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ABSTRACT 

Thermal buckling response of functionally 
graded plates is presented in this paper using 
sinusoidal shear deformation plate theory (SPT). 
The material properties of the plate are assumed 
to vary according to a power law form in the 
thickness direction. Equilibrium and stability 
equations are derived based on the SPT. The 
non-linear governing equations are solved for 
plates subjected to simply supported boundary 
conditions. The buckling analysis of a function-
ally graded plate under various types of thermal 
loads is carried out. The influences of many 
plate parameters on buckling temperature dif-
ference will be investigated. Numerical results 
are presented for the SPT, demonstrating its 
importance and accuracy in comparison to 
other theories. 

Keywords: Thermal Buckling; Non-Linear Strains; 
Functionally Graded Material; Sinusoidal Plate  
Theory; Thermal Load 

1. INTRODUCTION 

The rapid development of composite materials and 
structures in recent years has drawn increased attention 
from many engineers and researchers. These materials 
are broadly used in aerospace, mechanical, nuclear, ma-
rine, and structural engineering. In conventional lami-
nated composite structures, homogeneous elastic laminas 
are bonded together to obtain enhanced mechanical and 
thermal properties. However, the abrupt change in mate-
rial properties across the interface between different ma-
terials can result in large inter-laminar stresses leading to 
delimitation, cracking, and other damage mechanisms 
which result from the abrupt change of the mechanical 
properties at the interface between the layers. To remedy 

such defects, functionally graded materials (FGMs), 
within which material properties vary continuously, have 
been proposed.  

The concept of FGM was proposed in 1984 by a 
group of materials scientists, in Sendai, Japan, for ther-
mal barriers or heat shielding properties. Initially FGM 
was designed as a thermal barrier material for aerospace 
application and fusion reactors. Later on FGM was de-
veloped for the military, automotive, biomedical and 
semiconductor industries, and as a general structural 
element in high thermal environments. FGM is one of 
the advanced high temperature materials capable of 
withstanding extreme temperature environments. FGMs 
are composite and microscopically heterogeneous in 
which the mechanical properties vary smoothly and con-
tinuously from one surface to the other. This is achieved 
by gradually varying the volume fraction of the con-
stituent materials. Typically, these materials are made 
from a mixture of ceramics and metal or a combination 
of different materials. The ceramic constituent of the 
material provides the high-temperature resistance due to 
its low thermal conductivity and protects the metal from 
oxidation. The ductile metal constituent, on the other 
hand, prevents fracture caused by stresses due to 
high-temperature gradient in a very short period of time. 
Further, a mixture of a ceramic and a metal with a con-
tinuously varying volume fraction can be easily manu-
factured [1-4].  

A comprehensive work on the FGMs was presented in 
the literature. The response of FG ceramic-metal plates 
has been investigated by Praveen and Reddy [5] using a 
plate finite element. They investigated the static and 
dynamic thermoelastic responses of the FGMs by vary-
ing the volume fraction using a simple power law distri-
bution. Reddy [6] developed the Navier’s solutions for 
FG plates using the third-order shear deformation plate 
theory (TSDT) and an associated finite element model. 
Amini et al. [7] described a method for three-dimensio- 
nal free vibration analysis of rectangular FGM plates 
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resting on an elastic foundation using Chebyshev poly-
nomials and Ritz’s method. This analysis has been based 
on a linear, small-strain, three-dimensional elasticity 
theory. Analysis of FG plates under static and dynamic 
loads has been presented by Sladek et al. [8] using the 
meshless local Petrov-Galerkin method and Reissner- 
Mindlin theory to describe the plate bending problem. 
Kim et al. [9] investigated finite element computation of 
fracture parameters in FGM assemblages of arbitrary 
geometry with stationary cracks. In Altenbach and Ere-
meyev [10], a viscoelastic FG polymer foam has been 
studied using a new plate theory based on the direct ap-
proach. The large deflection response of simply sup-
ported rectangular FG plates under normal pressure 
loading has been analyzed by Ovesy and Ghannadpour 
[11] using a finite strip method. In Han [12], a numerical 
method was proposed for analyzing transient waves in 
plates of FGM excited by impact loads. The bending 
problem of transverse load acting on FGM rectangular 
plate using both two-dimensional trigonometric and 
three-dimensional elasticity solutions was investigated 
by Zenkour [13]. Zenkour [14,15] studied the bending 
response, buckling and free vibration of simply sup-
ported FG sandwich plate using the SPT. Zenkour [16] 
presented the derivation of equations for free vibration 
of FG plates expressing the displacement components by 
trigonometric series representation through the plate 
thickness. Other researches into FGMs have included the 
nonlinear analysis of FG plates [17], large deformation 
analysis of FG shells [18], static and vibration analysis 
of FG beams [19,20].  

