

Scattering of the Radial Focusing Mass-Supercritical and Energy-Subcritical Nonlinear Schrödinger Equation in 3D

Mujahid Abd Elmjed M-Ali¹, Amadu Fullah Kamara²

¹Department of Mathematics, Faculty of Education, Kassala University, Kassala, Sudan ²Department of Mathematics, Faculty of Pure and Applied Sciences, Fourah Bay College, University of Sierra Leone, Freetown, Sierra Leone Email: mujahid@mail.ustc.edu.cn, amadu fullah2005@yahoo.com

Received October 2, 2012; revised November 5, 2012; accepted November 13, 2012

ABSTRACT

This paper studies the global behavior to 3D focusing nonlinear Schrödinger equation (NLS), the scaling index here is $(0 < s_c < 1)$, which is the mass-supercritical and energy-subcritical, and we prove under some condition the solution u(t) is globally well-posed and scattered. We also show that the solution "blows-up in finite time" if the solution is not globally defined, as $t \to T$ we can provide a depiction of the behavior of the solution, where T is the "blow-up time".

Keywords: NLS; Blows-Up in Finite Time; Supremum; Precompactness

1. Introduction

Consider the Cauchy problem for the nonlinear Schrödinger equation (NLS) in dimensions d = 3:

$$\begin{cases} iu_{t} + \Delta u + |u|^{2} u = 0 \\ u(x,0) = u_{0}(x) \in H^{1}(R^{3}) \end{cases}$$
 (1.1)

where u = u(x,t) is a complex-valued function in $\mathbb{R}^3 \times \mathbb{R}$. The initial-value problem $u_0 = u(x,0)$ is locally well-posed in H^1 .

In this paper we will study the focusing (NLS) problem, which is the mass-supercritical and energy-subcritical, where $(0 < s_c < 1)$.

The Equation (1.1) has mass $M[u](t) = M[u_0]$ where

$$M[u](t) = \int |u(x,t)|^2 dx,$$

Energy $E[u](t) = E[u_0]$ where

$$E[u](t) = \frac{1}{2} \int |\nabla u(x,t)|^2 - \frac{1}{4} \int |u(x,t)|^4 dx,$$

and Momentum $P[u](t) = P[u_0]$ where

$$P[u](t) = \operatorname{Im} \int \overline{u}(x,t) \nabla u(x,t) dx$$
.

If $||xu_0||_{r^2} < \infty$, then *u* satisfies

$$\partial_t^2 \int |x|^2 |u(x,t)|^2 dx = 24E[u] - 4||\nabla u(t)||_{t^2}^2$$
 (1.2)

Equation (1.2) is said to be the Virial identity.

The Equation (1.1) has the scaling:

$$u_{\lambda}(x,t) = \lambda u(\lambda x, \lambda^2 t)$$

and also this scaling is a solution if u(x,t) is a solution.

Moreover, u_0 is a solution that is globally defined by u, if it is globally defined $(T = +\infty)$, and it does scatter (See [1,2]). We say the solution "blows-up in finite time". If the solution is not globally defined, as $t \to T$, we can provide a depiction of the behavior of the solution, where T is the "blow-up time". It follows from the H^1 local theory optimized by scaling, that if blow-up in finite-time T > 0 happens, (see [3] or [4]), then there is a lower-bound on the "blow-up rate":

$$\|\nabla u(t)\|_{L_{x}^{2}} \ge \frac{c}{(T-t)^{\frac{1}{4}}}$$
 (1.3)

for some constant c. Thus, to prove global presence, it suffices to prove a global axiomatic bound on $\|\nabla u(t)\|_{L^2}$. From the Strichartz estimates, there is a constant $c_{ST}>0$ such that if $\|u_0\|_{\dot{H}^{\frac{1}{2}}} < c_{ST}$, then the solution u is globally defined and scattered.

Note that the quantities $\|u_0\|_{L^2} \nabla u_{0L^2}$ and

 $M[u_0]E[u_0]$ are also scale-invariant (See also [5]).

Let $u(x,t) = e^{it}\psi(x)$ then u solves (1.1) as long as ψ solves the nonlinear elliptic equation

$$-\psi + \Delta\psi + \left|\psi\right|^2 \psi = 0 \tag{1.4}$$

Equation (1.4) has an infinite number of solutions in $H^1(\mathbb{R}^3)$. The solution of minimal mass is denoted by $\psi(x)$ and for the properties of ψ see [3,5,6].

Under the condition $M[u]E[u] < M[\psi]E[\psi]$, solutions to (1.1) globally exist if u_0 satisfies;

$$\|u_0\|_{L^2} \|\nabla u_0\|_{L^2} < \|\psi\|_{L^2} \|\nabla \psi\|_{L^2},$$
 (1.5)

and there exist $\phi_+ \in H^1$ such that

$$\lim_{t\to\pm\infty} \left\| u(t) - e^{it\nabla} \phi_{\pm} \right\|_{H^1} = 0.$$

Theorem 1.1. Let $u_0 \in H^1$, and let u be the corresponding solution to (1.1) in H^1 . Suppose

$$M[u]E[u] < M[\psi]E[\psi]$$
 (1.6)

If $\|u_0\|_{L^2} \|\nabla u_0\|_{L^2} < \|\psi\|_{L^2} \|\nabla \psi\|_{L^2}$ then *u* scatters in H^1 .

The argument of [6] in the radial case followed a strategy introduced by [7] for proving global well-posedness and scattering for the focusing energy-critical NLS. The beginning used a contradiction to the argument suppose the sill for scattering is strictly below that claimed. This uniform localization enabled the use of a local Virial identity to be established, with the support of the sharp Gagliardo-Nirenberg inequality, an accurately positive lower bound on the convexity (in time) of the local mass of u_c Mass conservation is then violated at enough large time.

We show in this paper, that the above program carries over to the non-radial setting with the extension of two key components.

