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ABSTRACT 

In recent papers the solution of nonlinear Fredholm integral equations was discussed using Adomian decomposition 
method (ADM). For case in which the integrals are analytically impossible, ADM can not be applied. In this paper a 
discretized version of the ADM is introduced and the proposed version will be called discrete Adomian decomposition 
method (DADM). An accelerated formula of Adomian polynomials is used in calculations. Based on this formula, a 
new convergence approach of ADM is introduced. Convergence approach is reliable enough to obtain an explicit for-
mula for the maximum absolute truncated error of the Adomian’s series solution. Also, we prove that the solution of 
nonlinear Fredholm integral equation by DADM converges to ADM solution. Finally, some numerical examples were 
introduced. 
 
Keywords: Nonlinear Fredholm Integral Equations; Contraction Mapping; Adomian Decomposition Method;  

Quadratures Techniques 

1. Introduction 

Integral equations provide an important tool for modeling 
a numerous phenomena and processes and also for solv- 
ing boundary value problems for both ordinary and par- 
tial differential equations. Their historical development is 
closely related to the solution of boundary value prob- 
lems in potential theory. Progress in the theory of inte- 
gral equations also had a great impact on the develop- 
ment of functional analysis. Reciprocally, the main re- 
sults of the theory of compact operators have taken the 
leading part to the foundation of the existence theory for 
integral equations of the second kind [1-4]. Therefore, 
many different methods are used to obtain the solution of 
the linear and nonlinear integral equations. Among these 
methods ADM which has gained a great interest in the 
analytical solutions of linear and nonlinear Fredholm 
integral equations [5-9]. This is due to many advantages 
such as simplicity and high accuracy [5,6]. The Adomian 
solution is obtained as an infinite series which converges 
to exact solution [10], under some mild conditions. In 
this work, the nonlinear the Fredholm integral equation 
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is considered where  y t  is known continuous function 
on  ,D a b  and the kernel  is continuous on   ,k t s

the square   , : ,E t s t D s D    and bounded such 
that  ,k t
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square E. The nonlinear term  f x s  is Lipschitz 
continuous with     ,f x f z L x z    L is Lipschitz 
constant and has Adomian polynomials representation 
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where the traditional formula of nA  is 

  
0 0

1 ! d d .n n i
n i

i

A n f x


 


 

     
  





1

     (3) 

The author in [11,12] deduced a new formula to the 
Adomian’s polynomials which can be written in the form 
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where the partial sum  and  
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n i
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S x


   0 0 .A f x   

Formula (4) is called an accelerated Adomian polynomi- 
als and it was used successfully in [13] for solving a class 
of nonlinear fractional differential equations and in [14] 
for solving a class of nonlinear partial differential equa- 
tions. Formula (4) has the advantage of absence of any 
derivative terms in the recursion, thereby allowing for 
ease of computation. In this work, it will be used directly 
in convergence analysis (see Theorem 2) and all calcula- 
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tions concerning the numerical examples. Application of 
ADM on (1) yields: 

   
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x t x t
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

                (5) 

where the components   ,i 0x t i   are computed using 
the following recursive relations 
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The computation of each component   , 1ix t i   re-
quires the computation of integral in Equation (7). If the 
evaluation of that integral analytically is possible, ADM 
can be applied in a simple manner. In case where the 
evaluation of the integral in (7) is analytically impossible, 
ADM can not be directly applied. In order to overcome 
this obstacle, please see the details of Sections 2 and 3. In 
Section 2, a problem is solved in a special case where the 
kernel  is separable [15]. In Section 3, a problem 
is solved in a more general case where the kernel 

 ,k t s
 , sk t  

is not separable and we introduce a discretized modified 
version of the ADM which is called DADM. In Section 4, 
convergence of DADM is discussed and the maximum 
absolute truncated error is estimated. Finally, to verify 
the theoretical results, some numerical examples are pre-
sented in Section 5. 

