −0.0076 0.1440 0.0208 0.977 

Proposed 0  0  0  0  
0.3 

P

0.5 

0.5 

P

Naive 

.0041 0.0181 0.0003 .950 .0036 0.0394 0.0015 .945

Naive 0.0159 0.0178 0.0005 0.835 0.0167 0.0390 0.0018 0.927 

roposed 0.0029 0.0167 0.0002 0.960 0.0024 0.0397 0.0015 0.950 

Naive 0.0126 0.0167 0.0004 0.872 0.0126 0.0387 0.0016 0.937 

roposed −0.0002 0.0277 0.0007 0.920 −0.0177 0.1679 0.0285 0.967 
0.1 

P
0.3 

P
0.5 

Naive 0.0141 0.0281 0.0009 0.932 −0.0075 0.1719 0.0296 0.967 

roposed 0.0082 0.0158 0.0003 0.917 0.0123 0.0339 0.0013 0.930 

Naive 0.0178 0.0176 0.0006 0.857 0.0223 0.0355 0.0017 0.907 

roposed 0.0075 0.0174 0.0003 0.920 0.0063 0.0390 0.0015 0.955 

0.7 

Naive 0.0123 0.0167 0.0004 0.882 0.0102 0.0379 0.0015 0.942 

The results are based on 400 sim uns ea  sam 0.   ulation r ch with a ple size 10
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point estimator,       
1

ˆ 1j
i

i

j  


  ; 

the empirical st rd d ,  


400

 0 ,400 ,2 , (Bias)j  

anda eviation

        
400

ˆ j j
i

i

  , 
2

=1

399 

where        
400

=1

ˆ 0j
i   , Sd); ean

squared error, Bias2 + Em , (M d the c ge

40j 
i

 (Emp  the m  

pSd2 SE); an overa  
probability of the 95% confidence intervals,  

         
400

0
=1

j

i

I    ˆ 1.96j   400j
i iSd , 

where  j
iSd  is the estimated s

 
tandard deviation of 

 i
ˆ j   by the bootstrap approach, (CP). From the re- 

sults, we can see that our proposed estim or has much 
smaller bias and smaller mean squared error than the 
naive estimator. The confidence intervals coverage 

se to the nom

0

at

probabilities are clo inal level 95% in most 
cases while the naive estimator has the coverage rate far 
below the nominal level in many cases. Although the 
proposed estimator of  1  has the coverage rate lower 
than 90  case with Kendall’s tau τ = 0  but it 
still performs better than the naive estimator. As the 

d h he c e p ties opo ti- 
ator e c  the al l hile t v- 

rage bili e n tim t wo is 
nfirm at ou at  
ile th aive esti r is not. 
The  ex the sed l diagnostic 
etho  th od nera m  

te ere), t overag robabili  for pr sed es
m  becom lose to  nomin evel w he co
e proba ties for th aive es ator ge rse. Th
co
wh

s th
e n

r estim
mato

or is asymptotically correct

n we amine  propo  mode
m d when e true m el is ge ted fro

   0log T Z ,  

here 

  

w  0 1    , Z B er 1 0.5  , and 

% in the first .7

sample size increases to n = 200 for that case (data omit-  

 0.5 ,0.5 0.5U      so that 0    and    , D  

follow Clayton copula with  exp 2D  . We consider  
τ = 0.3, 0.5, 0.7 and γ = 0.1, 0.3, 0.5 under n = 100 based 
on 200 replications. 

Three forms of transformation are fitted: 1)  
   logt t ; 2) h  h t t ; 3)    1 22 1h t t  . Table 5  

presents the rejection probability  
200

,n iI T Z 2
=1

200
i

,  

α = 0.05, and he probability th odel 
ted as the o  which gives th lest value of 

where  t at the fitted m
is selec ne e smal

nT  among the three c From th ts, weandidates. e resul  
see that when    logh t t , ion probability 
(type-I error rate) is close to the specified level of α = 
0.05. When the fitted model is wrong, the rejection 
pr

the reject

ost cases.  

e proposed mode ecking meth . 

obability (power of the test) is very high in m

l ch od
 

Table 5. Finite-sample results for th

Kendall’s τ Quantile γ      loh t  g t   h t t   1 22 1t   h t

Power 0.07 0.385 0.965 
0.1 

Selection rate 0.82

Power 0.05
0.3 

Selection rate 0.99

Power 0.04

0.3 

0.5 
Selection rate 0.995

Power 0.06 

 

 

5 

5 

 

0.415 0.99 

0.18 0 

0.995 1 

0 0.005 

1 0.97 

0 0.005 

0.1 
Selection rate 0.845 0.155 0 

Power 0.035 0.995 0.995 

Selection rate 0.995 0.005 0 

0.  

0.3 

Power 0.025 1 0.99 

0.5 

0.5 
Selection rate 1 0 0 

Power 0.06 0.425 965
0.1 

Selection rate 0.85 0.

0.

