
Open Journal of Discrete Mathematics, 2013, 3, 21-24
http://dx.doi.org/10.4236/ojdm.2013.31005 Published Online January 2013 (http://www.scirp.org/journal/ojdm)

Formularless Logic Function

Alexey Nikolayevitch Teterin
Izhevsk, Russia

Email: ant2000ic@gmail.com

Received August 18, 2012; revised September 18, 2012; accepted September 28, 2012

ABSTRACT

The concept of computability is defined more exactly and illustrated as an example of Boolean functions and cryptana-
lysis. To define a Boolean function is not necessary to record its formula. To do that the reduced (compact) description
of values is determined in the truth table or in the statement of the problem. We obtain estimates of computation time,
the volume of a compact descriptions and the range of variables under which it takes the value 0 or 1, depending poly-
nomially on the number of arguments.

Keywords: Complexity of Computation (03D15); Models of Computation (68Q05); Analysis of Algorithms and
Problem Complexity (68Q25); Computational Learning Theory (68Q32); Separability; Satisfiability;
Fuzziness; Dynamical Systems; Computability

1. Introduction

The universal model of computation will be proposed in
the article, which essence firstly is explained at first on
the example of Boolean functions and the calculation of
the range of variables values, under which it takes the
value 0 or 1 (specifying the area satisfiability—SAS).
Then conclusions about the possibility of the solution of
the problem of cryptanalysis are done.

The values of a Boolean function can be considered as
0 or 1 with a convex neighborhood, painted in different
colors (0—is white, 1—is black—two sets of convex dis-
connected components). Definition of a Boolean function
can be reduced to the separation of values equal to 0, the
values are equal to 1 in the Boolean n-dimensional space
(this requires the construction of the table containing the

 rows or a logical formula which length is propor-
tional to a polynomial). We can assume that the Boo-
lean space is a subset of real n-dimensional unit hyper-
cube. In the research [1] we obtained polynomial ap-
praisals for the separability of infinite bounded sets that
are valid for our particular case too.

2n

2n

All necessary theorems were formulated in [2].

2. Boolean Functions

Boolean functions are given by the truth table on which
the formula is built. Instead of the formula a compact
description of the binary feature space (Table 1) is pro-
posed to use. As in the case of the formulas, the truth
table is unnecessary.

A formal proof of the theorem is based on estimates
obtained in [1], and involves finding a Boolean function

that separates the two classes of white and black points.
Unlike the standard approach the ordering of space with
the lexicographic order, or a binary tree are used.

The sequence of relationships can be defined by a bi-
nary tree, the number of coordinates and its value is situ-
ated in its nodes. The true value corresponds to one
branch, while the false correspond to the other. The
leaves have the function value (the number of class 0 or
1). This is so-called compact description (Figure 1) of
the functions specified. Function identically equal to 0 or
1, determines the root of the tree.

In essence, a compact description of the function
specifies a set of domains of different functions (similar
to each other) in which they take the values 0 or 1.

Table 1. The truth table on which the formula is built.

x1 x2 x3 f

00001111 00110011 01010101 11100000

 f = x1

 false true
 x2 0

false true

 1 x3

 false true

 1 0

Tested

x1=1, x2=1, x3=1

f = x1

 false true
 x2 0

false true

 1 x3

 false true

 x4 0

1 1

x4 dummy var.

Figure 1. Compact description.

Copyright © 2013 SciRes. OJDM

A. N. TETERIN 22

Similar to each other functions differ only in the truth
table rows with identical values of the function, and they
are described by a single tree (domain).

The advantage of a compact description is the lack of
dummy variables. Dummy variable if the function does
not depend on it, means the presence of the values 0, 0 or
1, 1 in the leaves of a node. You can remove this node to
leaf 0 or 1, respectively, or vice versa add to perform
logical operations and bring to a tree topology. Identical
functions with dummy variables, defined in such tree, are
included in a class of similar functions.

The value of one coordinate n-dimensional Boolean
space divides the Boolean space or a truth table into two
parts (each of them, if possible, is divided into two, etc.).

