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ABSTRACT 

We describe a new active-set, cutting-plane Constraint Optimal Selection Technique (COST) for solving general linear 
programming problems. We describe strategies to bound the initial problem and simultaneously add multiple constraints. 
We give an interpretation of the new COST’s selection rule, which considers both the depth of constraints as well as 
their angles from the objective function. We provide computational comparisons of the COST with existing linear pro-
gramming algorithms, including other COSTs in the literature, for some large-scale problems. Finally, we discuss con-
clusions and future research. 
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1. Introduction 

1.1. The General Linear Programming Problem 

Linear programming is a tool for optimizing numerous 
real-world problems such as the allocation problem. 
Consider a general linear program (LP) as the following 
problem  P
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where  represents the objective function for  varia- 
bles 

T
1 2

x

x
c c c

x

 
 
 
 
 
 




m
n

1 1 1

2 2 2

,

,

,mn n m

c x , 

and the expression (2) describes  rows of constraints 
for  variables 
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Furthermore, the vector 0 in (3) is a column vector of 

zeros of appropriate dimension according to context. The 
dual of  is considered the standard minimization LP 
problem. We focus here on the maximization case. 

A COST RAD [1] utilizing multi-bound and multi-cut 
techniques was developed by Saito et al. [2] for nonne- 
gative linear programs (NNLPs). In NNLPs, i  and 

i    a b0 0  0
,  ,A b c

P

P

 and c . However in LPs, 
the components of  and  are not restricted to 
be nonnegative numbers. 

Though simplex pivoting algorithms and polynomial 
interior-point barrier-function methods represent the two 
principal solution approaches to solve problem  [3], 
there is no single best algorithm. For either method, we 
can always formulate an instance of  for which the 
method performs poorly [4]. However, simplex me- 
thods remain the dominant approach because they have 
advantages over interior-point methods, such as efficient 
post-optimality analysis of pivoting algorithms, appli- 
cation of cutting-plane methods, and delayed column ge- 
neration. Current simplex algorithms are often inadequate, 
though, for solving a large-scale LPs because of their 
insufficient computational speeds. In particular, emerg- 
ing technologies require computer solutions in nearly real 
time for problems involving millions of constraints or 
variables. Hence faster techniques are needed. The COST 
of this paper represents a viable such approach. 

1.2. Background and Literature Review 
*All the authors contributed equally to this research. 
#Corresponding author. An active-set framework for solving LPs will be analo- 
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gous to that of Saito et al. [2] for NNLPs. We begin with 
a relaxation of , with a single artificial bounding 
constraint such as 

P
M1x  or T Mc x  for suffi- 

ciently large M  so as not to reduce the feasible region 
of . P

A series of relaxations r  of  is 
formed by adding one or more violating constraints from 
set (2). The constraints that have been added are called  
operative constraints, while constraints that still remain 
in (2) are called  inoperative constraints. Eventually a 
solution r  of  is obtained when none of the ino- 
perative constraints are violated; i.e., for no inoperative 
constraint  is . In the LP COSTs of this 
paper we explore 1) the ordering of a set of inoperable 
constraints for possibly adding them to the current ope- 
rable constraints and 2) the actual selection of a group of 
such constraints to be added at an iteration. 

, 0,1, 2, ,P r   P
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Active-set approaches have been studied in the past, 
including those by Stone [5], Thompson et al. [6], Adler 
et al. [7], Zeleny [8], Myers and Shih [9], and Curet [10], 
with the term “constraint selection technique” used in 
Myers and Shih [9]. Adler et al. [7] added constraints 
randomly, without any selection criteria. Zeleny [8] 
added a constraint that was most violated by the problem 

r  to form 1r . These methods are called SUB and 
VIOL here, respectively, as in Saito et al. [2]. Also, VIOL, 
which is a standard pricing method for delayed column 
generation in terms of the dual [11], is identical to the 
Priority Constraint Method of Thompson et al. [6]. In all 
of these approaches, constraints were added one at a time. 

P

More recent work on constraint selection has focused 
on choosing the violated inoperative constraints consi- 
dered most likely to be binding at optimality for the ori- 
ginal problem  according to a particular constraint se- 
lection criterion. In the cosine criterion, the angle be- 
tween normal vector i  of (2) and normal vector  of 
(1) as measured by the cosine,  

T
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is considered. Naylor and Sell ([12], pp. 273-274), for 
example, suggest that a constraint with a larger cosine 
value may be more likely to be binding at optimality. Pan 
[13,14] applied the cosine criterion to pivot rules of the 
simplex algorithm as the “most-obtuse-angle” rule. The 
cosine criterion has also been utilized to obtain an initial 
basis for the simplex algorithm by Trigos et al. [15] and 
Junior et al. [16]. Corley et al. [1,17] chose for 1r  a 
single inoperative constraint  of  violating 

 and having the largest 
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In Saito et al. [2] the COST RAD was developed for 
NNLPs. It was based on the following two geometric 
factors. Factor I is the angle that the a constraint’s normal 
vector  formed with the normal vector  of the ob- 

jective function. Factor II is the depth of the cut that con- 
straint  removes as a violated inoperative constraint of 

r . From these two factors the constraint selection me- 
tric 
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was developed. This constraint selection metric was uti- 
lized in conjunction with a multi-bound and multi-cut 
technique [2] in which multiple constraints were effec- 
tively selected from a RAD-ordered set of inoperative 
violating constraints for forming each r . In this paper 
we rename the COST RAD of [2] for NNLPs as NRAD. 

