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ABSTRACT 

This paper studies the global behavior to 3D focusing nonlinear Schrödinger equation (NLS), the scaling index here is 

, which is the mass-supercritical and energy-subcritical, and we prove under some condition the solution 

 is globally well-posed and scattered. We also show that the solution “blows-up in finite time” if the solution is not 

globally defined, as  we can provide a depiction of the behavior of the solution, where T is the “blow-up time”. 

0 1cs 

 u t
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1. Introduction 

Consider the Cauchy problem for the nonlinear Schrö- 
dinger equation (NLS) in dimensions d = 3: 

  0,0

tiu u

u x u

   

    

2

1 3

0u u

x H R

 


  

 ,u u x t
 0 ,0x

         (1.1) 

where is a complex-valued function in  
. The initial-value problem u u  is lo-

cally well-posed in 

3  
1H .  

In this paper we will study the focusing (NLS) prob-
lem, which is the mass-supercritical and energy-sub- 
critical, where   0 1 .cs 

The Equation (1.1) has mass    0M u t M u

 

 where  

   2
, d ,M u t  u x t x  

Energy     0

  

E u t E u  where 

   2 4
, , d ,u x t x

1 1

2 4
E u t u x t     

and Momentum     0P u t P u  where 

      , dt u x t x Im ,P u t u x . 

If 20 L
xu   , then u satisfies  

      2

2 222 , d 24 4
x

t L
x u x t x E u u t       (1.2) 

Equation (1.2) is said to be the Virial identity. 

The Equation (1.1) has the scaling: 

   2, ,u x t u x t   

 ,u x t

 

and also this scaling is a solution if  is a solution. 
Moreover, u0 is a solution that is globally defined by u, 

if it is globally defined  T  

t T

 

, and it does scatter 
(See [1,2]). We say the solution “blows-up in finite time”. 
If the solution is not globally defined, as , we can 
provide a depiction of the behavior of the solution, where 
T is the “blow-up time”. It follows from the H1 local the-
ory optimized by scaling, that if blow-up in finite-time T 
> 0 happens, (see [3] or [4]), then there is a lower-bound 
on the “blow-up rate”: 

 
2 1

4
xL

c
u t

T t
 


            (1.3) 

for some constant c. Thus, to prove global presence, it  

 suffices to prove a global axiomatic bound on 2L
u t

0STc 

.  

From the Strichartz estimates, there is a constant  

such that if 1

20 STH
u c u , then the solution  is glob- 

ally defined and scattered. 
Note that the quantities 2 20 0LL

u u  and  

   M 0 0u E u  are also scale-invariant (See also [5]).  

   , eitu x t x  then u solves (1.1) as long as  Let 

 solves the nonlinear elliptic equation 
2

0               (1.4)     
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Equation (1.4) has an infinite number of solutions in 
 1 3H 


. The solution of minimal mass is denoted by 
x  and for the properties of   see [3,5,6].  

Under the condition        M u E u M E  , solu-
tions to (1.1) globally exist if u0 satisfies; 

2 2 ,
L L

 

1

2 20 0L L
u u         (1.5) 

and there exist H   such that  

  1e 0it

H
  

1u H u

lim
t

u t


. 

Theorem 1.1. Let 0 , and let  be the corre-
sponding solution to (1.1) in H1. Suppose 



       M u E u M E           (1.6) 

If 2 22 20 0 L L
 

.T  
1 t T

 

L L
u u   then u scatters in H1. 

The argument of [6] in the radial case followed a 
strategy introduced by [7] for proving global well-pos- 
edness and scattering for the focusing energy-critical 
NLS. The beginning used a contradiction to the argument: 
suppose the sill for scattering is strictly below that 
claimed. This uniform localization enabled the use of a 
local Virial identity to be established, with the support of 
the sharp Gagliardo-Nirenberg inequality, an accurately 
positive lower bound on the convexity (in time) of the 
local mass of uc Mass conservation is then violated at 
enough large time. 

We show in this paper, that the above program carries 
over to the non-radial setting with the extension of two 
key components. 