2. Numerical Implementation of ADM 

For the sake of making this paper self-contained, a brief 
summary of numerical implementation of ADM will be 
introduced in this section (for more details see [15]). Let 
the kernel function be separable of the form 
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then Equation (7) becomes 
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Consider any numerical integration scheme to approxi-
mate definite integral by the following formula [16-18] 
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where  g s  is continuous function on  ,a b ,  
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 are the nodes of the quadrature rule,  
h b a  n  and ,n j  are the weight 
functions. Applying formula (10) on Equation (9) to ob- 
tain 
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Now, the approximate solution of Equation (1) is the 
sum of all the components  in Equation (11) 
and the first component in Equation (6). 

  ,mx t m 

3. Discrete Adomian Decomposition Method 

In case the kernel function , is not separable, the 
integral in (1) can not be computed and hence the ADM 
will not be able to continue in order to obtain solution. 
Therefore, we suggest DADM to overcome this obstacle. 
The idea is to discretize the independent variable; t, just 
before applying the quadrature rule. This gives an op- 
portunity to evaluate the integral in Equation (7) nu- 
merically but, of course, at the discretization points of the 
independent variable. Thus, the discrete version of Equa- 
tions (6) and (7) may take the form 

 ,k t s

   0 , ,

1
,andn i n ix s y s


           (12) 

     1 , , , , ,
0

1
, ,

n

m n i n j n i n j m n j
j

x s w k s s A s m




0,   (13) 

, , 0,1, ,n is a ih i n     and ,n j  are the weight func- 
tions of any numerical integration scheme. The approxi- 
mate solution of Equation (1) using DADM can be com- 
puted as 

w
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Rewriting Equations (12)-(14) in matrix form 
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     are all vectors of dimen- 

sion  1n   and B is    1 n 1n     matrix such that 
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The main advantage of the proposed DADM is that the 
matrix B is unchanged during the computation of com- 
ponents  and the computation of the solution 
need not to solve linear algebraic system of equations 
like Nystrom method and projection methods. Also, this 
method can be used for solving Equation (1) with non-  

,  1mx m 

Copyright © 2013 SciRes.                                                                                  AM 



I. L. H. Alkalla  ET  AL. 219

separable kernel. Thus DADM is more general than the 
numerical implementation of ADM introduced in [15]. 

4. Convergence Approach of DADM 

Convergence of the Adomian series solution was studied 
for different problems and by many authors. In [19,20] 
convergence was investigated when the method applied 
to a general functional equations and to specific type of 
equations in [21,22]. In convergence analysis, Adomian’s 
polynomials play a very important role however, these 
polynomials cannot utilize all the information concerning 
the obtained successive terms of the series solution, 
which could affect and directly the accuracy as well as 
the convergence region and the convergence rate. In the 
present analysis we suggest an alternative approach for 
proving the convergence. This approach depends mainly 
on El-Kalla accelerated Adomian polynomial formula (4). 
As a result to this approach, the maximum absolute trun- 
cated error of the series solution is estimated. Define a 
mapping :F B B  where,   ,B C D   is the 
Banach space of all continuous functions on D with the 
norm    max .
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x t x t
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4.1. Uniqueness Theorem 

Theorem 1. Problem (1) has a unique solution whenever  
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Under the condition 0 1   the mapping F is con- 
traction therefore, by the Banach fixed-point theorem for 
contraction [23], there exist a unique solution to problem 
(1) and this completes the proof. 

4.2. Convergence Theorem 

Theorem 2. The series solution (5) of problem (1) using 
ADM converges if: 0 1   and 1x    
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From the triangle inequality we have 
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We conclude that 
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 Sn  is a Cauchy sequence in  C D  

so, the series converges and the proof is complete. 

4.3. Error Estimate 

Theorem 3. The maximum absolute truncation error of 
the series solution (5) to problem (1) is estimated to be:  
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Proof. From Theorem 2 inequality (18) we have 
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Finally, the maximum absolute truncation error in the 
interval D is: 
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This completes the proof. 

4.4. Equivalence between DADM and ADM 

Let D be a closed bounded set in  and define 
operator  such that 
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Then, by induction and substituting from Equation (25) 
and Equation (26) into inequality (24), this completes the 
proof. 

5. Numerical Experiments 

Consider the following linear Fredholm integral equation 
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whose exact solution is  x t t . In this example the 
ADM can not be applied because the evaluation of  
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1
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0
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Since, the kernel is separable, the numerical implementa- 
tion of ADM introduced in [15] can be used as well as 
DADM. 