1.3. Contribution 

Although NRAD performs extremely well for NNLPs, 
we show here that its superiority over traditional algo- 
rithms is less dramatic for the general LP (1)-(3). Hence, 
the contribution of this paper includes using the prin- 
ciples of NRAD to develop a new COST for the general 
LP, which we refer to as GRAD. Even though GRAD 
and NRAD share similar principles, GRAD is a signifi- 
cant modification of NRAD. Indeed, GRAD solves 
general LPs seven times faster on the average than 
NRAD in our computational experiments. 

The remainder of this paper is organized as follows. 
GRAD with multi-cuts is developed in Section 2, and an 
interpretation is given. In Section 3, we present computa- 
tional results where GRAD is compared to the CPLEX 
simplex methods, CPLEX barrier method, and the active- 
set approaches SUB, VIOL, and NRAD. In Section 4 we 
offer conclusions and discuss future research. 

2. The COST GRAD 

2.1. NNLP vs LP 

An active-set framework for solving general LPs will be 
analogous to that for NNLPs. However, GRAD is not an 
immediate extension of NRAD since LPs do not have 
some of the useful properties of NNLP problems. For 
example, the origin x 0  is no longer guaranteed to be 
feasible for LP problems. Moreover, the optimal solution 

x a may not lie in the same orthant as the normal i  to 
a constraint. We must thus modify NRAD for NNLP to 
GRAD for LP in order to emulate the underlying 
reasoning of NRAD based on Factors I and II efficiently. 

2.2. Constraint Selection Criterion 

Boundedness of NNLP could be assured by adding 
multiple constraints from (2) until no column of A  is a 
zero vector. However, this is not the case for LP. There- 
fore an initial bounded problem  is formed by adding 
a bounding constraint such as 

0P
T Mc x , along with 
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P

C

some constraints from (2), as described in Section 2.3. 

0  is then solved to obtain an initial solution 0
x P. 1r  

is generated by adding one or more inoperative con- 
straints of r  that maximize the constraint selection 
metric for LP among all inoperative constraints of  
violating . Define this constraint selection metric as 

P
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r
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and   is a small positive constant. Thus GRAD seeks 
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The first term in (5) is a quantity that invokes Factor I 
and Factor II analogous to NRAD, while the second term 
is a quantity that invokes Factor II. In (6), values of  

are shifted by 
=1, ,
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 if the minimum value is non-  

as well. Although equality constraints are not considered 
here, it should be noted that equality constraints could be 
included in . 

2.3. Multi-Bound and Multi-Cut for LP 

The boundedness of the initial problem 0  for NNLP is 
obtained by adding multiple constraints from (2) ordered 
by decreasing value of NRAD until no column of A  is 
a zero vector. Although this approach does not guarantee 
boundedness for LP, a generalization was found to be 
effective here. 

For the COST GRAD, an initial bounded problem 0  
is formed by adding an artificial bounding constraint 
such as 

P

T Mc x , as well as multiple constraints from 
(2) ordered by decreasing value of GRAD, until each 
column of A  has at least one positive and at least one 
negative coefficient (Step 1). After an optimal solution to 
the initial bounded problem is obtained by the primal 
simplex method (Step 2), subsequent iterations are so- 
lved by the dual simplex method (Step 3). Moreover, 
after the solution of 0  and each subsequent r , con- 
straints are again added in groups. 1r  is formed by 
selecting inoperative constraints in decreasing order of 
GRAD until both a positive coefficient and a negative 
coefficient are included for each variable 

P P
P

j

positive. Hence i  is always positive, and each term in 
(5) contributes additively to the criterion. GRAD (5) 
becomes the same as NRAD (4) when  and . 
Therefore it could be utilized to effectively solve NNLPs  

x  (Step 3, 
lines 7-27). The following pseudocode describes the 
COST GRAD with the new multi-cut technique. 

b

 
Step 1—Identify constraints to form the initial problem . 0P

1i m 1: for  do 

2:  if 0ijj a 

POSITIVE POSITI 

 then 

3:      iVEa a

4:  end if 
5:  if 0ijj a 

 NEGATIVE GA i

OPERATIVE  EXPL ED OPERATIVE positive 0

 then 

6:     NE TI

OR

VEa a 



7:  end if 
8: end for 
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16:      //case if there are no more constraints with  
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18:       
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27:    end if 
28:  end if 