Theorem 1.2. Suppose the radial H^1 solution u to (1.1) blows-up at time $T < \infty$. Then either there is a non-absolute $c_1 \gg 1$ constant such that, as $t \to T$

$$\int_{|x| \le c_1^2 \|\nabla u(t)\|_{L^2}^{-2}} |u(x,t)|^3 dx \ge c_1^{-1}, \tag{1.7}$$

or there exists a sequence of times $t_n \to T$ such that for an absolute constant c_2

$$\int_{|x| \le c_2 \|u_0\|_{2_2}^{\frac{3}{2}} \|\nabla u(t)\|_{2_2}^{\frac{-1}{2}} \left| u(x, t_n) \right|^3 dx \to \infty$$
 (1.8)

From (1.3), we have that the concentration in (1.7) satisfies $\|\nabla u(t)\|_{L^2}^{-2} \le c(T-t)^{\frac{1}{2}}$, and the concentration in (1.8) satisfies $\|\nabla u(t)\|_{L^2}^{\frac{-1}{2}} \le c(T-t)^{\frac{1}{8}}$ (For more additional information see [8-10]).

Notation

Let $e^{it\Delta} f$ be the free Schrödinger propagator, and let $u_t + \nabla u = 0$, with u(0,x) = f(x) be linear equation, a solution in physical space, is given by:

$$e^{it\Delta}f(x) = \frac{1}{\left(4\pi it\right)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{\frac{i\left|x-y\right|^2}{4t}} f(y) dy,$$

and in frequency space

$$e^{it\Delta}f(\xi) = e^{-4\pi^2it|\xi|^2}\hat{f}(\xi)$$

In particular, they save the Farewell homogeneous Sobolev norms and obey the dispersive inequality

$$\left\| \mathbf{e}^{it\Delta} f \right\|_{L_x^{\infty}(\mathbb{R}^d)} \lesssim \left| t \right|^{-\frac{d}{2}} f_{L_x^1} \tag{1.9}$$

For all times $t \neq 0$.

Let $\phi(x) \in C_c^{\infty}(\mathbb{R}^3)$ be a radial function, so that, $\phi(x) = 1$ for $|x| \le 1$ and $\phi(x) = 0$ for $|x| \ge 2$, Define the inner and outer spatial localizations of u(x,t) at radius R(t) > 0 as

$$u_1(x,t) = \phi(x/R(t))u(x,t),$$

$$u_2(x,t) = (1 - \phi(x/R(t)))u(x,t)$$

Let $\chi(x) \in C_c^{\infty}(\mathbb{R}^3)$ be a radial function so that, $\chi(x) = 1$ for $|x| \le \frac{1}{8\pi}$ and $\chi(x) = 0$ for $|x| \ge \frac{1}{2\pi}$ then $\hat{\chi}(0) = 1$, and define the inner and outer indecision localizations at radius $\rho(t)$ of u_1 as

$$\hat{u}_{1L}(\xi,t) = \hat{\chi}(\xi/\rho(t))\hat{u}_{1}(\xi,t),$$

and

$$\hat{u}_{1H}\left(\xi,t\right) = \left(1 - \hat{\chi}\left(\xi/\rho(t)\right)\right)\hat{u}_{1}\left(\xi,t\right),\,$$

(the $\frac{1}{8\pi}$ and $\frac{1}{2\pi}$ radii are chosen to be consistent with

the assumption
$$\hat{\chi}(0) = 1$$
, since $\hat{\chi}(0) = \int_{\mathbb{R}^3} \chi(x) dx$. In

reality, this is for suitability only; the argument is easily proper to the case where $\hat{\chi}(0)$ is any number $\neq 0$). We note that the indecision localization of $u_1 = u_{1L} + u_{1H}$ is inaccurate, though decisively we have;

$$\left|1 - \hat{\chi}(\xi)\right| \le c \min\left(|\xi|, 1\right) \tag{1.10}$$

2. Proof of Theorem 1.2

In this section we discuss a proof of Theorem (1.2).

Proposition 2.1. Let u be an H^1 radial solution to (1.1) that blows-up in finite T > 0. Let

$$R(t) = c_1 \|u_0\|_{L^2}^{\frac{3}{2}} \|\nabla u(t)\|_{L^2}^{-\frac{1}{2}}$$

and $\rho(t) = c_2 \|\nabla u(t)\|_{L_x^2}^2$, (Where c_1 and c_2 are absolute constants), and $u = u_{1L} + u_{1H} + u_2$ as characterized in the paragraph above.

1) There exists an absolute constant c > 0 such that

$$\|u_{1L}(t)\|_{L^3} \ge c \text{ as } t \to T.$$
 (2.1)

2) Let us assume that there exists a constant c^* such that $\|u_1(t)\|_{t^3} \le c^*$. Then

$$\|u_1(t)\|_{L^3_x([x-x_0(t)] \le \rho(t)^{-1})} \ge \frac{c}{(c^*)^3} \text{ as } t \to T$$
 (2.2)

for some absolute constant c > 0, where $x_0(t)$ is a stance function such that

$$\left|x_0(t)\right|/\rho(t)^{-1} \leq c \cdot \left(c^*\right)^6.$$

We recall, an "exterior" estimate, usable to radially symmetric functions only, originally due to [11]:

$$\|\nu\|_{L^4_{\{|x|>R\}}}^4 \le \frac{c}{R^2} \nu_{L^2_{\{|x|>R\}}}^3 \nabla \nu_{L^2_{\{|x|>R\}}}$$
 (2.3)

where c is independent of R > 0. We recall the generally usable symmetric functions and for any function v,

$$\|\upsilon\|_{L_{(R^{3})}^{4}}^{4} \le c \|\upsilon\|_{L_{(R^{3})}^{3}}^{2} \|\nabla\upsilon\|_{L_{R^{3}}^{2}}^{2}. \tag{2.4}$$

(2.3), (2.4) are Gagliardo-Nirenberg estimates for functions on \mathbb{R}^3 .