Theorem 1. To define a class of similar Boolean func-
tions of the n-arguments it is sufficient to determine the
values of these functions on a sequence consisting of the

n n 
 

 argument values which are located in internal
nodes (non-leaf nodes) of a binary tree.
Proof. Any Boolean function is uniquely defined in the
n-dimensional Boolean space with the corresponding
coloring. For the separability of the two bounded sets in
the real n-space the following maximum estimate of the
number of partitions were obtained [1]:

  
     

2 0

2 2
0

log 1 1

1

np n

n n p M n

 

0 1  

  

    

Separability is possible with a positive distance be-
tween two bounded sets A and B:

0 inf : ,
def

x y x A y B    

0 1  is chosen arbitrarily. Changes in the  in
the neighborhood of 0 have little effect on the number M.
For a Boolean space with a finite set of elements we
choose 0  .

0p n  —the maximum number of surfaces for
the separation of the two sets. The upper limit was ob-
tained for a “overlapping sets” (water and sand does not
exist in the Boolean space), with a value 0p n  . For
a Boolean space the value is , so the maximum
should be divided into

1p 
0n  , 0 1  . Finally, we ob-

tain

 2log 1 1n n n n M     n n

 2log 1 1n n M    n n QED

Assertion 1. To define a class of similar Boolean
functions of the n-arguments is sufficient to determine the
values of these functions on a full tree with a single rela-
tion, all n of these internal nodes, except the last, have a
leaf.

In support of this assertion the fact is evidenced that

for n divisions of the truth table, we clearly identify a
single line of it. The principle of dividing the feature
space is maintained at each step of the algorithm of the
second type, which is uniquely defined by at least one
class (Theorem 3 [1,2]).

Any function supposes the free order of the arguments
and is proposed by topology of the tree. All others keep
some order of the arguments, and to work with such trees
is not easy.

As the relationship, the truth that you want to check—
the equality of the argument, the value is 1. Such tree can
be leveled at the introduction of the branch with true re-
lationship inequality to 1, which increases the number of
used relations.

An alternative way of defining relationships—is equal-
ity or inequality of the arguments to each other. We can
add or not add the ratio equals 0 or 1. In such case, the
four relations are used. For example, the ratio

1 2 3 1x x x   can be rewritten in any option in the
binary and/or unary, including this one 1 2 2 3, ,x x x x 

3 1x  , which allows not to indicate the number of the
first argument (determined by the place).

Logical formulas are written in the truth table. Before
it appears, the problem must be determined on a content
level. It is possible to bypass the step of creating a truth
table and go to the task of the logical functions of the
meaningful statement of problem. You can define as
many coordinate relations as necessary in the statement
of problem, in which the hierarchy may be present, and
you can choose a tree that will fit it. The transition from
one representation to another (rebuilding the tree) will
not cause algorithmic difficulties.

The theorem and the assertion exist because of the
truth of Theorem 3 in [1,2]. We choose the best result—
an assertion 1.

The total length of the stored data to a Boolean func-
tion in bits (L) consists of values, the number of leafs of a
binary tree 1n  (you cannot assume the last leaf, its
value is opposite to the next leaf, if the tree has no
dummy variables – , the number of required number of
coordinates (the length of the coordinate numbers—

).

n

2log n    2 2g 1 log 2 1n n nlonL n     .
There is also the first and the third type of algorithms.
For the first type of algorithms:

      
1

0 2 1 1
n

M    


   

The function   2 1f      reaches a maxi-

mum 0.5f  at a value 0.3 

2 M

. Then to the Boolean
function it is necessary to determine the values of the
following number: 0.35 0.5 2n n    .

We can expect that with the transition from finite to
infinite sets the lower bound will be too high, as in the
case with the assessment .n n 

 

Copyright © 2013 SciRes. OJDM

A. N. TETERIN 23

The upper limit is determined by the principle of its
operation in the Boolean space for the worst case. One of
the coordinates is divided by half-and-half, for the re-
maining two halves the bisection of the other coordinate
takes place, etc. (In accordance with this algorithm and
the second approach, we can talk about the balanced tree
with the depth n).