29:  ,  positive positive   a a a negative

30: end while 
  for the initial bounded problem  Step 2—Using the primal simplex method, obtain an optimal solution x 0P
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Step 3—Perform the following iterations until an optimal solution to problem  is found. 
1:  false r

2: while false do 

3:  if  then T *
i ib i  ra x

4:    ST //  is an optimal solution to . OP

5:  else 
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14:      else 

15:        
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20:      if NEGATIVEa  EXPLORED

1 a 0ija

 then  

21:          case if there are no more constraints with   

22:       else 

23:          
1
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24:       end if 
25:     end if 

26:     ,   positive positive   a a a negative

27:    end while 
28:     

 . x29:    Solve  defined by (7)-(10) using the dual simplex method to obtain 

30:  end if 
31: end while 

 
2.4. Interpretation of GRAD GRAD can also be derived from NRAD. Note that the 

term 
The interpretation of NRAD in Saito et al. [2] utilized the 
fact that an NNLP always results in a positive value for 

i . However for LP of (1)-(3), the intersection of , 
drawn from the origin, and i i  may not neces- 
sarily lie in the feasible region. Moreover, the 

t © 2013 SciR
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NNLP are all positive. The GRAD constraint selection 
metric of (5) thus must be modified from  RAD , ,i iba c

2 ,n nx c x 

z

 
in (4) to account for these facts. 

For LP, the basic idea for determining whether a 
constraint from (2) is likely to be binding at optimality is 
described as follows. Given an objective function  

1 1 2max z c x c   

observe that  is maximized when jc  and jx  are 
large. Hence, a larger value of jc  is more likely to yield 
a larger value of jx . This relationship implies that the 
left-hand side of the constraint is likely to be larger for 
larger values of  
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For ja  with j , it is hard to predict the value of 0c 
jx  in a solution. Consequently, we assume that the jx  

in which jc  are all equally likely and have the 
nominal value 1. The left-hand side is now 
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As for the right-hand side of the constraint, a small i  
makes a constraint more likely to be binding. We thus 
divide the left-hand side by i  to measure the  
constraint’s likelihood of being binding at optimality, 
resulting in 

1, 0

ij
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which is essentially GRAD. 
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in (5) is simply RAD for an NNLP. For LP we add a 
term involving the  for which the jc  are negative. 
Consider (11) below. 
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a c a c
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       (11) 

The second term in (11) makes sense from the point of 
view that the expression (11) results in a higher value 
when ij  and jc b are both negative, and i  is large. 
However, it is found in Section 3.3.1 that the constraint 
selection metric performed better when the second term 
was 

1, 0j

n
ij

j c i

a

b
 




1rP 

, 

as shown in (5). 

3. Computational Experiments 

The COST GRAD (5) was compared with the CPLEX 
primal simplex method, the CPLEX dual simplex method, 
the polynomial interior-point CPLEX barrier method, as 
well as the previously defined constraint selection tech- 
niques SUB, VIOL, and NRAD (4). GRAD, NRAD, 
SUB, and VIOL utilized the CPLEX dual simplex solver 
to solve each new relaxed problem . 

3.1. Problem Instances 

A set of 105 randomly generated LP was constructed. 
The LP problems were generated with 1000 variables 
 n and 200,000 constraints  m  having various den- 
sities ranging from 0.005 to 1. Randomly generated real 
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numbers between 1 and 5, or between −1 and −5 were 
assigned to elements of A . To assure that the randomly 
generated LP had a feasible solution, a feasible solution 

 (not all elements of  were nonzero) was rando- 
mly generated to derive random , where 

x x
b Ax b

y
x

y A

. 
Then a feasible solution  (having the same number 
of nonzero elements as ) was randomly generated to 
derive random , where . The ratio of the 

number of positive and negative elements of 

c  c

A  was 
one. The number of nonzero  in each constraint was 
binomially distributed 

ija
 , densityB n p 

a

. Additionally, 
we required each constraint to have at least two nonzero 

ij  so that a constraint would not become a simple upper 
or lower bound on a variable. At each of the 21 densities, 
5 random LP were generated. Table 1 summarizes the 
generated LP. 

 
Table 1. Randomly generated general LP problem set [18]. 