Proof of Prop 2.1: Since by (1.3), $\|\nabla u(t)\|_{L_x^2} \to +\infty$ as $t \to T$, by energy conservation, we have $u(t)_{L_x^4}^4 / \nabla u(t)_{L_x^2}^2 \to 2$. Thus, for t to be large enough to close to T

$$\|\nabla u\|_{L^{2}}^{2} \le u_{t^{4}}^{4} \le \|u_{1L}\|_{L^{4}}^{4} + \|u_{1H}\|_{L^{4}}^{4} + \|u_{2}\|_{L^{4}}^{4}.$$
 (2.5)

By (2.3), the selection of R(t) and mass conservation;

$$\left\|u_{2}\right\|_{L_{x}^{4}}^{4} \leq \frac{c}{R^{2}} \left\|u_{0}\right\|_{L_{x}^{2}}^{3} \left\|\nabla u\right\|_{L_{x}^{2}} \leq \frac{1}{A} \left\|\nabla u\right\|_{L_{x}^{2}}^{2} \tag{2.6}$$

where c_1 in the definition of R(t) has been selected to obtain the factor $\frac{1}{4}$ here. By Sobolev embedding, (1.10), and the selected $\rho(t)$

$$\|u_{1H}\|_{L_{x}^{4}}^{4} \leq c \|u_{1H}\|_{\dot{H}_{x}^{\frac{3}{4}}}^{4} = c \|\xi|^{\frac{3}{4}} (1 - \hat{\chi}(\xi/\rho)) \hat{u}_{1}(\xi)\|_{L_{\xi}^{2}}^{4}$$

$$\leq c \rho^{-1} \|\xi| \hat{u}_{1}(\xi)\|_{L_{\xi}^{2}}^{4} \leq c \rho^{-1} \|\nabla u_{1}\|_{L_{x}^{2}}^{4} \qquad (2.7)$$

$$\leq c \rho^{-1} \|\nabla u\|_{L_{x}^{2}}^{4} \leq \frac{1}{4} \nabla u_{L_{x}^{2}}^{2}$$

where c_2 in the definition of $\rho(t)$ has been selected to obtain the factor $\frac{1}{4}$ here. Bring together (2.5), (2.6), and (2.7), to obtain

$$\|\nabla u\|_{L^{2}}^{2} \le c \|u_{1L}\|_{L^{4}}^{4} \tag{2.8}$$

By (2.8) and (2.4), we obtain (2.1), completing the proof of part (1) of the proposition.

To prove part (2), we assume $u_1(t)_{t^3} \le c^*$, by (2.8)

$$\|\nabla u\|_{L^{2}}^{2} \leq c \|u_{1L}\|_{L_{x}^{3}}^{3} \|u_{1L}\|_{L_{x}^{\infty}} \leq c \cdot (c^{*})^{3} \|u_{1L}\|_{L_{x}^{\infty}}$$

$$\leq c \cdot (c^{*})^{3} \sup_{x \in \mathbb{R}^{3}} |\int \rho^{3} \chi \rho(x - y) u_{1}(y) dy|.$$

There exists $x_0 = x_0(t) \in \mathbb{R}^3$ for which at least $\frac{1}{2}$ of this supremum is attained. Thus,

$$\|\nabla u\|_{L^{2}}^{2} \leq c \cdot (c^{*})^{3} |\int \rho^{3} \chi \rho(x_{0} - y) u_{1}(y) dy|$$

$$\cdot |\int \rho^{3} \chi \rho(x_{0} - y) u_{1}(y) dy|$$

$$\leq c \cdot (c^{*})^{3} \rho^{3} \int_{|x_{0}(t) - y| \leq \rho^{-1}} |u_{1}(y)| dy$$

$$\leq c \cdot (c^{*})^{3} \rho \left(\int_{|x_{0}(t) - y| \leq \rho^{-1}} |u_{1}(y)|^{3} dy\right)^{\frac{1}{3}}$$

where we used Hölder's inequality in the last step. By the selected ρ , we obtain (2.2). To complete the proof, it keeps to obtain the remind control on $x_0(t)$ which will be a consequence of the radial supposition and the supposed bound $\|u_1(t)\|_{r^3} \le c^*$.

Assume $\frac{\left|x_0(t_n)\right|}{\rho(t_n)^{-1}} \gg \left(c^*\right)^6$ along a sequence of times

 $t_n \to T$. Assume the spherical annulus;

$$A = \left\{ x \in \mathbb{R}^3 : \left| x_0 \right| - \rho^{-1} \le \left| x \right| \le \left| x_0 \right| + \rho^{-1} \right\}.$$

And inside A place $\sim \frac{4\pi |x_0|^2}{\pi (\rho^{-1})^2}$ disjoint balls, at ra-

dius x_0 , both the radius ρ^{-1} , centered on the sphere. By the radiality supposition, on all ball B, we have

$$\|u_1\|_{L_B^3} \ge \frac{c}{\left(c^*\right)^3}$$
, and hence on the annulus A ,

$$\|u_1\|_{L_A^3}^3 \ge \frac{c}{(c^*)^9} \frac{|x_0|^2}{(\rho^{-1})^2} \gg (c^*)^3.$$

which contradicts the assumption $||u_1||_{L^3} \le c^*$. \square

We now point out how to obtain Theorem 1.2 as a consequence.

Proof of Theorem 1.2. By part (1) of Prop. 2.1 and the standard convolution inequality:

$$c \leq ||u_{1L}||_{L_x^3} = ||\rho^3 \chi(\rho \cdot) * u_1||_{L_x^3} \leq ||u_1||_{L_x^3}.$$

If $\|u_1(t)\|_{L^3}$ is not bounded, then there exists a sequence of times $t_n \to T$ such that $\|u_1(t_n)\|_{L^3} \to \infty$. Since $\|u(t_n)\|_{L^3(|x| \le 2R)} \ge u_1(t_n)_{L^3}$, we have (1.8) in Theorem 1.2; on the other hand, if $\|u_1(t)\|_{L^3} \le c^*$, for some c^* , as $t \to T$, we have (2.2) of Prop. 2.1. Since $|x_0(t)| \le c(c^*)^6 \rho(t)^{-1}$, we have

$$\frac{c}{\left(c^{*}\right)^{3}} \leq \left\|u_{1}\left(t\right)\right\|_{L^{3}\left(\left|x-x_{0}\left(t\right)\right| \leq \rho\left(t\right)^{-1}\right)} \leq \left\|u_{1}\left(t_{n}\right)\right\|_{L^{3}\left(\left|x\right| \leq c\left(c^{*}\right)^{6} \rho\left(t\right)^{-1}\right)}$$

which gives (1.7) in Theorem 1.2. \square

3. Strichartz Estimates

In this section we show local theory and Strichartz estimates.

Strichartz Type Estimates

We say the pair (q,r) is \dot{H}^s Strichartz admissible if $\frac{2}{q} + \frac{d}{r} = \frac{d}{2} - s$, with $2 \le q$, $r \le \infty$ and $(q,r,d) \ne (2,\infty,2)$.

And the pair (q,r) is $\frac{d}{2}$ -passable if $1 \le q$, $r \le \infty$,

$$\frac{1}{q} < d\left(\frac{1}{2} - \frac{1}{r}\right) \text{ or } \left(q, r\right) = \left(\infty, 2\right).$$

As habitual we denote by q', r' the Hölder conjugates of q and r consecutive (i.e. $\frac{1}{r} + \frac{1}{r'} = 1$).