In view of the advantages of FGMs, a number of in-
vestigations dealing with thermal buckling had been 
published in the scientific literature. In recent years, the 
mechanical and thermal buckling analysis of FG ce-
ramic-metal plates has been presented by Zhao et al. [21] 
using the first-order shear deformation plate theory, in 
conjunction with the Ritz method. A two-dimensional 
global higher-order deformation theory has been em-
ployed by Matsunaga [22] for thermal buckling of plates 
made of FGMs. Morimoto et al. [23] presented the ther- 
mal buckling analysis of FG rectangular plates subjected 
to partial heating in a plane and uniform temperature rise 
through its thickness. In Ref. [24], Shariat and Eslami 
presented the thermal buckling analysis of rectangular 
FG plates with geometrical imperfections using the clas-
sical plate theory to derive the equilibrium, stability, and 
compatibility equations of an imperfect FGM. Thermal 
buckling of rectangular and circular plates compose of 
FGM was also studied based on the first- and higher-order 
shear deformation plate theory [25-27].  

Various plate theories, depending upon the through- 
thickness displacement pattern considered, have been 

used to determine thermal buckling loads of composite 
plates. The classical plate theory [24], which is based on 
Kirchhoff’s hypothesis, overestimates the thermal buck-
ling load when applied to even moderately thick plates. 
This is particularly true for composite plates in which 
transverse shear moduli are small in comparison to the 
in-plane Young’s moduli [28]. In such cases, it becomes 
necessary to take into account shear deformation effects. 
Thus, various improved plate theories such as first-order 
shear deformation [25,26], higher order shear deforma-
tion [5,6] and sinusoidal shear deformation [13-16,29- 
31] plate theories have been developed to predict the 
behavior of plates with thickness shear deformation. In 
this article, thermal buckling analysis of rectangular FG 
ceramic-metal plates is investigated. The material prop-
erties of the FG plates are assumed to vary continuously 
through the thickness, according to a simple power law 
distribution of the volume fraction of the constituents. 
The SPT is used to obtain the buckling of the plate under 
different types of thermal loads. The thermal loads are 
assumed to be uniform, linear and non-linear distribution 
through the thickness. Additional numerical results are 
presented for FGM plates that show the effects of vari-
ous parameters on thermal buckling response. 

2. MATHEMATICAL MODEL 

Consider a rectangular plate of length a, width b and 
thickness h made of FGM. The plate is subjected to a 
thermal load ( , , )T x y z . The material properties of the 
FGM plate, such as Young’s modulus E and thermal ex-
pansion coefficients   are assumed to be functions of 
the volume fraction of the constituent materials. The 
FGM plate is supported at four edges defined in the 
( , , )x y z  coordinate system with x- and y-axes located in 
the middle plane ( 0)z   and its origin placed at the 
corner of the plate.  