Number of variables 1000 

Number of constraints 200,000 

Range of  ija 1 ≤ random real ≤ 5, or −5 ≤ random real ≤ −1 

Fraction of positive  ija 0.5 

 Average of 5 instances of LP at each density 

Problem 
instance 

Density 
Number of nonzero 

 in a constraint ija ib jc  Number of binding 
constraints at optimality 

 Mean Min Mean Max Min Mean Max Min Mean Max Mean 

1-5 0.00505 2.0 5.1 17.6 −2.5 1.0 4.4 −19.2 −1.0 16.0 836.0 

6-10 0.00602 2.0 6.0 19.6 −2.4 1.0 4.3 −18.2 −0.9 15.1 834.2 

11-15 0.00701 2.0 7.0 23.0 −2.2 1.0 4.2 −19.0 −0.9 13.7 827.6 

16-20 0.00801 2.0 8.0 23.2 −2.0 1.0 4.1 −19.8 −1.0 14.6 812.4 

21-25 0.00900 2.0 9.0 25.4 −1.8 1.0 3.9 −17.7 −1.1 14.8 803.6 

26-30 0.01000 2.0 10.0 27.6 −1.8 1.0 3.8 −17.1 −0.9 13.1 807.0 

31-35 0.02000 4.0 20.0 43.2 −1.6 1.0 3.6 −15.2 −1.0 12.9 754.0 

36-40 0.03001 8.8 30.0 60.2 −1.3 1.0 3.3 −13.3 −1.0 11.6 723.0 

41-45 0.04000 15.8 40.0 70.6 −1.3 1.0 3.2 −11.6 −1.1 9.5 694.4 

46-50 0.04999 22.0 50.0 82.8 −1.2 1.0 3.2 −13.1 −0.9 10.0 696.0 

51-55 0.06000 29.8 60.0 97.8 −1.0 1.0 3.0 −11.1 −1.0 9.7 659.8 

56-60 0.07000 38.0 70.0 110.4 −1.1 1.0 3.1 −9.9 −1.0 9.4 664.8 

61-65 0.08001 43.8 80.0 123.6 −1.0 1.0 2.9 −12.0 −1.0 9.3 647.4 

66-70 0.08999 53.2 90.0 133.6 −0.9 1.0 2.9 −9.7 −1.0 8.2 630.0 

71-75 0.10000 61.0 100.0 145.0 −0.9 1.0 2.9 −11.5 −1.0 9.2 633.6 

76-80 0.20001 146.2 200.0 261.4 −0.8 1.0 2.8 −9.2 −1.0 8.1 578.6 

81-85 0.30001 236.8 300.0 369.6 −0.6 1.0 2.6 −7.9 −1.0 5.6 546.6 

86-90 0.40000 332.6 400.0 471.4 −0.6 1.0 2.6 −9.1 −1.0 6.8 530.0 

91-95 0.50001 429.6 500.0 574.0 −0.7 1.0 2.6 −8.6 −1.0 6.6 514.0 

96-100 0.75000 688.8 750.0 811.4 −0.6 1.0 2.5 −8.4 −1.0 5.8 472.2 

101-105 1.00000 999.0 1000.0 1000.0 −0.6 1.0 2.6 −6.5 −1.0 5.1 432.6 
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3.2. CPLEX Preprocessing 

As in Saito et al. [2], the CPLEX preprocessing para- 
meters PREIND (preprocessing presolve indicator) and 
PREDUAL (preprocessing dual) had to be chosen appro- 
priately. The default parameter settings of PREIND 1  
(ON) and  (AUTO) were used for CPU 
times of the CPLEX primal simplex method, the CPLEX 
dual simplex method, and the CPLEX barrier method. No 
CPLEX preprocessing was implemented [used PREIND = 
0 (OFF) and PREDUAL = −1 (OFF)] by the CPLEX 
primal simplex and dual simplex solvers as part of 
GRAD, NRAD, SUB, and VIOL. 

PREDUAL 0

3.3. Computational Results 

Comparisons of computational methods were performed 
with the IBM CPLEX 12.1 callable library on an Intel 
Core 2 Duo E8600 3.33 GHz workstation with a Linux 
64-bit operating system and 8 GB of RAM. Compu- 
tational test results of Tables 2 through 5 were obtained 

by calling CPLEX commands from an application writ- 
ten in the programming language C. In these tables, each 
CPU time presented is an average computation time of 
solving five instances of randomly generated LP. 

Computational results for the CPLEX primal simplex, 
dual simplex, and barrier solvers for the general LP set 
are presented in Table 2. CPU times for the COST 
GRAD with multi-cut, as well as the COST NRAD with 
multi-bound and multi-cut are shown for comparison. 
The CPU times for GRAD were faster than the CPLEX 
primal simplex, the CPLEX dual simplex, and the CPLEX 
barrier linear programming solvers at densities between 
0.02 and 1. Between densities 0.005 and 0.01, CPLEX 
barrier was up to 4.0 times faster than GRAD. On 
average, GRAD was 7.0 times faster than NRAD applied 
to these non-NNLP problems and 14.6 times faster than 
the fastest CPLEX solver, which was the dual simplex. 

3.3.1. Influences of the COST GRAD and Multi-Cut 
In constructing a constraint selection metric for LP, a 

 
Table 2.Comparison of computation times of CPLEX and COST RAD methods on LP problem set. 

