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ABSTRACT 

A mathematical model is presented to study the effect of chemical reaction on unsteady natural convection boundary 
layer flow over a semi-infinite vertical cylinder. Taking into account the buoyancy force effects, for the situation in 
which the surface temperature  and  wT x  wC x  are subjected to the power-law surface heat and mass flux as 

  nK T r ax     and  r mbxD C    . The governing equations are solved by an implicit finite difference scheme 

of Crank-Nicolson method. Numerical results for the velocity, temperature and concentration profiles as well as for the 
skin-friction, Nusselt and Sherwood numbers are obtained and reported graphically for various parametric conditions to 
show interesting aspects of the solution. 
 
Keywords: Implicit Finite Difference Scheme; Crank-Nicolson Method; Chemical Reaction on Unsteady Natural  

Convection Boundary Layer Flow; Semi-Infinite Vertical Cylinder 

1. Introduction 

Combined heat and mass transfer driven by buoyancy 
due to temperature and concentration is of practical im-
portance, since there are many possible engineering ap-
plications, such as the migration of moisture through the 
air contained in fibrous insulations and grain storage in-
stallation, and dispersion of chemical contaminants 
through water-saturated solid. The state of art concerning 
combined heat and mass transfer in porous media has 
been summarized in the excellent monographs by Nield 
and Bejan [1]. In addition, coupled heat and mass trans-
fer can interpret certain natural phenomena such as ocean 
currents driven by differential heating and act as freight 
trains for salt as mentioned by Bejan [2], and the role of 
factory waste gas diffusion in a differential heating cir-
culated air. There has been considerable work done on 
the study of flow and heat transfer in geometries with 
and without porous media (for instance, Vafai and Tien 
[3] and Churchill and Chu [4]). 

A study on “unsteady free convection on a vertical 
cylinder with variable heat and mass flux” has wide 
range of applications. The importance of this study lies in 

the fact that this type of boundary condition is commonly 
met with in practice. A study of temperature and mass 
distribution around the intrusive and the associated vari-
able heat and mass surface change is important in the 
geothermal resources during geophysical exploration. 
The intrusive may be taken as vertical cylinder with 
power law heat flux and mass flux boundary condition. 
Some transient results are given by Evans et al. [5] and 
Velusamy and Garg [6]. But their study confined to heat 
transfer from a vertical cylinder. 

Chemical reactions can be codified as either heteroge-
neous or homogeneous processes. This depends on 
whether they occur at an interface or as a single phase 
volume reaction. A few representative fields of interest in 
which combined heat and mass transfer plays an impor-
tant role, are design of chemical processing equipment, 
formation and dispersion of fog, distribution of tempera-
ture and moisture over agricultural fields and groves of 
fruit trees, damage of crops due to freezing, food proc-
essing and cooling towers. Cooling towers are the cheap-
est way to cool large quantities of water. 

The effects of mass transfer on flow past an impul-
sively started infinite vertical plate with constant heat 
flux and chemical reaction were studied [7]. The velocity *Corresponding author. 
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and concentration increased with decrease of the chemi-
cal reaction parameter and vice versa Skin-friction and 
heat transfer analysis of MHD flow for a small Prandtl 
number fluid past a semi infinite plate were studied [8,9]. 
Finally, Ghaly and Seddeek [10] studied Chebyshev fi-
nite difference method for the effects of chemical reac-
tion, heat and mass transfer on laminar flow along a 
semi-infinite horizontal plate with temperature dependent 
viscosity. Recently, Seddeek et al. [11] studied, the ef-
fects of chemical reaction and variable viscosity on hy-
dromagnetic mixed convection heat and mass transfer for 
Hiemenz flow through porous media with radiation.  

Hence, the aim of the present work is to study the ef-
fects of chemical reaction on unsteady natural convection 
boundary layer flow over a semi-infinite vertical cylinder. 
In the present analysis, consideration is given to situa-
tions in which the surface of the cylinder is maintained at 
power law variations of heat and mass flux. The unsteady, 
non-linear and coupled governing equations are first 
transformed into a non-dimensional form and their solu-
tions are obtained by an efficient Crank-Nicolson im-
plicit finite-difference method. 