The solution by numerical implementation of ADM 
introduced in [15] 
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 
       

 
       

2 1
2 2

1 0
0

2 1
2

2 1
0

exp
exp d 0.065602exp ,

10

exp
exp d 0.015514cos ,

10

t

2

x t s x s s

t

t

x t s x s s

 





  t

 

and so on. The approximate solution by this method is 

     
15

6 2
15

0

6.9255 10 exp ,m
m

x t x t t t






     

and the maximum error is 

  5
15 max

1.8825 10E t    

Using Equations (15)-(17) and Simpson’s rule with 
number of sub-intervals n and step size 1 ,h n  the 
results of DADM can be tabulated in Table 1. Table 1 
shows the effect of n and m in the maximum absolute  

error      
max

max

.rre t x t x t


   

Example (2) consider the following nonlinear Fred-
holm integral equation 

     

   

1
34 3

0

3 3

1
exp d

10

1
exp 1 exp

40

x t s t x s

t t t

   

     

 s
 

whose exact solution is  x t t . In this example the 
ADM can not be applied because the integral  

 
1

4

0

exp ds s  has no analytical solution. The numerical  

implementation of ADM introduced by [15] can be used, 
because the kernel is separable. Also, DADM can be 
used to obtain solution. Table 2 shows the effect of n and 
m in the maximum absolute error 

     
max

max

.rre t x t x t


   

Example (3) consider the following nonlinear Fred-
holm integral equation 

      

    

1

0

1
cos exp exp d

10

1
sin exp 1 sin 1

10

x t s t x

t t t

   

    

 s s



 

whose exact solution is  x t t . In this example the 
ADM can not be applied because the integral  

   
1

0

cos exp exp sin ds t s     s  has no analytical solu-  

tion. Also, the numerical implementation of ADM intro- 
duced by [15] can not be used, because the kernel func- 
tion is not separable. Here, DADM is the suitable method 
to obtain solution. Table 3 shows the effect of n and m in  

Table 1. The effect of n and m in the maximum absolute 
error (example 1). 

 Maximum absolute error 

n = 4, m = 5 8.7310e−0.05 

n = 8, m = 7 4.4872e−0.06 

n = 18, m = 9 4.6119e−0.07 

n = 24, m = 10 3.8303e−0.08 

n = 48, m = 12 6.0570e−0.09 

n = 50, m = 12 6.0346e−0.10 

 
Table 2. The effect of n and m in the maximum absolute 
error (example 2). 

 Maximum absolute error 

n = 4, m = 3 3.2539e−0.03 

n = 8, m = 4 2.0713e−0.04 

n = 10, m = 5 3.2843e−0.05 

n = 14, m = 6 4.6748e−0.06 

n = 26, m = 8 3.5334e−0.07 

n = 36, m = 9 6.8715e−0.08 

 
Table 3. the effect of n and m in the maximum absolute 
error (example 3). 

 Maximum absolute error 

n = 2, m = 3 3.0428e−0.03 

n = 4, m = 3 1.1742e−0.04 

n = 6, m = 5 4.4983e−0.05 

n = 10, m = 5 4.6254e−0.06 

n = 20, m = 7 3.6948e−0.07 

n = 34, m = 7 2.4078e−0.08 

 
the maximum absolute error 

     
max

max

.rre t x t x t


   

6. Conclusion 

Based on the accelerated Adomian polynomials formula 
(4) and the well known contraction mapping principles, 
convergence of DADM is discussed. Convergence ap- 
proach is reliable enough to obtain an explicit formula for 
the maximum absolute truncated error of the Adomian’s 
series solution. The proposed DADM is more general 
method than that in [15] because it is capable to solve 
linear and nonlinear Fredholm integral equation with 
separable as well as non-separable kernel functions. 
DADM is recommended to solve linear and nonlinear 
Fredholm integral equation due to many advantages such 
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as the matrix B is unchanged during the computation of 
the components, the solution need not to solve linear 
algebraic system of equations like Nystrom method and 
projection methods. Another advantage when applying 
DADM to solve linear Fredholm integral equation with 
symmetric kernel    ,k t s k s t ,  is the matrix B will 
be symmetric matrix as in example (1). 
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