 
CPLEX Primal 

Simplex 
CPLEX Dual 

Simplex 
CPLEX  
Barrier 

GRAD with  
multi-cut 

NRAD with multi-bound 
and multi-cut [2] 

Presolve On On On Off Off 

Predual Auto Auto Auto Off Off 

Density CPU TIME† (std. dev.), sec 

0.00505 41.1 (2.3) 21.6 (1.4) 2.4 (0.1) 7.9 (1.0) 15.0 (0.8) 

0.00602 86.0 (8.2) 36.6 (1.1) 2.9 (0.1) 9.3 (0.5) 21.5 (4.7) 

0.00701 134.8 (7.8) 49.3 (3.2) 4.6 (0.3) 13.4 (0.4) 27.4 (3.9) 

0.00801 186.5 (11.1) 65.6 (4.3) 7.8 (0.4) 14.4 (0.9) 31.4 (3.6) 

0.00900 215.3 (17.5) 84.8 (9.8) 9.3 (0.3) 12.6 (0.7) 33.9 (5.2) 

0.01000 263.2 (18.1) 100.5 (11.9) 11.2 (0.2) 14.2 (0.4) 36.6 (5.3) 

0.02000 412.0 (25.2) 223.3 (20.3) 27.4 (1.1) 23.3 (2.1) 69.1 (6.5) 

0.03001 503.7 (46.3) 317.4 (28.9) 45.8 (1.3) 26.7 (1.5) 100.7 (8.5) 

0.04000 575.2 (40.1) 389.2 (34.0) 64.9 (3.9) 27.4 (0.4) 103.6 (4.8) 

0.04999 672.5 (94.3) 427.4 (37.2) 82.9 (3.9) 33.5 (1.6) 132.2 (7.0) 

0.06000 718.3 (80.0) 497.9 (38.5) 99.9 (5.5) 31.8 (2.2) 130.4 (4.3) 

0.07000 841.0 (119.0) 531.1 (44.2) 125.4 (9.8) 34.5 (1.8) 142.0 (4.7) 

0.08001 835.0 (95.8) 570.5 (42.5) 145.0 (14.7) 32.9 (2.5) 150.7 (14.3) 

0.08999 930.6 (111.0) 595.8 (50.0) 176.3 (27.0) 35.4 (1.0) 160.4 (10.3) 

0.10000 1029.9 (131.4) 627.8 (21.5) 203.1 (11.0) 36.2 (4.6) 175.2 (12.6) 

0.20001 1667.8 (293.8) 857.8 (68.5) 553.2 (21.2) 52.7 (3.5) 266.4 (18.9) 

0.30001 1939.7 (185.5) 1016.9 (69.2) 1097.9 (90.4) 60.1 (6.8) 273.0 (22.1) 

0.40000 2535.9 (857.5) 1173.3 (117.7) 1684.0 (124.8) 73.0 (6.3) 403.1 (48.0) 

0.50001 2383.3 (466.3) 1421.3 (153.3) 2480.3 (156.1) 83.1 (5.6) 460.1 (31.9) 

0.75000 2727.7 (287.1) 1775.3 (168.8) 5026.2 (217.4) 119.4 (11.8) 712.5 (62.9) 

1.00000 2972.7 (397.2) 1904.8 (203.3) 8463.6 (950.4) 143.9 (6.2) 2600.9 (188.1) 

Average (pooled standard deviation) 1032.0 (257.0) 604.2 (78.3) 967.3 (218.3) 42.2 (4.1) 287.9 (45.9) 

†Average of 5 instances of LP at each density. 
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natural strategy might be to have the metric give priority 
to those constraints with either “as large positive ij  
and large positive 

a

jc  with small i  as possible,” or “as 
small negative ij  and small negative 

b
a jc  with large 

i  as possible.” However, when running LP problems 
utilizing NRAD (4), the constraint selection metric is 
b

 
1, 0

NRAD , , ij j
i i

j c

a c
b

 

 a c
1, 0

,
j j

n n
ij j

j ci i

a c

b b 


0c 

b

a

    (12) 

if the terms for  and j  are explicitly wri- 
tten out. The first term follows the above general strategy, 

0jc 

except when i  becomes negative. The second term 
should be subtracted, instead of added, from the first 
term in order for the constraint selection metric to take a 
higher value when giving priority to “as small negative 

ij  and small negative jc
b

 with large ib  as possible.” 
The i  in the second term should also be positive for 
the metric to work additively. 

To examine the effect of changing the form of NRAD 
(12) to GRAD, several intermediate variations are tested 
and presented in Table 3. The results utilizing SUB are 
also shown in the table for comparison. The first va- 
riation, 

 
Table 3. Comparison of computation times to illustrate the effects of muti-cut, NRAD and GRAD on LP problem set. 