Let

$$\|u\|_{S(L^2)} = \sup_{(q,r)L^2 \text{ admissible } 2 \le r \le 6, 2 \le q \le \infty} \|u\|_{L^q_t L^r_x}.$$

We consider dual Strichartz norms. Let

$$u_{S'(L^2)} = \inf_{(q,r)L^2 \text{ admissible } 2 \le q \le \infty, 2 \le r \le 6,} \|u\|_{L_t^{q'}L_x^{r'}}.$$

where (q',r') is the Hölder dual to (q,r). Also define

$$\|u\|_{S'\left(\dot{H}^{-\frac{1}{2}}\right)} = \sup_{(q,r)\dot{H}^{-\frac{1}{2}} \text{ admissible } \frac{4^+}{3} \le q \le 6^-, 3^+ \le r \le 6^-} u_{L_t^{q'}L_x^{r'}}$$

The Strichartz estimates are

$$\left\| e^{it\Delta} \phi \right\|_{S(L^2)} \le c \left\| \phi \right\|_{L^2}$$

and

$$\left\| \int_0^t e^{i(t-t')\Delta} f(\cdot,t') dt' \right\|_{S(L^2)} \le c \|f\|_{S'(L^2)}.$$

By bring together Sobolev embedding with the Strichartz estimates, we obtain

$$\left\| \mathbf{e}^{it\Delta} \boldsymbol{\phi} \right\|_{S\left(\dot{H}^{\frac{1}{2}}\right)} \le c \left\| \boldsymbol{\phi} \right\|_{\dot{H}^{\frac{1}{2}}}$$

and

$$\left\| \int_{0}^{t} e^{i(t-t')\Delta} f(\cdot,t') dt' \right\|_{S\left(\dot{H}^{\frac{1}{2}}\right)} \le c \left\| D^{\frac{1}{2}} f \right\|_{S'\left(L^{2}\right)}.$$
 (3.1)

We must also need the Kato inhomogeneous Strichartz estimate [12].

$$\left\| \int_{0}^{t} e^{i(t-t')\Delta} f(\cdot,t') dt' \right\|_{S\left(\dot{H}^{\frac{1}{2}}\right)} \le c \|f\|_{S'\left(\dot{H}^{-\frac{1}{2}}\right)}. \tag{3.2}$$

To point out a restriction to a time subinterval $\subset (-\infty, +\infty)$, we will write $S(\dot{H}^s; I)$ or $S'(\dot{H}^s; I)$.

Proposition 3.1 Assume $\|u_0\|_{S\left(\dot{H}^{\frac{1}{2}}\right)} \le M$. There is

$$\delta_{sd} = \delta_{sd}\left(M\right) > 0 \quad \text{such that if} \quad \left\| \mathrm{e}^{\mathrm{i}t\Delta} u_0 \right\|_{\mathcal{S}\left(\dot{H}^{\frac{1}{2}}\right)} \leq \delta_{sd} \; , \; \text{then}$$

u solving (1.1) is global (in $\dot{H}^{\frac{1}{2}}$) and

$$\|u\|_{S\left(\dot{H}^{\frac{1}{2}}\right)} \le 2 \|e^{it\Delta}u_0\|_{S\left(\dot{H}^{\frac{1}{2}}\right)},$$

$$\left\| D^{\frac{1}{2}} u \right\|_{\mathcal{S}(\dot{L}^2)} \le 2c \left\| u_0 \right\|_{\dot{H}^{\frac{1}{2}}}.$$

(Observe that, by the Strichartz estimates, the assumptions are satisfied if $\|u_0\|_{\dot{H}^{\frac{1}{2}}} \le c\delta_{sd}$).

Proof. Define

$$\Psi_{u_0}(v) = e^{it\Delta}u_0 + i\int_0^t e^{i(t-t')\Delta} |v|^2 v(t') dt'.$$

Applying the Strichartz estimates, we obtained

$$\left\| D^{\frac{1}{2}} \Psi_{u_0} \left(v \right) \right\|_{S\left(\dot{L}^2\right)} \le c \left\| u_0 \right\|_{\dot{H}^{\frac{1}{2}}} + c \left\| D^{\frac{1}{2}} \left(\left| v \right|^2 v \right) \right\|_{L_t^{\frac{5}{2}} L_x^{\frac{10}{9}}}$$

and

$$\left\|\Psi_{u_{0}}\left(v\right)\right\|_{S\left(\dot{H}^{\frac{1}{2}}\right)} \leq c\left\|e^{it\Delta}u_{0}\right\|_{S\left(\dot{H}^{\frac{1}{2}}\right)} + c\left\|D^{\frac{1}{2}}\left(\left|v\right|^{2}v\right)\right\|_{L_{r}^{\frac{5}{2}},\frac{10}{2}}$$

We apply the Hölder inequalities and fractional Leibnitz [13] to get

$$\left\| D^{\frac{1}{2}} \left(\left| v \right|^{2} v \right) \right\|_{L_{t}^{\frac{5}{2}} L_{x}^{\frac{10}{9}}} \leq \left\| v \right\|_{L_{t}^{2} L_{x}^{5}}^{2} \left\| D^{\frac{1}{2}} v \right\|_{L^{\infty} L^{2}} \leq \left\| v \right\|_{S \left(\dot{H}^{\frac{1}{2}} \right)}^{2} \left\| D^{\frac{1}{2}} v \right\|_{S \left(\dot{L}^{2} \right)}$$

Let

$$\delta_{sd} \le \min\left(\frac{1}{\sqrt{24}c}, \frac{1}{24cM}\right).$$

Then $\Psi_{u_0}: N \to N$, where

$$N = \left\{ v \left\| \|v\|_{S\left(\frac{1}{\dot{H}^{2}}\right)} \le \left\| 2e^{it\Delta}u_{0} \right\|_{S\left(\frac{1}{\dot{H}^{2}}\right)}, \left\| D^{\frac{1}{2}}v \right\|_{S\left(\dot{L}^{2}\right)} \le 2c \left\| u_{0} \right\|_{\dot{H}^{\frac{1}{2}}} \right\}$$

and Ψ_{u_0} is a contraction on N.

