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ABSTRACT 

This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances 
with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphism, a time- 
delay bilinear system affected by sinusoidal disturbances is changed to a time-delay pseudo linear system through the 
coordinate transformation. Then the system with time-delay in control variable is transformed to a linear controllable 
system without delay using model transformation. At last based on the theory of linear quadratic optimal control, an 
optimal control law which is used to eliminate the influence of the disturbances is derived from a Riccati equation and 
Matrix equations. The simulation results show the effectiveness of the method. 
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1. Introduction 

Bilinear system is a class of systems that is derived by 
introducing the interactive product term of the state vari- 
able and the control variable in the linear state equations. 
It is a rather special nonlinear system, which exists widely 
in the engineering community of electric, mechanical, 
biological, chemical and other fields. The study of the 
bilinear system starts in the 50’s, then becomes an im- 
portant branch of nonlinear system and made a series of 
research results. Fang proposed a method of research the 
stability of MIMO bilinear system [1]; the output-feed- 
back control for bilinear system was studied by Sasaki 
[2]; a global feedback stability analysis method of bilin- 
ear system was presented by Jerbi [3]. In the real Indus- 
trial process control, time-delay is ubiquity and the mathe- 
matical models put forward from engineering technology, 
physical, chemical and biomedical had obvious delay 
amount, which can not be neglected in some accurate 
control systems. Tang had studied optimal disturbance 
rejection problem for time-delay system in recent years 
[4]. Meanwhile, various forms of external disturbances 
exist on the control system, such as sinusoidal distur- 
bance, periodic perturbation, step disturbance, etc. So it 
has important actual meanings to study time-delay bilin- 
ear system affected by external disturbance [5]. 

This paper proposed an optimal control design method 
for time-delay bilinear systems affected by sinusoidal 
disturbances based on state-feedback linearization [6,7]. 
Based on the differential homeomorphism, the model of 
the system that is researched is changed to a time-delay 
pseudo linear system through the coordinate transition, 
then through delay-free transform, the time-delay pseudo 
linear system is converted to an easy pseudo linear sys- 
tem. At last, an optimal control law which is used to eli- 
minate the influence of the disturbances is derived from a 
Riccati equation and Matrix equations [8,9]. It is shown 
that the method is easy to realize and has a good conver- 
gence. 

2. Problem Statement 

Consider time-delay bilinear system affected by sinusoi- 
dal disturbances 
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where, nx R  is the state vector;  is the control 
vector; 

 u t
pv R  is the external disturbances vector; 

 y t  is the output vector; A, B, D, Nj are scalar matrixes 
of appropriate dimensions; xj is the j-th component of 
state vector;  uNx  is the bilinear term;  h x  is the 
scalar function of x. 
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Assumption 1 The external disturbances can be ex- 
pressed as 
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which is an m-dimensional sinusoidal vector with known 
frequencies 1 2π πp       

m

, amplitudes  

1 2, , ,    , , , m and phases 1 2    are measurable. 
By transformation, time-delay bilinear system could be 
changed as 

    x Ax Nx B u t Dv           (3) 

Change the bilinear system to the general expression 
of nonlinear system 
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where,  f x A x    , g x Nx  B

1r

 and j, g are con- 
tinuously differentiable functions. 

Assumption 2 The relation degree of the nonlinear 
system is r, that is 
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Through exact delay-free transformation, the nonlinear 
system (4) can be converted to an easy pseudo linear 
system (6)  
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Then based on the theory of linear quadratic optimal 
control, an optimal control law which is used to eliminate 
the influence of the disturbances is derived. 

3. Exact Delay-Free Linearization 

3.1. State Feedback Linearization 

State Feedback Linearization is a method of nonlinear 
controlling design, the design idea of which is to select a 
coordinate transformation  and made a map- 
ping from x coordinate space to z coordinate space, thus 
the nonlinear system is changed to a linear time-invariant 
system as . Let 
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 x  is the partial differential homeomorphism, accord- 
ing to assumption 2, then get 
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by operation, the system is changed to a new standard 
form 
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r-step time-delay linear system with disturbances can be 
obtained as follow 

  1z Az B u t D v t    1         (10) 
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3.2. Exact Delay-Free Transformation 

Definite transformation for the time-delay linear system, 
let 
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The expression (10) is converted to delay-free system x

z Az Bv 
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where . 1e AB B
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4. Design of Optimal Control 

The time-delay bilinear system (1) is changed to the equi- 
valent delay-free linear system affected by disturbances 

    1 A t Bu t D v t             (13) 

where,  is the new state vector;  is the 
new control vector; A is state coefficient matrix; B is 
control coefficient matrix; the system (6) is completely 
controllable. 
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where Q is a  positive semi-definite matrix, R is a 
 positive definite symmetric matrix. 
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Theorem: Consider the optimal control problem of 
system (6) with the quadratic performance index (14). 
Suppose the system is completely controllable and ob- 
servable, the optimal disturbance rejection control law is 
unique existence and can be expressed as 
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Equation (16) 
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Proof: According to the necessary conditions of the 
optimal control problem based on maximum principle, 
the optimal control law of system (6) with the quadratic 
performance index (14) can be expressed as 
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Taking the derivatives to the sides in (21) and substi- 
tuting (22) into it get (23) 
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The optimal control law of the bilinear systems affected 
by sinusoidal disturbances is as follow 
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5. Simulation Example 
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disturbances, system parameters as follows 

       
2

0.2 0.2x Ax Nx u t Bu t      Dv t

y x
  (26) 

1 1 1 1 0 0 1 1 1

0 0 1 0 0 0 0 2 0

0 1 0 0 0 0 1 1 0

A N B D

       
      

   


       
       
      

 



According to calculation , through local lineari- 
za p lin

2r 
tion, we can get a two-ste ear system affected by 

sinusoidal disturbances 
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The form of the disturbances described as follows 
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Figure 2. The diagram of the optimal control u*(t). 
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