The modulus of elasticity E, the coefficient of thermal 
expansion   and Poisson’s ratio   are assumed as 
[5] 
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and mE  and m  denote the elastic moduli and the 
coefficient of thermal expansion of metal; cE  and c  
denote the elastic moduli and the coefficient of thermal 
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expansion of ceramic, and k is the volume fraction ex-
ponent. The value of k equal to zero represents a fully 
ceramic plate. The above power law assumption reflects 
a simple rule of mixtures used to obtain the effective 
properties of the ceramic-metal plate. The rule of mix-
tures applies only to the thickness direction. The density 
of the plate varies according to the power law, and the 
power law exponent may be varied to obtain different 
distributions of the component materials through the 
thickness of plate. Note that the volume fraction of the 
metal is high near the bottom surface of the plate, and 
that of ceramic high near the top surface. In addition, 
Eq.1 indicates that the bottom surface of the plate 
( / 2)z h   is metal-rich whereas the top surface 
( / 2)z h  of the plate is ceramic-rich. For simplicity, 
  is assumed constant across the plate thickness.  

The displacements of a material point located at (x, y, 
z) in the FGM plate might better be illustrated as [29, 
30]: 
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        (3) 

where u, v and w are the displacements of the middle 
surface along the axes x, y and z, respectively, and 1  
and 2  are the rotations about the y and x-axes and 
account for the effect of transverse shear. The coefficient 
of 1  or 2  which is given by ( )z  should be odd 
function of z. All of the generalized displacements 

1 2( , , , , )u v w    are functions of the (x, y). The dis-
placement of the classical thin plate theory (CPT) can 
easily be obtained by setting ( ) 0z  . The displace-
ments of the first-order shear deformation plate theory 
(FPT) are obtained by setting ( )z z  . In addition, the 
higher-order shear deformation plate theory (HPT) [6] is 
obtained by setting  

2
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.            (4) 

Also, the SPT is obtained by setting [14,15]:  

( ) sin
h z

z
h



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.            (5) 

Note that the present SPT, as well as HPT, is simpli-
fied by enforcing traction-free boundary conditions at 
the plate faces. The SPT accounts according to a co-
sine-law distribution of the transverse shear deformation 
through the thickness of the FGM plate. The SPT, HPT 
and FPT contain the same number of dependent un-

knowns. No transversal shear correction factors are 
needed for both SPT and HPT because a correct repre-
sentation of the transversal shearing strain is given. 

The non-linear strain components ij  compatible 
with the displacement field in Eq.3 are 
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The stress-strain relations for the FGM plate are given 
by 
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where ( , , )T x y z  is the temperature rise through the 
thickness. 

The stress and moment resultants of the FGM plate 
can be obtained by integrating Eq.9 over the thickness, 
and are written as 
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and 
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In Eqs.10-12, 1 2, ,N N  and 12N  and 1 2, ,M M  and 

12M  are the basic components of stress resultants and 
stress couples; 1 2, ,S S  and 12S  are additional stress 
couples associated with the transversal shear effects; and 

13Q  and 23Q  are transversal shear stress resultants. 
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3. EQUILIBRIUM AND STABILITY  
EQUATIONS 

The total potential energy of a plate subjected to thermal 
loads is defined as [27] 

,m b c TV U U U U             (15) 

where , ,m b cU U U  and TU  are membrane strain en-
ergy, bending strain energy, coupled strain energy and 
thermal strain energy. The strain energy for FGM plate 
based on the SPT is defined as given below in Eq.16.  

The equilibrium and stability equations of FGM plates 
may be derived by the variational approach. The expan-
sion of V about the equilibrium state by the Taylor series 
is 
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The governing equations of equilibrium can be de-
rived by using the first variation .V  The non-linear 
equilibrium equations associated with the present SPT 
are 
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To establish the stability equations, the condition 
2 0V   used to derive the stability equations of many 

practical plate buckling problems is also used here. The 
external load acting on the original configuration is con-
sidered to be the critical buckling temperature if the 
above equation 2( 0)V   is satisfied. Assuming that 
the state of stable equilibrium of a general plate under 
thermal load may be designated by 0 0 0 0 0
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where 1 1 1 1
1, , ,u v w   and 1

2  are arbitrarily small 
increment of displacements. The stability equations are 
represented by using the above total displacement given 
in Eq.19 in the equation 2 0V   and collecting the 
second-order terms. They read 
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where the superscript 1 refers to the state of stability and 
the superscript 0 refers to the state of equilibrium condi-
tions. The terms 0 0