0. 5 
0.7 

145 0.005 

Power 0.08 975 1 
0.3 

Selection rate 0.995 00 0 

Power 0.045 1 0.985 
0.5 

Selection rate 1 0 0 

Note: The sample size is 100 a plications ” = nd re are 200. “Power  
200

2
1

200
i

I 

 , wh 0.05 . “Selection rate” is the oportion that the fitted 

model is selected as the one giving the smallest value of 

,n iT Z ere   pr

nT  among the three candidates. 
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Even for the case whe the power latively lo
around 40% (the γ = t

re 
 0.1

 is re w 
 quantile for  h t  ), the

probabilities of selecting th e still high

5. Data Analysis 

We app he proposed hodolog he bo
marrow transplant data based on 1 a patient
provided by [1]. Patie ere classi ri
categories: ALL, AML low-risk, high-risk

The 
= 0), 

hig

time. S

 
e correct model ar . 

ly t  met y to analyze t
37 leukemi

ne 
s 

nts w fied into three sk 
and AML  

based on their status at the time of transplantation. 
covariates (Z1, Z2) are coded as ALL (Z1 = 1, Z2 

ML low-risk (Z1 = 1, Z2 = 0), and AML h-risk (Z1 = A
0, Z2 = 1). We want to investigate how the risk classifica- 
tion is related to the quantile of the relapse pecifi- 
cally the fitted model is given by  

        0 1 1 2 2.Z Z         (9) 1 2log ,T Z Z

The results are summarized in the Tables 6 and 7 based 
on B = 1000 bootstrap replications. Table 6 contains the 
estimators and model checking tests with  
   2

1 2 1 2, 1 0.2q Z Z Z Z   . The p-value is the testing 
result by the model checking approach provided in Sub- 
Section 3.3. Since all the p-values are greater than 0.05, 
we adopt the model in (9) for further analysis. 

From the analysis we see that patients of AML low- 
risk had longer relapse time than those in the other two 
groups and the difference is more obvious for those with 
 

 

earlier rela e. For example, the 10 antile of the re- 
lapse time e AML low-risk grou 964 times of 
that in A oup and 4.751 times t in AML high- 
risk grou e group differences a
nificant  10% and 30% qua  but no longer 
significa e 50% quantile. 

6. Concluding Remarks 

In this pap  we consider quantile reg ssion analysis for 
analy failur
the sem peting ris

umption is adopted to specify the dependency be- 

r variance estimation. 
For checking the adequacy of the fitted model, a model 

d. Simulation results con- 

Table 6. Estimation of quantile regression parameters od

ps % qu
in th p is 3.2

LL gr of tha
p. Th

for the
re statistically sig- 

ntiles.
nt for th

er, re
zing the e-time of a non-terminal event under 

i-com ks setting. The Archimedean cop- 
ula ass
tween the two correlated events. This assumption is util- 
ized to calculate the weight for bias correction in the es- 
timation of quantile regression parameters. Here we fo- 
cus on the case of discrete covariates and derive the as- 
ymptotic properties of the proposed estimators. The 
bootstrap method is suggested fo

diagnostic approach is propose
firm that the proposed methods have good performances 
in finite samples. In the data analysis, we see that the risk 
classification is particularly influential for earlier relapse. 
The methodology can be extended to allow for continu- 
ous covariates by employing some smoothing techniques 
but the corresponding theoretical analysis is beyond the 
scope of the paper. 

el checking test based on the bone marrow transplant data.  and m

0β  1β  2β  
Quantile γ 

0β̂  Sd 95% CI 1β̂  Sd 95% CI 2β̂  Sd 95% CI 
p-value

0.1 4.587 0.262 4.109 5.080 1.193 0.301 0.700 1.691 −0.366 0.335 −1.137 0.191 0.581

0.3 5.571 0.198 5.222 6.169 1.278 0.331

0.5 6.129 0.409 5.498 6.819 1

0.532 1.894 −0.208 0.353 −0.936 0.380 0.897

−0.014 1.968 −0.374 0.608 −1.180 1.242 0.220.155 0.514

 
ela

Quantile γ Disease Group Diff. Std. Err. exp(Diff.) 95% CI of exp(Diff.) 

Table 7. Comparison of leukemia r pse time for the three risk groups. 

Low vs All  1β  1.193 0.301 3.296 2.014 5.422 

High vs All  2β  −0.366 0.335 0.694 0. 21 1.210 0.1 

Low vs High 

3

 1 2β β  1. 58 0.254 4.751 2.902 8.446 

s A

5

Low v ll  1β  8  1. 6.647 

s A 

1.27 0.331 3.588 702 

High v ll  2β  08  0. 1.462 

L ig

−0.2 0.352 0.812 392 0.3 

ow vs H h  1 β 2β  1.485 1. 494 

Low vs All 

0.443 4.416 756 10.

1β  1.155 0.514 3.175 0.986 7.153 

High vs All  2β  −0.374 0.608 0.687 0.307 3.462 0.5 

Low vs High  21 β β  0.  1.529 0.626 4.616 829 8.877
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Appendix: Proofs of Theorem 1  

The proof follow the outline similar to the proof in [13]. 
The technical details need to be adjusted for dependent 
censoring which make things harder. 

Define  
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Similar to terms (A) and (B), we have term (C) equals  
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Then each of the three terms in (C) can be own to 
converge to zero-mean Gaussian process s arly as 
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