 Constraint selection metric† 

 SUB SUB NRAD NRAD 
NRAD  

variation 1 (13)
NRAD  

variation 2 (14) 
NRAD  

variation 3 (11)
GRAD

 
Multiple cuts  

for NNLP 
Multiple cuts  

for LP 
Multiple cuts 

for NNLP 
Multiple cuts

for LP 
Multiple cuts for LP 

Density CPU TIME‡, sec 

0.00505 16.2 14.5 15.0 13.9 14.0 10.1 11.2 9.4 

0.00602 16.8 15.1 21.5 15.7 15.5 10.8 13.0 11.4 

0.00701 22.9 17.9 27.4 18.6 22.1 12.4 18.5 15.3 

0.00801 30.9 19.3 31.4 21.0 24.2 13.7 20.7 14.8 

0.00900 31.2 22.4 33.9 22.4 21.7 14.2 17.9 13.4 

0.01000 31.8 28.6 36.6 28.8 25.8 15.4 19.7 16.4 

0.02000 73.5 57.0 69.1 53.4 53.3 23.9 34.7 25.8 

0.03001 98.2 79.6 100.7 73.5 66.7 27.9 38.3 26.9 

0.04000 111.4 83.4 103.6 75.8 76.4 29.6 40.7 27.6 

0.04999 144.6 100.1 132.2 87.3 90.1 38.7 49.9 34.5 

0.06000 148.5 106.3 130.4 91.7 93.3 35.9 47.1 32.5 

0.07000 160.0 109.4 142.0 93.8 108.5 39.6 52.2 34.5 

0.08001 179.0 116.6 150.7 98.4 98.5 37.5 49.4 32.5 

0.08999 191.0 122.8 160.4 102.8 111.5 38.8 53.2 34.9 

0.10000 201.1 133.5 175.2 111.4 112.5 41.6 57.7 36.2 

0.20001 312.7 196.1 266.4 166.6 176.6 57.5 83.3 50.4 

0.30001 389.0 246.0 273.0 168.5 195.4 59.2 98.2 55.8 

0.40000 566.8 344.5 403.1 238.0 254.7 74.6 119.8 70.0 

0.50001 734.8 431.0 460.1 284.9 299.5 90.9 136.1 79.4 

0.75000 1158.4 614.8 712.5 379.7 430.7 113.0 186.2 107.2 

1.00000 3662.7 774.6 2600.9 455.4 522.1 134.8 236.9 138.5 

Average 394.4 173.0 287.9 123.9 134.0 43.8 65.9 41.3 

†
 Used CPLEX preprocessing parameters of presolve = off and predual = off. ‡Average of 5 instances of LP at each density. 
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 variation1NRAD , ,i ib a c
1, 0
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j
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j c i
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b 


0c 

0,b 

          (13) 

is a version only considering the j  term of (12). 
The test problems of Table 1 did not have any con- 
straints with i  therefore the case was not specially 
handled. The second version, 

 variation2
1, 0

NRAD , ,i ib a c



,
j

n
ij j

j c i

a c

b
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
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          (14) 

is (13) with , which was defined in (6). Variation 3, 
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n n
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 

10, 10i  

a

 

subtracts a term from (14) to give (11) above. For cal- 
culation of b  was used for all results pre- 
sented. 

Results for SUB and NRAD from Table 3 show that 
the multi-cut method for LP reduced CPU times by 56% 
to 57% over the multi-cut method for NNLP to support 
the importance of having both positive and negative ij  
for every variable jx  in forming a set of cuts for each 
iteration of an active-set method for LP. The rest of the 
comparisons are made with those methods utilizing the 
multi-cut method for LP. 

For densities between 0.005 and 0.09, SUB, NRAD, 
and variation 1 (13) of NRAD performed about the same. 
Introducing the use of ib  in (14), (5), and (11) sig- 
nificantly improved the CPU times over (13). Between 
(11) and (14), (14) which only considered the j  
term was faster. Going from (14) to GRAD, utilizing the  



0c 

term 
1, 0j

n
ij

j c i

a

b
 




a

ija

 improved the CPU time slightly more, 

5.7% on average. 
The COST GRAD with multiple cuts for LP was also 

tested on NNLP problem Set 1 from Saito et al. [2], as 
shown in Table 4. The results confirm that the methods 
perform equally for NNLP. Although the constraint se- 
lection metric becomes exactly the same between the two 
methods when running NNLP, a slight increase in CPU 
times for the COST GRAD occurs because of the time it 
takes for the algorithm to determine whether the problem 
is an NNLP (pseudocode in Section 2.3, Step 1, lines 1 
through 8). In the case of solving NNLP with the GRAD, 
this check allows the multi-cut procedure to stop search- 
ing for negative ij  if there are no constraints with ne- 
gative  in the inoperative set. 

3.3.2. Number of Constraints Added 
In Table 5, CPU times and the number of constraints 
added during computation of the test problems by GRAD 
(both single-cut and multi-cut versions) are compared 
with the constraint selection methods SUB and VIOL of  

Table 4. Comparison of computation times of NRAD and 
GRAD on NNLP Set 1 from Saito et al. [2]. 