1 2,N N  and 0
12N  are the pre-buckling 

force resultants obtained as 
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4. EXACT SOLUTIONS FOR THERMAL  
BUCKLING OF FGM PLATES 

Rectangular plates are generally classified in accordance 
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with the type support used in the absent of the body 
forces and lateral loads except the external temperature 
load. The following boundary conditions are imposed at 
the side edges 
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Following Navier solution procedure, we assume the 
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where m a  , n b  ; m and n are mode num-
bers; 1 1 1 1, , , ,mn mn mn mnU V W X  and 1

mnY  are arbitrary pa-
rameters to be determined subjected to the condition that 
the solution in Eq.23 satisfies the conditions in Eq.22. 
Substituting Eq.23 into Eq.20, one obtains 
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24 15 ,L L  

2 2
25 [(1 ) 2 ],kL C        

2 2 2 2
33 2( )[ ( ) (1 )],k TL D A           

2 2
34 2 ( ),kL F     

2 2
35 2 ( ),kL F     

2 2
44 [2 (1 ) ] (1 ),k kL G H          

45 (1 ),kL G     

2 2
55 [(1 ) 2 ] (1 ).k kL G H            (26) 

For non-trivial solutions of Eq.24, the determinant 
L  should be zero. This equation ( 0)L   is stated for 

the determination of the lowest critical load. In the fol-
lowing, the solutions of the equation 0L   for differ-
ent types of thermal loading conditions are presented. 
The plate is assumed simply supported in bending and 
rigidly fixed in extension. The temperature change is 
varied only in the thickness direction. 

4.1. Thermal Buckling for FGM Plates under 
Uniform Temperature Rise 

The initial uniform temperature of the plate is assumed 
to be iT . The temperature is uniformly raised to a final 
value fT  in which the plate buckles. The temperature 
change is f iT T T   . Substituting Eq.26 into the 
equation 0L  , the buckling temperature change using 
the shear deformation theories is obtained as 

2 2 2 2 2 2 2 2 2
1 2

2 2 2 2 2 2
1 1 2

( )[ (1 ) ( )]

(1 )[ (1 ) ( )]T

n s m Pa P n s m
T

a A Pa P n s m

  
  

   
 

   
, 

(27) 

where  
2

1 2,  2( ),k k k k kP A H P A G C    

2
1 1

2
2 2

,

2 2 ( 2 ),

k k k

k k k k k k k k

P P D B H

P P D A F B B G F C

 

   
  (28) 

/2

1 /2
( ) ( )d ,  / .

h

T h
A z E z z s a b




   

The critical buckling temperature change crT , is the 
smallest value of T  which is obtained when m =1 
and n = 1. Therefore, 

2 2 2 2 2
1 2

2 2 2 2
1 1 2

( 1)[ (1 ) ( 1)]
.

(1 )[ (1 ) ( 1)]cr
T

s Pa P s
T

a A Pa P s

  
  

   


   
   (29) 

For the classical plate theory, the critical buckling 
temperature difference crT  is given as 

2 2

2
1

( 1)( )

(1 )
k k k

cr
k T

s A D B
T

a A A




 



.        (30) 

4.2. Thermal Buckling for FGM Plates  
Subjected to a Graded Temperature  
Change across the Thickness 

For an FG plate, the temperature change is not uniform. 
The temperature varies according to the power law 
variation. Usually, the temperature rises much higher at 
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the ceramic side than that in the metal side of the plate. 
In this case, the temperature through the thickness is 
given by 

m( )T z T V T   ,           (31) 

where mT  is the temperature of the bottom surface 
which is metal-rich and   is the power law exponent 
( 0    ). 