Proposition 3.2. If $u_0 \in H^1$, u(t) is global with globally finite $\dot{H}^{\frac{1}{2}}$ Strichartz norm $\|u\|_{S\left(\dot{H}^{\frac{1}{2}}\right)} < +\infty$ and a uniformly bounded H^1 norm $\sup_{t \in [0,+\infty)} \|u(t)\|_{H^1} \leq N$, then u(t) scatters in H^1 as $t \to +\infty$.

Meaning that there exist $\phi^+ \in H^1$ such that

$$\lim_{t\to +\infty} \left\| u(t) - e^{it\Delta} \phi^+ \right\|_{H^1} = 0.$$

Proof. Since u(t) resolves the integral equation

$$u(t) = e^{it\Delta}u_0 + i\int_0^t e^{i(t-t')\Delta} (|u|^2 u)(t') dt',$$

we have

$$u(t) - e^{it\Delta}\phi^{+} = -i\int_{t}^{+\infty} e^{i(t-t')\Delta} \left(\left| u \right|^{2} u \right) (t') dt'$$
 (3.3)

where

$$\phi^{+} = u_0 + i \int_{0}^{+\infty} e^{-it'\Delta} \left(\left| u \right|^2 u \right) (t') dt'.$$

Apply the Strichartz estimates to (3.3), to get

$$\begin{aligned} & \|u(t) - e^{it\Delta}\phi^{+}\|_{H^{1}} \\ & \leq c \|u|^{2} (1 + |\nabla|) u\|_{L_{[t,+\infty)}^{2} L_{x}^{\frac{10}{9}}} \\ & \leq c \|u\|_{L_{[t,+\infty)}^{2} L_{x}^{5}}^{2} \|u\|_{L_{t}^{\infty} H_{x}^{1}} \leq cN \|u\|_{L_{[t,+\infty)}^{2} L_{x}^{5}}^{2} \end{aligned}$$

As $t \to \infty$ above inequality get the claim.

4. Some Lemma

4.1. Here We Discuss the Precompactness of the Flow Implies Regular Localization

Let u be a solution to (1.1) such that

$$K = \left\{ u\left(\cdot - \eta(t), t\right) \middle| t \in [0, +\infty) \right\} \tag{4.1}$$

is precompact in H^1 . Then for each $\varepsilon > 0$ there exist R > 0 so that π for all $0 \le t < +\infty$.

We proof (4.2) by contradiction, there exists $\varepsilon > 0$ and a sequence of times t_n and by changing the variables

$$\int_{|\eta|>n} \left| \nabla u \left(\eta - \eta \left(t_n \right), t_n \right) \right|^2 + \left| u \left(\eta - \eta \left(t_n \right), t_n \right) \right|^2 \\
+ \left| u \left(\eta - \eta \left(t_n \right), t_n \right) \right|^4 \varepsilon \ge \varepsilon$$
(4.3)

Since *K* is precompact, there exists $\varphi \in H^1$, such that $u(-\eta(t_n),t_n) \to \varphi$ in H^1 , by (4.3),

$$\forall R > 0, \int_{|\eta| > R} \left| \nabla \varphi(\eta) \right|^2 + \left| \varphi(\eta) \right|^2 + \left| \varphi(\eta) \right|^4 d\eta \ge \varepsilon.$$

Which is a contradiction with the fact that $\varphi \in H^1$. The proof is complete.

Lemma 4.1. Let u be a solution of (1.1) defined on $[0,+\infty)$, such that P[u]=0 and K such as in (4.1) is precompact in H^1 , for some continuous function $\eta(\cdot)$ then;

$$\frac{\eta(t)}{t} \to 0 \text{ as } t \to +\infty \tag{4.4}$$

Proof. Suppose that (4.4) does not hold. Then there exists a sequence $t_n \to +\infty$, such that $\frac{\eta(t_n)}{t_n} \ge \varepsilon_0$ for some $\varepsilon_0 > 0$. Retaining generality, we assume $\eta(0) = 0$. For R > 0, let

$$t_0(R) = \inf \{t \ge 0 : |\eta(t)| \ge R\}$$

i.e. $t_0(R)$ is the first time when $\eta(t)$ arrives at the boundary of the ball of radius R. By continuity of $\eta(t)$, the value $t_0(R)$ is well-defined. Furthermore, the following hold:

- 1) $t_0(R) > 0$;
- 2) $|\eta(t)| < R$, for $0 \le t \le t_0(R)$;
- $3) \left| \eta \left(t_0 \left(R \right) \right) \right| = R.$

Let $R_n = \left| \eta(t_n) \right|$ and $\tilde{t}_n = t_0(R_n)$. We note that $t_n \ge \tilde{t}_n$,

which combined with $\frac{\left|\eta\left(t_{n}\right)\right|}{t_{n}} \geq \varepsilon_{0}$, gives $\frac{R_{n}}{\tilde{t}_{n}} \geq \varepsilon_{0}$. Since

$$t_n \to +\infty$$
 and $\frac{\left|\eta\left(t_n\right)\right|}{t_n} \ge \varepsilon_0$, we have $R_n = \left|\eta\left(t_n\right)\right| \to +\infty$.

Thus $\tilde{t}_n = t_0(R_n) \to +\infty$. We can disregard t_n . We will concentrate our work on the time interval $[0, \tilde{t}_n]$, and we will use in the proof:

- 1) for $0 \le t \le \tilde{t}_n$ we have $|\eta(t)| < R_n$;
- $2) \left| \eta \left(\tilde{t}_n \right) \right| = R_n;$
- 3) $\frac{R_n}{t_n} \ge \varepsilon_0$ and $\tilde{t}_n \to +\infty$.