 CPU TIME†, sec 

Density COST NRAD COST GRAD 

0.00505 2.1 2.1 

0.00602 2.4 2.5 

0.00701 2.7 2.7 

0.00800 2.5 2.6 

0.00900 2.8 2.8 

0.01000 2.8 2.8 

0.02000 3.1 3.2 

0.03000 3.3 3.4 

0.04001 3.4 3.5 

0.05000 3.4 3.5 

0.06000 3.2 3.4 

0.06999 3.4 3.6 

0.08001 3.3 3.6 

0.08999 3.4 3.7 

0.10000 3.3 3.7 

0.19999 4.3 4.9 

0.30001 4.9 5.8 

0.40000 5.6 6.9 

0.49998 6.7 8.3 

0.75001 7.9 10.3 

1.00000 8.1 11.5 

Average 3.9 4.5 

†Average of 5 instances of LP at each density. Used CPLEX preprocessing 
parameters of Presolve = off and Predual = off. 

 
Adler et al. [7] and Zeleny [8], respectively. “Number of 
Constraints Added” reflects the number of constraints 
added in the  set, but not the artificial 
bounding constraint 

OPERATIVE
T Mc x

T 1010M c x

. To implement SUB and 
VIOL as in previous work, a single bounding constraint 

 was used. 
Although the single-cut SUB performed comparably 

with the CPLEX dual simplex with the default prepro- 
cessing parameter settings in solving NNLP, SUB is 
much slower when solving LP. However, as shown 
above in Table 3, the CPU times for SUB greatly im- 
proves to 173.0 seconds from 4515.6 seconds on average, 
faster than 604.2 seconds for the CPLEX dual simplex, 
once the multi-cut procedure is incorporated. 

For the NNLP Set 1 in Saito et al. [2], the 25.1   
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Table 5. Comparison of computation times of COST GRAD and non-COST methods, SUB and VIOL on LP problem set. 

Density CPU TIME†, sec Number of added constraints Constraints binding at 

 
(and number of iterations   

for multi-cut methods) † 
r Optimality as a % of  

constraints added† 

 SUB VIOL GRAD SUB VIOL GRAD SUB VIOL GRAD 

 SC
‡
 MC

ǁ
 SC

§
 MC

ǁ
 SC

¶
 MC

ǁ
 SC

‡
MC

ǁ
 SC

§
MC

ǁ
 SC

¶
MC

ǁ
 SC

‡
 MC

ǁ
 SC

§
 MC

ǁ
SC

¶
MC

ǁ

0.00505 246.0 14.5 120.1 15.1 149.1 9.4 8041
7363 
(12.8)

2911
7002 
(11.8)

6133
6129 
(10.8)

10.4 11.4 28.7 11.9 13.6 13.6

0.00602 324.8 15.1 145.8 17.6 188.0 11.4 8154
7264 
(12.8)

2904
6751 
(12.4)

6094
5801 
(11.0)

10.2 11.5 28.7 12.4 13.7 14.4

0.00701 408.7 17.9 166.7 18.5 223.4 15.3 8,205
7193 
(13.6)

2834
6393 
(12.8)

6014
5638 
(11.6)

10.1 11.5 29.2 12.9 13.8 14.7

0.00801 458.6 19.3 179.7 20.9 256.1 14.8 8165
7068 
(14.2)

2767
6144 
(12.4)

5985
5514 
(11.4)

10.0 11.5 29.4 13.2 13.6 14.7

0.00900 545.4 22.4 193.4 23.0 296.0 13.4 8129
7001 
(15.0)

2685
6031 
(13.6)

5845
5387 
(12.0)

9.9 11.5 29.9 13.3 13.7 14.9

0.01000 628.5 28.6 217.4 24.3 299.6 16.4 8228
7009 
(16.0)

2,705
5725 
(13.4)

5726
5143 
(12.0)

9.8 11.5 29.8 14.1 14.1 15.7

0.02000 1463 57.0 302.2 31.5 491.9 25.8 7974
6597 
(21.8)

2341
4423 
(15.0)

5208
4465 
(15.4)

9.5 11.4 32.2 17.0 14.5 16.9

0.03001 2521 79.6 356.8 37.2 536.2 26.9 7570
6237 
(26.4)

2163
3875 
(17.4)

4557
3826 
(16.6)

9.6 11.6 33.4 18.7 15.9 18.9

0.04000 2552 83.4 346.9 36.7 600.2 27.6 7347
6024 
(30.8)

2055
3496 
(18.6)

4386
3685 
(20.4)

9.5 11.5 33.8 19.9 15.8 18.8

0.04999 3344 100.1 400.1 41.4 724.3 34.5 7354
6112 
(36.8)

2009
3318 
(20.8)

4317
3634 
(22.4)

9.5 11.4 34.6 21.0 16.1 19.2

0.06000 3346 106.3 378.5 38.8 644.2 32.5 7067
5864 
(40.2)

1860
3028 
(21.6)

3949
3326 
(24.0)

9.3 11.3 35.5 21.8 16.7 19.8

0.07000 4480 109.4 414.9 41.0 654.1 34.5 6923
5780 
(44.4)

1843
2905 
(23.2)

3927
3323 
(26.0)

9.6 11.5 36.1 22.9 16.9 20.0

0.08001 4357 116.6 426.4 40.1 708.3 32.5 6851
5737 
(48.6)