Theorem 1.2. Suppose the radial H1 solution u to (1.1) 
blows-up at time Then either there is a non-ab- 
solute  constant such that, as  1c 

  22
21 L

x c u t

u x
 


3 1

1, d ,t x c

nt T

 

         (1.7) 

or there exists a sequence of times  such that for 
an absolute constant  2c

 
3 1

2 2
2 0 2 2L L

x c u u t

u x


 


3

, dnt x          (1.8) 

From (1.3), we have that the concentration in (1.7) 

satisfies    2

12
2c T t  

L
u t


, and the concentration in 

(1.8) satisfies    2

1 1
2

L
u t c T t



  

Δeit

8 (For more additional 

information see [8-10]). 

Notation 

Let f  be the free Schrödinger propagator, and let 

t , with 0u u    0,u x f x

 
 

 be linear equation, a 
solution in physical space, is given by: 

 
2

Δ 4

2

1
e e d

4π d

i x y
it t

d
R

x f y y
it



 

  

f , 

and in frequency space 

 
224π ξ ˆe e itit ff     

In particular, they save the Farewell homogeneous 
Sobolev norms and obey the dispersive inequality 

  1
Δ 2e d

xx

d
it f

LL R
t f



0t

           (1.9) 

 .  For all times 
   3

cx C    be a radial function, so that,  Let 
  1x   for 1x   and  for   0x  2x  , Define 

the inner and outer spatial localizations of  , tu x  at 
radius   0R t   as 

      1 , , ,u x t x R t u x t

   

 

    2 , 1 ,u x t x R t u x t   

  3
cx C    be a radial function so that,  Let 

  1x   for 
1

8π
x    0x  and  for 

1

2π
x   then  

 ˆ 0 1  , and define the inner and outer indecision lo-

calizations at radius  t  of u1 as  

      1 1ˆˆ ˆ, ,Lu t t u t ,      

   
and  

    1 1ˆˆ ˆ, 1 ,Hu t t u t ,      

(the 
1

8π
 and 

1

2π
 radii are chosen to be consistent with 

the assumption    
3

ˆ 0 d
R

 ˆ 0 1 x , since x  

 ˆ 0 0

. In  

reality, this is for suitability only; the argument is easily 
proper to the case where  is any number  ). We 
note that the indecision localization of 1 1 1L Hu u u   is 
inaccurate, though decisively we have; 

   ˆ1 min ,1c   

0T 

 

         (1.10) 

2. Proof of Theorem 1.2 

In this section we discuss a proof of Theorem (1.2). 
Proposition 2.1. Let u be an H1 radial solution to (1.1) 

that blows-up in finite . Let  

 2 2

3 1

2 2
1 0 L L

R t c u u t


 

   

 

2

2

2
x

and 
L

t c u t  

1 1 2L Hu u u u

, (Where c1 and c2 are absolute  

constants), and     as characterized in the 
paragraph above. 
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1) There exists an absolute constant  such that 0c 

  31
x

L L
u t as .c t T 

c

          (2.1) 

2) Let us assume that there exists a constant   such 
that   31u t c

 
L

. Then 

      
13

0
1 3

as
xL x x t t

u t t T
c

   
 

c
     (2.2) 

for some absolute constant c > 0, where  0x t  is a 
stance function such that 

     61
.t c c

  0x t   

We recall, an “exterior” estimate, usable to radially 
symmetric functions only, originally due to [11]: 

     
2 2

3

x R x R
L L


 



,

4

4

2
x R

L

c

R
 


         (2.3) 

where c is independent of R > 0. We recall the generally 
usable symmetric functions and for any function   

   
4 3 2

33 3

4 2 2
.

RR R
L L L



3
 

c          (2.4) 

(2.3), (2.4) are Gagliardo-Nirenberg estimates for func-
tions on . 

Proof of Prop 2.1: Since by (1.3), 2
xL

u t  
,t T

 

 as 
 by energy conservation, we have  

  4 2

4 2
2.

x xL L
u t u t  Thus, for t to be large enough to 

close to T  

2 44

2 44
1 1

x xx
4 4

4 4

2 .
x x

L HL L L L
u u


L

u u u        (2.5) 

By (2.3), the selection of R t  and mass conserva-
tion; 

4 2

3

2 02x x
2 2

4 21

4x xL L L
u u 



L

c
u u

R
       (2.6) 

where c1 in the definition of R t  has been selected to 

obtain the factor 
1

4
 here. By Sobolev embedding, (1.10), 

and the selected  t  
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ˆ

x
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 (2.7) 

where c2 in the definition of t  has been selected to 

obtain the factor 
1

4
 here. Bring together (2.5), (2.6), and 

(2.7), to obtain 

2 4

2 4

1
x x

LL L
u c u 



             (2.8) 

By (2.8) and (2.4), we obtain (2.1), completing the 
proof of part (1) of the proposition. 