2. Mathematical Analysis 

A vertical cylinder of radius 0  which is surrounded by 
a quiescent bulk fluid with wall temperature subjected to 
power-law surface heat flux  and wall con-
centration subjected to the power-law surface mass flux 

 is considered. The axis and radial co-ordi- 
nates are taken to be x and r, with the x-axis measured 
vertically upward along the axis of the cylinder and 
r-axis measured normal to axis of cylinder. The analysis 
is confined to species diffusion process in which the dif-
fusion-thermo and thermo-diffusion effects are neglected. 
By employing the boundary layer approximations, the 
conservation equations for a Boussinesq fluid can be 
written as 
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Introducing the following non-dimensional quantities 
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in Equations (1)-(4), they reduce to the following nondi-
mensional form 
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The corresponding initial and boundary conditions in 
non-dimensional quantities are given by 
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3. Numerical Technique 

In order to solve the unsteady, non-linear coupled Equa-
tions (7)-(10) under the conditions (11), an implicit finite 
difference scheme of Crank-Nicolson type is employed. 
The region of integration is considered as a rectangle 
with sides  max 1.0X 

R
 and , where max  

corresponds to 
max 17.0R   R

   which lies very well outside the 
momentum, thermal and concentration boundary layers. 
Appropriate mesh sizes 0.2X  ,  and time step 2R 

0.01t   are considered for calculations. The finite- 
difference equations corresponding to Equations (7) to 
10) are as follows [12]: (   
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After eliminating i  from the Equations (16) 
and (18), and  from the Equations (17) and 
(19) the following equations are obtained. 
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After experimenting with a few set of mesh sizes, the 
mesh sizes are fixed at the level ,  and 0.2X  2R 

0.01t  . In this case, the spatial mesh sizes are reduced 
by 50% in one direction and then in both directions and 
the results are compared. It is observed that, when the 
mesh size is reduced by 50% in the R-direction, the re-
sults differ in the fourth decimal place. When the mesh 
sizes are reduced by 50% in X-direction or in both direc-
tions the results are correct to three decimal places. 
Hence these mesh sizes are considered to be appropriate 
mesh sizes for calculations. The truncation error in the 
finite-difference approximation is  
and it tends to zero as 
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the scheme is compatible. The finite-difference scheme is 
unconditionally stable [12]. Stability and compatibility 
ensures convergence. 
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4. Results and Discussion 

The numerical computations have been carried out for 
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various values of chemical reaction parameter K at Pr = 
0.7 (air), 7.0 (water) and for Sc = 0.7 with N =1.0 and n = 
m = 0.5 using numerical scheme discussed in the previ-
ous section. In order to illustrate the results graphically, 
the numerical values are plotted in Figures 1-12. These 
figures depict the transient velocity profiles (U), transient 
concentration profiles (C) and transient temperature pro-
files (T) for both Pr = 0.7 (air) and Pr = 7.0 (water) cases. 
The local Nusselt number, the local Sherwood number 
and the local skin-friction are illustrated graphically to 
elucidate interesting features of the solutions. 

Figures 1-3 illustrate, the average skin-friction, Nus-
selt number and Sherwood number respectively as a 
function of time t covering various parametric values of 
Pr, Sc, N, n and m. Average skin-friction, Nusselt num-
ber and Sherwood number increases with t and after cer-
tain lapse of time they are steady throughout the transient 
period. Average skin-friction gets reduced with increas-
ing values of Sc or m, but it gets increased with N 
throughout the transient period. 

The transient velocity, the transient concentration and 
the transient temperature are shown in Figures 4-6 re-
spectively. Time taken to reach steady-state depends 
upon both the Prandtl and Schmidt number. The time 
required to reach the steady-state increases as Pr and Sc 
increases. But the steady-state velocity decreases as Pr 
increases or Sc increases.  

Figures 7-9 lower temperature profiles are observed 
for higher Pr or lower values of Sc. This is due to the fact 
that fluids with lower Pr give raise to less heat transfer. 
But the thermal boundary layer thickness increases with 
increasing Sc.  
 

 

Figure 1. Local skin-friction at m = 0.5, n = 0.5 and ∆t = 
0.01. 
 

 

Figure 2. Sherwood number at m = 0.5, n = 0.5 and ∆t = 
0.01. 

 

Figure 3. Nusselt number at m = 0.5, n = 0.5, Sc = 0.7 and ∆t 
= 0.01. 
 

 

Figure 4. Transient velocity profiles for N = 1, m = 0.5, n = 
0.5 and ∆t = 0.01. 
 

 

Figure 5. Transient concentration profiles for N = 1, m = 0.5, 
n = 0.5 and ∆t = 0.01. 

 

 

Figure 6. Transient temperature profiles for N = 1, m = 0.5, 
n = 0.5 and ∆t = 0.01. 
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Figure 7. Transient velocity profiles for N = 1, Sc = 0.7, m = 
0.5, n = 0.5 and ∆t = 0.01. 
 