By the precompactness of K and (4.2) it follows that for any $\varepsilon > 0$, there exists $R_0(\varepsilon) \ge 0$, such that for any t > 0

$$\int_{|\eta+\eta(t)|\geq R_0(\varepsilon)} \left(\left| u \right|^2 + \left| \nabla u \right|^2 \right) d\eta \leq \varepsilon. \tag{4.5}$$

We will select ε later; for $\eta \in \mathbb{R}$ let $\gamma(\eta) \in C_0^{\infty}(\mathbb{R})$

be such that $\gamma(\eta) = \eta$ for $-1 \le \eta \le 1$, $\gamma(\eta) = 0$ for $|\eta| \ge 2^{\overline{3}}$, $|\gamma(\eta)| \le |\eta|$, $\gamma'_{\infty} \le 4$ and $\gamma_{\infty} \le 2$ for $\eta = (\eta_1, \eta_2, \eta_3) \in \mathbb{R}^3$. Let $\phi(\eta) = (\gamma(\eta_1), \gamma(\eta_2), \gamma(\eta_3))$. Then $\phi(\eta) = \eta$ for $|\eta| \le 1$ and $||\phi||_{\infty} \le 2$. For R > 0, set $\phi_R(\eta) = R\phi(\eta/R)$. Let $z_R : \mathbb{R} \to \mathbb{R}^3$ be the truncation center of mass given by

$$z_{R}(t) = \int \phi_{R}(\eta) |u(\eta,t)|^{2} d\eta.$$

Then
$$z'_{R}(t) = ([z'_{R}(t)]_{1}, [z'_{R}(t)]_{2}, [z'_{R}(t)]_{3})$$
, where
$$[z'_{R}(t)]_{j} = 2\operatorname{Im}\int \gamma'(\eta_{j}/R)\partial_{j}u\overline{u}d\eta.$$

Observe that $\gamma'\left(\frac{\eta_j}{R}\right) = 1$ for $|\eta_j| \le 1$. By the zero

momentum property

$$\operatorname{Im} \int_{|\eta_j| \le R} \partial_j u \overline{u} = -\operatorname{Im} \int_{|\eta_j| > R} \partial_j u \overline{u} .$$

Thus,

$$\begin{split} \left[z_{R}'(t)\right]_{j} &= -2\operatorname{Im}\int\limits_{|\eta_{j}|\geq R}\partial_{j}u\overline{u}\mathrm{d}\eta \\ &+ 2\operatorname{Im}\int\limits_{|\eta_{j}|\geq R}\gamma'\left(\eta_{j}/R\right)\partial_{j}u\overline{u}\mathrm{d}\eta. \end{split}$$

By Cauchy-Schwarz, we obtain;

$$\left|z_{R}'\left(t\right)\right| \le 5 \int\limits_{|\eta| \ge R} \left(\left|u\right|^{2} + \left|\nabla u\right|^{2}\right). \tag{4.6}$$

Set $\tilde{R}_n = R_n + R_0(\varepsilon)$. Observe that for $0 \le t \le \tilde{t}_n$ and $|\eta| \ge \tilde{R}_n$, we have $|\eta + \eta(t)| \ge \tilde{R}_n - R_n = R_0(\varepsilon)$, and thus (4.6), (4.5) give

$$\left|z_{\tilde{R}_n}'(t)\right| \le 5\varepsilon.$$
 (4.7)

We now obtain an upper bound for $z'_{\tilde{R}_{n}}(0)$ and a lower bound for $z'_{\tilde{R}_n}(t)$

$$\begin{split} z_{\tilde{R}_n}'\left(0\right) &= \int\limits_{|\eta| < R_0(\varepsilon)} \phi_{\tilde{R}_n}\left(\eta\right) \left|u_0\right|^2 \mathrm{d}\,\eta \\ &+ \int\limits_{|\eta + \eta(0)| \ge R_0(\varepsilon)} \phi_{\tilde{R}_n}\left(\eta\right) \left|u_0\right|^2 \mathrm{d}\,\eta \end{split}$$

Hence, by (4.5) we have

$$\left|z_{\tilde{R}_n}'(0)\right| \le R_0(\varepsilon)M[u] + 2\tilde{R}_n\varepsilon.$$
 (4.8)

For $0 \le t \le \tilde{t}_n$, we divide $z'_{\tilde{n}}(t)$ as

$$z'_{\bar{R}_{n}}(t) = \int_{|\eta + \eta(t)| \geq R_{0}(\varepsilon)} \phi_{\bar{R}_{n}}(\eta) |u_{0}|^{2} d\eta$$

$$+ \int_{|\eta + \eta(t)| \geq R_{0}(\varepsilon)} \phi_{\bar{R}_{n}}(\eta) |u_{0}|^{2} d\eta$$

$$= I + II$$

To deduce the expression for I, we observed that $\left|\phi_{\tilde{R}_n}(\eta)\right| \le 2\tilde{R}_n$. And use (4.5) to obtain $\left|I\right| \le 2\tilde{R}_n \varepsilon$.

For II we first observe that,

$$|\eta| \le |\eta + \eta(t)| + |\eta(t)| \le R_0(\varepsilon) + R_n = \tilde{R}_n$$

and thus $\phi_{\tilde{R}}(\eta) = \eta$.

We rewrite II as

$$II = \int_{|\eta + \eta(t)| \le R_0(\varepsilon)} (\eta + \eta(t)) |u(\eta, t)|^2 d\eta$$

$$- \eta(t) \int_{|\eta + \eta(t)| \le R_0(\varepsilon)} |u(\eta, t)|^2 d\eta$$

$$= \int_{|\eta + \eta(t)| \le R_0(\varepsilon)} (\eta + \eta(t)) |u(\eta, t)|^2 d\eta$$

$$- \eta(t) M[u] + \eta(t) \int_{|\eta + \eta(t)| \le R_0(\varepsilon)} |u(\eta, t)|^2 d\eta$$

$$= IIA + IIB + IIC$$

Trivially,
$$|IIA| \le R_0(\varepsilon) M[u]$$
, and by (4.5)
$$|IIC| \le |\eta(t)| \varepsilon \le \tilde{R}_n \varepsilon.$$

Thus,

$$\left|z_{\tilde{R}_{n}}'(t)\right| \ge |IIB| - |I| - |IIA| - |IIC|$$

$$\ge |\eta(t)|M[u] - R_{0}(\varepsilon)M[u] - 3\tilde{R}_{n}\varepsilon$$

Taking $t = \tilde{t}_n$, we can get

$$\left|z_{\tilde{R}_{n}}'\left(\tilde{t}_{n}\right)\right| \ge \tilde{R}_{n}\left(M\left[u\right] - 3\varepsilon\right) - R_{0}\left(\varepsilon\right)M\left[u\right]$$
 (4.9)

Combining (4.7), (4.8), and (4.9), we have

$$5\varepsilon \tilde{t}_{n} \int_{0}^{\tilde{t}_{n}} \left| z_{\tilde{R}_{n}}'(t) \right| dt \ge \left| \int_{0}^{\tilde{t}_{n}} z_{\tilde{R}_{n}}'(t) dt \right| \ge \left| z_{\tilde{R}_{n}}'(\tilde{t}_{n}) - z_{\tilde{R}_{n}}'(0) \right|$$
$$\ge \tilde{R}_{n} \left(M \left[u \right] - 5\varepsilon \right) - 2R_{0} \left(\varepsilon \right) M \left[u \right].$$