 31 ,
L

u t c  by (2.8) To prove part (2), we assume 
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There exists   3
0 0x x t   for which at least 

1

2
 of 

this supremum is attained. Thus,  
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1
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d
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d
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where we used Hölder’s inequality in the last step. By the 
selected  , we obtain (2.2). To complete the proof, it 
keeps to obtain the remind control on  0x t  which will 
be a consequence of the radial supposition and the sup- 

 posed bound 31 .
L

u t c  

 
Assume 

 
 60

1

n

n

x t
c

t


 

.nt T

 along a sequence of times 

 Assume the spherical annulus; 

 3 1 1
0 0: .A x x x x         

And inside A place 
 

2

0

21

4π
~
π

x



,

 disjoint balls, at ra- 

1dius 0x  both the radius  , centered on the sphere. 
By the radiality supposition, on all ball B, we have  

 
31 3BL

c
u

c
 , and hence on the annulus A, 

   
 3

2
33 0

1 9 21AL

xc
u c

c 


 
  . 

which contradicts the assumption 31 L
u c □.  

We now point out how to obtain Theorem 1.2 as a 
consequence. 

Proof of Theorem 1.2. By part (1) of Prop. 2.1 and 
the standard convolution inequality: 

 3 33

3
1 1 1

x x
L L LL

c u u u       . 
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If   31 L
u t

nt  
 is not bounded, then there exists a sequence 

of times  such that T  31 n L
u t .  Since  

      312n n3 LL x
u t

 R
u t



, we have (1.8) in Theorem 1.2;  

on the other hand, if  31 L
u t c , for some c*, as t  T,  

we have (2.2) of Prop. 2.1. Since      
6 1

0x t c c t  , 

we have 

 
            

6 13L x c c t  
 

 

□

13
0

1 13 nL x x t t

c
u t u t

c
  

   

which gives (1.7) in Theorem 1.2.  

3. Strichartz Estimates  

In this section we show local theory and Strichartz esti-
mates. 

Strichartz Type Estimates 

We say the pair  ,q r  is sH  Strichartz admissible if  
2

2

d d
s

q r
   , with 2 ,  and q r     , ,q r 2, ,2d   . 

And the pair  ,q r  is 
2

d
-passable if 1 , q r   , 

1 1

2
d 2q r

,q r 

1  
 q r

 or   .  , , 

As habitual we denote by  the Hölder conju-

gates of q and r consecutive (i.e. 
1 1

1
r r
 


). 

Let 

   
2
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sup
S L

q r L r 


6,2

.q r
xtL L

q
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We consider dual Strichartz norms. Let 
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S L q r L q  


,2 6,

f .q r
xtL Lr
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where ,q r   is the Hölder dual to ,q r . Also define 
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The Strichartz estimates are:  

  22eit

LS L
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and 
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2
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0

e , d
t

i t t
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By bring together Sobolev embedding with the Stri-
chartz estimates, we obtain 
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1
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   (3.1) 

We must also need the Kato inhomogeneous Strichartz 
estimate [12]. 

1

21
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e , d
t

i t t

S H
S H

f t t c f 
   

          
 

   


.    (3.2) 

To point out a restriction to a time subinterval  
 ,    ;sS H I  ;sS H I , we will write  or .  
Proposition 3.1 Assume 1

20 S H
u M 

 
  
 

 . There is 

  0sd sd M  1

20eit   such that if sdS H
u   

 
  
 

 , then 

u solving (1.1) is global (in 
1

2H ) and 
1 1
2 202 eit

S H S H
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  ,  

 
1

2

2

1

2
02

H

S L

D u c u 


. 

(Observe that, by the Strichartz estimates, the assump- 
tions are satisfied if 1

20 sdH
u c

   

). 

Proof. Define 

 
0

2

0
0

Ψ e e d
t

i t tit
u v u i v v t t      . 