Similar to the previous loading case, solving the equa-
tion 0L  , the buckling temperature difference 

( / 2) ( / 2)T T h T h     using the shear deformation 
plate theories can be determined, and then we can obtain 
the critical buckling crT  as 

2 2 2 2 2
11 2

2 2 2 2
22 1 2

( 1)[ (1 ) ( 1)]
,

(1 )[ (1 ) ( 1)]
m T

cr
TT

T As Pa P s
T

Aa A Pa P s

  
  

   
 

   
 

(32) 

where  
/2

2 /2
( ) ( )d .

h

T h
A z V E z z




         (33) 

Also, the critical buckling temperature difference crT  
for the classical plate theory, is deduced as 

2 2
1

2
22

( 1)( )
.

(1 )
k k k m T

cr
Tk T

s A D B T A
T

Aa A A




 
 


       (34) 

Note that the value of   equal to unity represents a 
linear temperature change across the thickness. While 
the value of   excluding unity represents a non-linear 
temperature change through the thickness.  

5. RESULTS AND DISCUSSION 

The general approach outlined in the previous sections 
for the thermal buckling analysis of the homogeneous 
and FGM plates under uniform, linear and non-linear 
temperature rises through the thickness is illustrated in 
this section using the SPT. The correlation between the 
present theory and different higher- and first-order shear 
deformation theories and classical plate theory is estab-
lished. To illustrate the proposed method, a ceramic-metal 
FG plate is considered. The combination of materials 
consists of aluminum and alumina. The Young’s modu- 
lus and the coefficient of thermal expansion for alumina 
are c 380 GPa,E   6

c 7.4 10 / C,     and for alu-
minum are m 70 GPa,E   6

m 23 10 / C,     respec-
tively. Note that, Poisson's ratio is selected constant for 
both aluminum and alumina and it equal to 0.3. The 
shear correction factor for FPT is set equal to 5/6. For 
the linear and non-linear temperature rises through the 
thickness, the temperature rises 5 C  in the metal-rich 
surface of the plate (i.e. m 5 CT   ). We will assume in 
all analyzed cases (unless otherwise stated) that / 2,a b   

/ 10,a h   and 3.   
Numerical results of the present investigation are 

given in Tables 1-4 and Figures 1-4. In Tables 1 and 2, 
the side to thickness ratio of the plate is set as / 100a h  . 
In these tables the critical buckling temperature differ-
ence crT  of the plate under uniform and linear tem-
perature rises is shown for different values of the power 
law index k using various plate theories. The results ob-
tained as per the present HPT and CPT are compared 
with the corresponding ones presented by Javaheri and 
Eslami [32]. Excellent agreement is achieved between 
the two solutions. It is seen that, for all theories, the 
critical temperature difference increases monotonically 
as the aspect ratio /a b  increases. Moreover, the criti-
cal buckling crT  decreases until it reaches minimum 
values and then increases as the values of the volume 
fraction exponent k increases. Tables 3 and 4 exhibit the 
critical temperature difference 310cr crt T  for differ-
ent values of the aspect ratio /a b , the temperature ex-
ponent   and the power law index k  under non-linear 
temperature loads at / 10a h   and 5, respectively. The 
nonlinearity temperature exponent   is taken here as 2, 
5 and 10. The effect of /a b  on the critical buckling 

crt  is similar to that in the case of uniform and linear 
temperature difference across the thickness. As the 
power law index k  increases, the critical buckling crt  
decreases to reach lowest values and then increases ex-
cluding

 crt  of the rectangular plates for 10  . Also, 
it is noticed that crt  increases as the nonlinearity index 
  increases. In general, the values of the critical tem-
perature difference calculated by using the shear defor-
mation theories are lower than those calculated by using 
the classical plate theory, indicating the shear deforma-
tion effect. The SPT without using any shear correction 
factor gives results very close to HPT and closer than 
those obtained using FPT. 