Suppose $\varepsilon \leq \frac{1}{5}M[u]$ and use $\tilde{R}_n \geq R_n$ to obtain

$$5\varepsilon \ge \frac{\tilde{R}_n}{\tilde{t}_n} (M[u] - 5\varepsilon) - \frac{2R_0(\varepsilon)M[u]}{\tilde{t}_n}$$

Since
$$\frac{\tilde{R}_n}{\tilde{t}_n} \ge \varepsilon_0$$
 we have

$$5\varepsilon \ge \varepsilon_0 (M[u] - 5\varepsilon) - \frac{2R_0(\varepsilon)M[u]}{\tilde{t}_u}$$

(Assume $\varepsilon_0 \le 1$) take $\varepsilon = \frac{M[u]\varepsilon_0}{16}$, as $n \to +\infty$, since $\tilde{t}_n \to +\infty$ we get a contradiction. \square

4.2. We Now Prove the Following Rigidity **Theorem**

Lemma 4.2. If (1.5) and (1.6) hold, then for all t

$$\|u(t)\|_{L^{2}} \|\nabla u(t)\|_{L^{2}} < \alpha \|\psi\|_{L^{2}} \|\nabla \psi\|_{L^{2}}.$$
 (4.10)

where $\alpha = \left(\frac{M[u]E[u]}{M[u]E[u]}\right)^{\frac{1}{2}}$. We have also the bound for

all *t*;

$$8\|\nabla u(t)\|^{2} - 6\|u(t)\|_{L^{4}}^{4}$$

$$\geq 8(1-\alpha)\|\nabla u(t)\|_{L^{2}}^{2} \geq 16(1-\alpha)E[u]$$
(4.11)

The hypothesis here is E[u] > 0 except if $u \equiv 0$. In fact, $E[u] \ge \frac{1}{6} \|\nabla u_0\|_{L^2}^2$.

Theorem 4.3. Assume $u_0 \in H^1$ satisfies $P[u_0] = 0$,

$$M[u_0]E[u_0] < M[\psi]E[\psi]$$
 (4.12)

and

$$\|u_0\|_{L^2} \|\nabla u_0\|_{L^2} < \|\psi\|_{L^2} \|\nabla \psi\|_{L^2}.$$
 (4.13)

Let u be the global H^1 solution of (1.1) with initial data u_0 and assume that $K = \{u(\cdot - \eta(t), t) | t \in [0, +\infty)\}$ is precompact in H^1 . Then $u_0 = 0$. **Proof.** Let $\in C_0^{\infty}$ be redial with

$$\varphi(\eta) = \begin{cases} |\eta|^2 & \text{for } |\eta| \le 1 \\ 0 & \text{for } |\eta| \ge 2 \end{cases}.$$

For R > 0, we define

$$z_{R}(t) = \int R^{2} \varphi \left(\frac{\eta}{R}\right) \left| u(\eta, t) \right|^{2} d\eta.$$

Then

$$z'_{R}(t) = 2 \operatorname{Im} \int R \nabla \varphi \left(\frac{\eta}{R}\right) \cdot \nabla u(t) \overline{u}(t) d\eta.$$

By the Hölder inequality:

$$\begin{aligned} \left| z_{\tilde{R}}'(t) \right| &\leq cR \int\limits_{|\eta| \leq 2R} \left| \nabla u(t) \right| \left| u(t) \right| \mathrm{d}\eta \\ &\leq cR \left\| \nabla u(t) \right\|_{t^{2}} \left\| u(t) \right\|_{t^{2}} \end{aligned} \tag{4.14}$$

By calculation, we have the local Virial identity

$$z_{R}''(t) = 4\sum_{j,k} \int \frac{\partial^{2} \varphi}{\partial \eta_{j} \partial \eta_{k}} \left(\frac{\eta}{R}\right) \frac{\partial u}{\partial \eta_{j}} \frac{\partial \overline{u}}{\partial \eta_{k}}$$
$$-\frac{1}{R^{2}} \int \left(\Delta^{2} \varphi\right) \left(\frac{\eta}{R}\right) |u|^{2} - \int \left(\Delta \varphi\right) \left(\frac{\eta}{R}\right) |u|^{4}.$$

Since φ is radial we have

$$z_{R}''(t) = (8 \int |\nabla u|^{2} - 6 \int |u|^{4}) + A_{R}(u(t)).$$
 (4.15)

where

$$\begin{split} A_{R}\left(u\left(t\right)\right) &= 4\sum_{j} \left(\int \left(\partial_{\eta_{j}}^{2} \varphi\right) \left(\frac{\eta}{R}\right) - 2\right) \left|\partial \eta_{j} u\right|^{2} \\ &+ 4\sum_{j \neq k} \int_{R \leq |\eta| \leq 2R} \frac{\partial^{2} \varphi}{\partial \eta_{j} \partial \eta_{k}} \left(\frac{\eta}{R}\right) \frac{\partial u}{\partial \eta_{j}} \frac{\partial \overline{u}}{\partial \eta_{k}} \\ &- \frac{1}{R^{2}} \int \left(\Delta^{2} \varphi\right) \left(\frac{\eta}{R}\right) \left|u\right|^{2} - \int \left(\Delta \varphi\left(\frac{\eta}{R}\right) - 6\right) \left|u\right|^{4}. \end{split}$$

Thus, we obtain

$$\left| A_{R} \left(u \left(t \right) \right) \right| \leq c \int_{|\eta| \geq R} \left(\left| \nabla u \left(t \right) \right|^{2} + \frac{1}{R^{2}} \left| u \left(t \right) \right|^{2} + \left| u \left(t \right) \right|^{4} \right) d\eta \tag{4.16}$$

Now discuss $z_R(t)$ for R chosen appropriate large and selection time interval $[t_0, t_1]$ where $1 \ll t_0 \ll t_1 < \infty$. By (4.15) and (4.11) we have

$$|z_R''(t)| \ge 16(1-\alpha)E[u] - |A_R(u(t))|.$$
 (4.17)