Applying the Strichartz estimates, we obtained 

 
 

 1

2 5 100
2 2 9
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22 2

0Ψ
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and 

 11
5 10220
2 9

1
22

0Ψ e

xt

it
u S HS H

L L

v c u c D v v   
  
        

   

We apply the Hölder inequalities and fractional Leib-
nitz [13] to get  
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22 22 9
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2424
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0
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Then  where 
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20 02
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c u
 
  
  



Ψu □



 

and  is a contraction on N.  
0

Proposition 3.2. If 1
0 ,u H u t  is global with glob-

ally finite 
1

2H  Strichartz norm 1

2S H
u  

 
  
 

 

 

 and a 

uniformly bounded H1 norm 
 

1 ,
H

u t N
0,

sup
t 

 then 

 u t t 
1

 scatters in H1 as . 

Meaning that there exist H   such that 

  1e 0it

Ht
u t  


 



lim .  

Proof. Since u t  resolves the integral equation 

       2
d ,u u t t 0

0

e e
t

i t titu t u i      

we have 

       2
du u t t e ei t tit

t
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          (3.3) 

where 

  2
e d .u u t t  0

0

itu i


     

Apply the Strichartz estimates to (3.3), to get  
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As  above inequality get the claim.  

4. Some Lemma  

4.1. Here We Discuss the Precompactness of the 
Flow Implies Regular Localization 

Let u be a solution to (1.1) such that  

 K u t  , 0,t t 

ch 

       (4.1) 

is precompact in H1. Then for ea 0   there exist 
R > 0 so tha π  for all 

 
 0 .  

0
t t 

We proof (4.2) by contradiction, there exists  
nt

 
and a sequence of times  and by changing the vari-
ables, 

     

  

2 2
, ,n nu t t 

1

4
,

n n
n

n n

u t t
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   (4.3) 

H , such that Since K is precompact, there exists 
   ,n nu t t  

 

 in H1, by (4.3), 

   2 2 4
0, d .

R

R


       


    
1.

 

HWhich is a contradiction with the fact that   
The proof is complete. 

Lemma 4.1. Let u be a solution of (1.1) defined on 
   0P u0, , such that   and K such as in (4.1) is 
precompact in H1, for some continuous function     
then; 

 
0 as

t
t

t


  

n  
 

           (4.4) 

Proof. Suppose that (4.4) does not hold. Then there  

exists a sequence t , such that 0
n

n

t

t


   for  

 0 0 .some ε0 > 0. Retaining generality, we assume   
For R > 0, let 

    0 inf 0 :t R t t R    

i.e. 0  is the first time when  arrives at the 
boundary of the ball of radius R. By continuity of 

t R  t
 t , 

the value  0  is well-defined. Furthermore, the fol-
lowing hold: 

t R

 0 0;t R   1) 

   0, for 0 ;t R t t R   2)  

  3) 0t R R . 

Let  n nR t   and 0n nR n nt t .t t  We note that , 
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0

n

n
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t
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n

n

R
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 and 
 

0
n

n

t

t


  , we have .n nR t    

Thus  0 .n nt t R  
nt

0, nt  

for 0 nt t

 We can disregard . We will 

concentrate our work on the time interval , and we 

will use in the proof: 

    we have 1)  ;nt R   

  ;n nt R 2)  

3) 0
n

n

R

t
 .n  

0

 and t  

By the precompactness of K and (4.2) it follows that 
for any  , there exists  0 0R  

0t 
, such that for any 
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2 2
d .
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u u
  

 
 

           (4.5) 

We will select ε later; for     let  0C     
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be such that      for 1 1     0 ,   for  
1

32  ,     , 4   and 2

  


 1 2, ,  
 for  

 3
3    . Let   1 2 3, ,    .      

Then      for 1   and 2.


 For R > 0, 
set    .R  Let  be the trunca-
tion center of mass given by  
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By Cauchy-Schwarz, we obtain; 
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Set .0n n   nt t    Observe that for 0  and  
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We now obtain an upper bound for  and a 
lower bound for  
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Hence, by (4.5) we have 
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Trivially, 
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Combining (4.7), (4.8), and (4.9), we have 
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  , as ,n    since 

nt    we get a contradiction. □  
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4.2. We Now Prove the Following Rigidity  
Theorem 

Lemma 4.2. If (1.5) and (1.6) hold, then for all t  

    2 2 .2 2 L L
u t t        

   

L L
u   (4.10) 

where 
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obtain a contra pt if  diction exce 0E u  , which implies
u
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