You can also define the upper limit for the third type
of algorithms. After the division of space in the cell
is uniquely determined the membership of each cube 0 or
1. But we keep a minimal description of the two. The
worst case is obtained in case of equality, and the best
one—for one cube .

2n

1 0.5 nM  2
In contrast to the algorithms of the second type, the

first and third do not need to store the number of coordi-
nates (determined by the place), so a series of relation-
ships are defined by the ratio of the lexicographic order.
The total length of the bit sequence is – . 1n M 

3. Area of the Satisfiability and the
Computation Time

Theorem 2. For one class of similar Boolean functions
of the n arguments there is an area of satisfiability (SAS)
or its negation, defined on nothing more than the
argument values.

2()O n

Proof. Formally, to solve the satisfiability problem it is
necessary to index binary tree (back to the reduced table
description), which contains 2 values, to define be-
longing for each index to a class 0 or 1, and calculate the
number for each class. In the future we use the minimal
description. Example: Suppose class 1 (0) has the small-
est number of indices (we have defined its minimal de-
scription), then any point of the Boolean space, either
gets into this area, and then the value will be equal to 1
(0) or does not get, and the value will be 0 (1). For each
index, you must extend the definition of value. It
becomes apparent total number of QED.

n

1n 
 2O n

In the area of the satisfiability there are two ap-
proaches to the above listed algorithms or without them.

In the first approach for each of the new values 1n  ,
if possible, the first algorithm should be used to the al-
ready calculated values (like the second, it allows
us to solve optimization problems). And then the third
algorithm determines a minimal description of the area of
satisfiability or its negation. Its lack is using of the truth
table as initial data. The advantage is the index is sorted,
by using the algorithms of the first type—the computa-
tion time of the logical functions .

2n

 2logO n
The second approach does not have this lack, the tree,

built on the meaningful statement of problem, and does
not require the mentioned types of algorithms. We have a
complete binary tree with n leaves and n internal nodes.
They define the complexity of the problem while writing

out the coordinates on all paths from the root to 0 or 1,
depending on what is less. After determining a way, all
non-listed coordinates are varying from 0 to 1. The com-
plexity of the problem is (the second proof of
Theorem 2). After sorting such table computing time of
logical functions is –

 2O n

 2gO nlo .
Without specifying the area of satisfiability the com-

putation time of the logical function is .  O n

4. Model of Computation

From the separability of bounded sets the obvious math-
ematical statement implies.

Assertion [2, p. 1800]. Any finite many-valued real
piecewise-continuous function f can be approximated
by a step function at least to accuracy  .

A more precise formulation describing the approxi-
mating function is given in [2].

Finite function is defined for a bounded area of space,
and hence has a finite number of jump discontinuities,
infinite discontinuities (only one of the two one-sided
limits exists or is infinite), there it has finite values. It can
be normalized to a unit hypercube, which allows not only
to give a comparative estimate of the number of steps
(for which the normalization is not important), but also
 for different functions.

Thus, we know exactly what to do when solving any
problem, namely, to build f from the assertion, in
the future simply f separating the two classes, and the
solutions and non-solutions, possibly consisting of a sin-
gle point and we can estimate its complexity by the
number of steps (or move it the next phase “how”).

The question how to do that is being discussed [1].
Alternative approaches—[3,4]. In the first approach we
prove the existence of three types of computational
learning algorithms, one of which requires a memory
polynomially depending on the dimension of space. The
memory is filled once with a fixed number of operations,
and then the time is also polynomially. All this proves
the following theorem.

The theorem of computability. Every f is com-
putable by a universal computing device, with a given
accuracy 0 2 in n-dimensional infinite bounded real
space. The complexity of computation (memory and time)
depends on its dimensions polynomially.