1803
2724 
(24.0)

3600
3035
(26.4)

9.5 11.3 35.9 23.8 18.0 21.3

0.08999 4448 122.8 428.1 42.3 595.8 34.9 6727
5658 
(52.8)

1743
2636 
(25.6)

3555
3029 
(28.8)

9.4 11.1 36.1 23.9 17.7 20.8

0.10000 4379 133.5 449.2 45.1 643.3 36.2 6730
5681 
(58.2)

1734
2563 
(26.8)

3500
2992 
(30.8)

9.4 11.2 36.5 24.7 18.1 21.2

0.20001 7666 196.1 650.5 69.4 758.9 50.4 6226
5415 
(97.2)

1561
2089 
(37.8)

3145
2742 
(50.0)

9.3 10.7 37.1 27.7 18.4 21.1

0.30001 7499 246.0 758.1 93.8 806.6 55.8 5814
5137 

(131.8)
1393

1775 
(45.8)

2787
2467 
(63.6)

9.4 10.6 39.2 30.8 19.6 22.2

0.40000 10,947 344.5 947.9 134.7 1020 70.0 5814
5248 

(176.6)
1359

1684 
(55.6)

2641
2381 
(79.6)

9.1 10.1 39.0 31.5 20.1 22.3

0.50001 11,929 431.0 1104 178.6 1050 79.4 5764
5225 

(217.2)
1318

1573 
(64.0)

2482
2264 
(93.6)

8.9 9.8 39.0 32.7 20.7 22.7

0.75000 12,697 614.8 1420 313.4 1100 107.2 5386
4988 

(315.2)
1192

1387 
(83.6)

2201
2030 

(127.4)
8.8 9.5 39.6 34.0 21.4 23.3

1.00000 10,585 774.6 1,621 478.0 1183 138.5 5055
4725

(415.6)
1070

1245 
(102.0)

2040
1913 

(168.4)
8.6 9.2 40.4 34.8 21.2 22.6

Average 4516 173.0 525.1 82.9 615.7 41.3 7025
6063
(85.6)

2012
3656 
(31.3)

4195
3749 
(41.1)

9.6 11.1 33.4 18.4 16.0 17.9

†Average of 5 instances of LP at each density; ‡One constraint was added per iteration  [7].  was used as the bounding constraint; ǁMulti-cut 

technique for LP was applied with  as the bounding constraint; §One constraint was added per iteration  [8].  was used as 

e bounding constraint; ¶One constraint was added per iteration r.  was used as the bounding constraint. 

r

1010 

T 1010M c x
T 1010M c x T 1010M c x

T M

r
th   

c x
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seconds of the single-cut version of NRAD was faster 
than 118.5 second for VIOL on average, whereas for the 
general LP set, the 615.7 seconds of the single-cut ver- 
sion of GRAD was slower than 525.1 seconds for VIOL 
on average. However the COST GRAD, which incor- 
porates multi-cut, outperformed VIOL with multi-cut. 
The respective times were compared at 41.3 seconds vs 
82.9 seconds on average. 

In general, a method that makes use of posterior infor- 
mation such as VIOL adds fewer constraints and thus 
adds a higher percentage of binding constraints at opti- 
mality. But this comes at a cost of extra computation time 
required to rank the set of inoperative constraints at every 
iteration  The data in Table 5 confirmed that single- 
cut VIOL added the fewest number of constraints (2012 
on average). The advantage of not re-sorting the con- 
straints at every  for a prior method, i.e. GRAD, 
became apparent when multi-cut is applied. In multi-cut 
VIOL, violating inoperative constraints had to be re- 
sorted in descending order of violation at every iteration 

 

.r

r

.r

m n

Comparing the CPU times with and without the mul- 
tiple cuts, the reduction in CPU times was greater for 
GRAD than in NRAD. For NRAD, the reduction was 
about six-fold (from 25.1 to 3.9 seconds) on average. The 
CPU times for GRAD reduced about 14-fold (from 615.7 
seconds to 41.3 seconds). 

4. Conclusions 

A COST GRAD with multi-cut for general LP was 
developed here. An interpretation of GRAD was given, 
and the new technique was tested on a set of large-scale 
randomly generated LP with . For densities be- 
tween 0.02 and 1, GRAD outperformed the CPLEX 
primal simplex, dual simplex, and barrier solvers for LP 
(maximization) with long-and-narrow 

Another area of exploration is the utilization of local 
posterior information [1] obtained from each r

x  in 
addition to the global GRAD information for constraints 
obtained prior to the active-set iterations. It is concei- 
vable that the rationale behind NRAD and GRAD could 
also lead to better integer programming cutting planes. 
Finally, it should be noted that any COST such as GRAD 
is a polynomial algorithm if the CPLEX barrier solver is 
used to solve each new subproblem with added con- 
straints instead of the primal simplex or the dual simplex. 
Such a COST, however, performs extremely poorly in 
practice. 
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