Set
$$\varepsilon = \frac{1-\alpha}{c} E[u]$$
 in (4.2), $R_0 \ge 0$, such that $\forall t$

$$\int_{|\eta+\eta(t)|\geq R} \left(\left| \nabla u \right|^2 + \left| u \right|^2 + \left| u \right|^4 \right) \leq \frac{1-\alpha}{c} E[u]. \tag{4.18}$$

Choosing $R \ge R_0 + \sup_{t_0 \le t \le t_1} |\eta|$. Then (4.16), (4.17) and (4.18) imply that for all $t_0 \le t \le t_1$,

$$|z_R''(t)| \ge 8(1-\alpha)E[u]. \tag{4.19}$$

By Lemma 4.1, there exists $t_0 \ge 0$ such that for all $t \ge t_0$ we have $|x(t)| \le \mu t$ with $\mu > 0$. By taking $R = R_0 + \mu t_1$, we obtain that (4.18) holds for all $t_0 \le t \le t_1$. Integrating (4.19) over $[t_0, t_1]$ we obtain

$$|z'_{R}(t_{1})-z'_{R}(t_{0})| \ge 8(1-\alpha)E[u](t_{1}-t_{0}).$$
 (4.20)

On the other hand, for all $t_0 \le t \le t_1$, by (4.10) and (4.14), we have

$$|z'_{R}(t_{1})| \leq cRu(t)_{L^{2}} \|\nabla u(t)\|_{L^{2}} \leq cR \|\psi\|_{L^{2}} \|\nabla \psi\|_{L^{2}}$$

$$\leq c \|\psi\|_{L^{2}} \|\nabla \psi\|_{L^{2}} (R_{0} + \mu t_{1})$$
(4.21)

Combining (4.20) and (4.21), we obtained

$$8(1-\alpha)E[u](t_1-t_0) \le 2c \|\psi\|_{L^2} \|\nabla \psi\|_{L^2} (R_0 + \mu t_1).$$

It is important to mention that α and R_0 are con-

stant depending only on $\frac{M[u]E[u]}{M[w]E[w]}$, and $t_0 = t_0(\mu)$.

Putting
$$\mu = \frac{(1-\alpha)E[u]}{c\|\psi\|_{L^2}\|\nabla\psi\|_{L^2}}$$
 and setting $t_1 \to +\infty$, we

obtain a contradiction except if E[u] = 0, which implies u = 0. \square

REFERENCES

- [1] T. T. Tao, "On the Asymptotic Behavior of Large Radial Data for a Focusing Non-Linear Schrödinger Equation," *Dynamics of Partial Differential Equations*, Vol. 1, No. 1, 2004, pp. 1-48.
- [2] T. Tao, "A (Concentration-)Compact Attractor for High-Dimensional Non-Linear Schrödinger Equation," *Dy*namics of Partial Differential Equations, Vol. 4, No. 1, 2007, pp. 1-53.
- [3] T. Cazenave, "Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics," New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, 2003.
- [4] T. Tao, "Nonlinear Dispersive Equations: Local and Global Analysis," CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington DC, American Mathematical Society, Providence, 2006.
- [5] M. Weinstein, "Nonlinear Schrödinger Equations and Sharp Interpolation Estimates," *Communications in Ma-thematical Physics*, Vol. 87, No. 4, 1982, pp. 567-576.
- [6] J. Holmer and S. Roudenko, "A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equations," *Communications in Mathematical Physics*, Vol. 282, No. 2, 2008, pp. 435-467.
- [7] C. E. Kenig and F. Merle, "Global Well-Posedness, Scattering, and Blow-Up for the Energy-Critical Focusing Nonlinear Schrödinger Equation in the Radial Case," *In*ventiones Mathematicae, Vo. 166, No. 3, 2006, pp. 645-675
- [8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, "Global Existence and Scattering for Rough Solutions of a Nonlinear Schrödinger Equation on R3," Communications on Pure and Applied Mathematics, Vol. 57, No. 8, 2004, pp. 987-1014.

- [9] T. Hmidi and S. Keraani, "Blowup Theory for the Critical Nonlinear Schrödinger Equations Revisited," *Interna*tional Mathematics Research Notices, Vol. 2005, No. 46, 2005, pp. 2815-2828. doi:10.1155/IMRN.2005.2815
- [10] F. Merle and Y. Tsutsumi, "L² Concentration of Blow-Up Solutions for the Nonlinear Schrödinger Equation with Critical Power Nonlinearity," *Journal of Differential Equations*, Vol. 84, No. 2, 1990, pp. 205-214.
- [11] W. A. Strauss, "Existence of Solitary Waves in Higher Dimensions," *Communications in Mathematical Physics*, Vol. 55, No. 2, 1977, pp. 149-162.
- [12] D. Foschi, "Inhomogeneous Strichartz Estimates," J. Hyper. Diff. Eq., Vol. 2, No. 1, 2005, pp. 1-24.
- [13] C. Kenig, G. Ponce and L. Vega, "Well-Posedness and Scattering Results for the Generalized Korteweg-De Vries Equation via the Contraction Principle," *Communications* on Pure and Applied Mathematics, Vol. 46, No. 4, 1993, pp. 527-620.
- [14] S. Keraani, "On the Defect of Compactness for the Strichartz Estimates of the Schrödinger Equation," *Journal of Differential Equations*, Vol. 175, No. 2, 2001, pp. 353-392. doi:10.1006/jdeg.2000.3951
- [15] E. Donley, N. Claussen, S. Cornish, J. Roberts, E. Cornell and C. Wieman, "Dynamics of Collapsing and Exploding Bose-Einstein Condensates," *Nature*, Vol. 412, No. 6844, 2001, pp. 295-299. doi:10.1038/35085500
- [16] C. Sulem and P.-L. Sulem, "The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse," *Applied Mathematical Sciences*, Vol. 139, 1999.
- [17] M. Vilela, "Regularity of Solutions to the Free Schrödinger Equation with Radial Initial Data," *Illinois Journal of Mathematics*, Vol. 45, No. 2, 2001, pp. 361-370.
- [18] L. Bergé, T. Alexander and Y. Kivshar, "Stability Criterion for Attractive Bose-Einstein Condensates," *Physical Review A*, Vol. 62, No. 2, 2000, 6 p.
- [19] P. Bégout, "Necessary Conditions and Sufficient Conditions for Global Existence in the Nonlinear Schrödinger Equation," Advances in Applied Mathematics and Mechanics, Vol. 12, No. 2, 2002, pp. 817-827.