 

Figure 8. Transient concentration profiles for N = 1, Sc = 
0.7, m = 0.5, n = 0.5 and ∆t = 0.01. 
 

 

Figure 9. Transient temperature profiles for N = 1, Sc = 0.7, 
m = 0.5, n = 0.5 and ∆t = 0.01. 
 

 

Figure 10. Transient concentration profiles for N = 1, Sc = 
0.7, m = 0.5, n = 0.5 and ∆t = 0.01. 

 

Figure 11. Transient temperature profiles for N = 1, Sc = 
0.7, m = 0.5, n = 0.5 and ∆t = 0.01. 
 

 

Figure 12. Transient velocity profiles for N = 1, Sc = 0.7, m 
= 0.5, n = 0.5 and ∆t = 0.01.  
 

The local as well as average skin-friction, Nusselt 
number and Sherwood number in terms of dimensionless 
quantities are given by  
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The derivatives involved in the Equations (22)-(27) are 
evaluated using five-point approximation formula and 
integrals are evaluated using Newton-Cotes formula. 

Figures 10 and 12 show that the velocity and the non- 
dimensional concentration distribution decreases as the 
chemical reaction parameter K increase. The temperature 
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distribution increases as the chemical reaction parameter 
K increase as in Figure 11.  

5. Conclusions 

This paper studied the effect of chemical reaction on un-
steady natural convection boundary layer flow over a 
semi-infinite vertical cylinder. Taking into account the 
buoyancy force effects. The governing equations are 
solved by an implicit finite difference scheme of Crank- 
Nicolson method. The results for the prescribed skin fric-
tion, local Nusselt number and the local Sherwood num-
ber are presented and discussed. The numerical results 
indicate that the velocity and the non-dimensional con-
centration distribution decreases as the chemical reaction 
parameter increase. The temperature distribution in-
creases as the chemical reaction parameter increase.  

Buoyancy ratio parameter has the same effect on con-
centration profiles as on temperature profiles. Here m has 
more effect than n. Knowing the velocity and tempera-
ture profiles it is customary to study the skin-friction, the 
rate of heat transfer and mass transfer both in their tran-
sient and steady-state conditions. The local Sherwood 
number exhibits trends that are somewhat different from 
local skin-friction and Nusselt number. But it increases 
with an increase in X. With increasing values of Sc larger 
local Sherwood number is experienced. This is due to the 
fact that as Sc increases the mass transfer rate increases. 
Local Sherwood number increases with increasing m or 
N or decreasing n. This trend is due to fact that concen-
tration profiles decreases with decreasing m or N or in-
creasing n. 
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List of Symbols 

C   species concentration; 
C   dimensionless species concentration; 
D   mass diffusion coefficient; 
g   acceleration due to gravity; 

0Gr   thermal Grashof number, where 0 1Gr  ; 

0

 thermal conductivity of the fluid, where K = 
0.2; 

Gr   mass Grashof number; 
K

m   mass flux of the diffusing species; 
m  exponent in power law variation of the con-

centration of the wall; 
N   combined buoyancy ratio parameter; 
Nu   dimensionless average Nusselt number; 

XNu
n

 dimensionless local Nusselt number; 
 exponent in power law variation of the wall 

temperature; 
Pr  Prandtl number; 

w

  radial coordinate; 
q
r

  rate of heat transfer per unit area; 

0r
R

  radius of cylinder; 
  dimensionless radial coordinate; 

0R
Sc

  fourth root of ; 0

  Schmidt number; 
Gr

Sh   dimensionless average Sherwood number; 
XSh

T 
  dimensionless local Sherwood number; 

  temperature; 
T   dimensionless temperature; 
t   time; 

t   dimensionless time; 
,u v  velocity components in x, r directions respec-

tively; 
,U V  dimensionless velocity components in X, R 

directions respectively; 
X   axial coordinate measured vertically upward; 
X   dimensionless axial coordinate. 

Greek Symbols 

   thermal diffusivity; 
   volumetric coefficient of thermal expansion; 
   volumetric coefficient of expansion with con-

centration; 
R  dimensionless finite difference grid spacing in 

R-direction; 
t   grid size in time; 
X   grid size in axial direction; 

   kinematic viscosity; 
   density; 

X   dimensionless local skin-friction; 
   dimensionless average skin-friction. 

Subscripts 

w   conditions on the wall; 
   free stream conditions. 

Superscript 

k   time step level. 
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