This statement is well suited for human-robot (like a
computer), analog computations (analog computers,
quantum computers), analog signal processing, analog
electronics, neural networks, control theory built on dif-
ferential equations and continuous dynamical systems [5,
6].

The real space is not a limitation. An ordered alphabet
can be viewed as a number line. The words in the alpha-
bet—are the n-dimensional space. Moreover, we can

Copyright © 2013 SciRes. OJDM

A. N. TETERIN

Copyright © 2013 SciRes. OJDM

24

4) Lukasiewicz three-valued logic does not change
anything in the proposed theory, making the description
more natural and understandable. For the cybernetic sys-
tems the four-value logic with the addition of uncertain
value can be used. You can increase the n-value with the
degree of similarity to 0, 1, indefinitely, or go to the real
interval [0, 1] (blurring makes it possible to use a 5th
point of conclusion).

calculate the distance to the character, not only on the
real line, but also in the n-dimensional space for the
written, spoken…

This approach effectively overrides the prior use of the
term fuzziness, replacing it by the difference between the
actual position and the boundary described in the mem-
ory (between objects or the object itself), which is con-
tinuously changing in time, on the real line or in a
n-dimensional space. 5) Using the proposed theory, we can estimate the

speed, acceleration, the degree of approximation to the
solution, non-solution, or a state of uncertainty, and make
the appropriate changes to the space features.

For cryptosystems, after normalization of the space to
the unit hypercube (interval), 0 2 K  where the K is
the length of the key (one-dimensional space).

The revised approach to the computability was illus-
trated by the logic functions and cryptosystems. Regard-
ing the latter, the futility of any development of algo-
rithms became clear.

REFERENCES
[1] A. N. Teterin, “Classification on Bounded Sets,” Pattern

Recognition and Image Analysis, Vol. 20, No. 4, 2010, pp.
564-572. doi:10.1134/S1054661810040188 5. Conclusions

[2] A. N. Teterin, “А Geometric Approach to Classification:
New Model of the Operation of a Neuron,” Computa-
tional Mathematics and Mathematical Physics, Vol. 32,
No. 12, 1992, pp. 1797-1805.

1) a) It is no place for intuitions in more precise theo-
rem of computability.

b) The process of finding a suitable algorithm is quite
formal and can be performed automatically. Its ease of
use for Boolean functions and cryptanalysis justify its
use in other subject areas.

[3] E. M. Gold, “Language Identification in the Limit,” In-
formation and Control, Vol. 10, No. 5, 1967, pp. 447-474.
doi:10.1016/S0019-9958(67)91165-5

[4] M. Burgin and A. Klinger, “Experience, Generations, and
Limits in Machine Learning,” Theoretical Computer
Science, Vol. 317, No. 1-3, 2004, pp. 71-91.
doi:10.1016/j.tcs.2003.12.005

2) For Boolean functions is to choose the one of two
variants.

a) With the area of satisfiability storing the value
, with the computation time calculating the logi-

cal function . SAS problem is trivial, since it
is already solved.

 2O n
 2logO [5] P. Orponen, “A Survey of Continuous-Time Computation

Theory,” In: D.-Z. Du and K.-I. Ko, Eds., Advances in
Algorithms, Languages, and Complexity, Springer, Berlin,
1997, рp. 209-224.

n

b) Keeping only the binary tree with nodes which
is able to participate in logical operations. The computa-
tion time is . The problem of SAS is

.

2n

 t O n
 2t O n

[6] C. Moore, “Recursion Theory on the Reals and Continu-
ous-Time Computation,” Theoretical Computer Science,
Vol. 162, No. 1, 1996, pp. 23-44.
doi:10.1016/0304-3975(95)00248-0 3) If you wish you can generate a truth table by com-

pact description but it is not necessary.

http://dx.doi.org/10.1134/S1054661810040188
http://dx.doi.org/10.1016/S0019-9958(67)91165-5
http://dx.doi.org/10.1016/j.tcs.2003.12.005
http://dx.doi.org/10.1016/0304-3975(95)00248-0