The critical buckling temperature difference crt  of 
the ceramic-metal FG rectangular plate ( 5)k   versus 
the side-to-thickness ratio /a h  calculated by all theo-
ries under a uniform, linear and non-linear temperature 
load are shown in Figure 1. For plates with small /a h  
ratio, very large differences between the results of both 
SPT and HPT and those of both FPT and CPT are ob-
served. Moreover, the differences between the higher- 
order shear deformation theories (SPT and HPT) and 
FPT are lower than those between any of them and CPT. 
However, for a large value of the side-to-thickness ratio 
the difference between the values predicted by the shear 
deformation theories and CPT is low significant because 
the plate is essentially thin. Because of permitting shear 
deformation in SPT, HPT and FPT, the plate becomes 
more flexible and thus the critical buckling temperatures 
calculated by these theories are smaller than those cal- 
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Table 1. Critical buckling temperature change crT  of FGM plate under uniform temperature rise for different values of power law 

index k and aspect ratio /a b . 

k  Theory / 1a b   / 2a b   / 3a b   / 4a b   / 5a b   

0 

SPT 
HPT 
FPT 
CPT 

17.0894 
17.0894 (17.088) 

17.0894 
17.0991 (17.099) 

42.6876 
42.6875 (42.688) 

42.6875 
42.7477 (42.747) 

85.2554 
85.2551 (85.252) 

85.2551 
85.4955 (85.495) 

144.6500 
144.6490 (144.648) 

144.6489 
145.3424 (145.342) 

220.6729 
220.6706 (220.667) 

220.6704 
222.2883 (222.288) 

1 

SPT 
HPT 
FPT 
CPT 

7.9400 
7.9400 (7.939) 

7.9400 
7.9437 (7.943) 

19.8359 
19.8358 (19.835) 

19.8358 
19.8594 (19.859) 

39.6249 
39.6248 (39.624) 

39.6248 
39.7188 (39.718) 

67.2510 
67.2506 (67.250) 

67.2506 
67.5220 (67.522) 

102.6365 
102.6356 (102.634) 

102.6355 
103.2690 (103.269) 

2 

SPT 
HPT 
FPT 
CPT 

7.0390 
7.0390 
7.0392 
7.0426 

17.5840 
17.5840 
17.5853 
17.6065 

35.1233 
35.1234 
35.1285 
35.2130 

59.6034 
59.6037 
59.6184 
59.8621 

90.9501 
90.9508 
91.9850 
91.5538 

5 

SPT 
HPT 
FPT 
CPT 

7.2606 
7.2606 (7.260) 

7.2615 
7.2657 (7.265) 

18.1324 
18.1327 (18.132) 

18.1380 
18.1642 (18.164) 

36.2014 
36.2025 (36.203) 

36.2236 
36.3285 (36.328) 

61.3921 
61.3951 (61.395) 

61.4559 
61.7585 (61.758) 

93.5999 
93.6069 (93.605) 

93.7481 
94.4542 (94.454) 

10 

SPT 
HPT 
FPT 
CPT 

7.4634 
7.4634 (7.462) 

7.4644 
7.4692 (7.469) 

18.6365 
18.6366  (18.636) 

18.6427 
18.6731 (18.673) 

37.2001 
37.2006 (37.200) 

37.2246 
37.3463 (37.346) 

63.0673 
63.0687 (63.068) 

63.1378 
63.4888 (63.488) 

96.1183 
96.1213 (96.120) 

96.2820 
97.1005 (97.100) 

The results in parenthesis are obtained in [32]. 

 
Table 2. Critical buckling temperature change crT  of FGM plate under linear temperature rise for different values of power law 

index k and aspect ratio /a b . 

k  Theory / 1a b   / 2a b   / 3a b   / 4a b   / 5a b   

0 

SPT 
HPT 
FPT 
CPT 

24.1789 
24.1789 (24.177) 

24.1789 
24.1982 (24.198) 

75.3753 
75.3751 (75.376) 

75.3751 
75.4955 (75.495) 

160.5109 
160.5102 (160.505) 

160.5102 
160.9910 (160.991) 

279.3000 
279.2980 (279.297) 

279.2979 
280.6848 (280.684) 

431.3459 
431.3412 (431.334) 

431.3409 
434.5767 (434.576) 

1 

SPT 
HPT 
FPT 
CPT 

5.5138 
5.5138 (5.513) 

5.5138 
5.5209 (5.520) 

27.8242 
27.8242 (27.823) 

27.8242 
27.8683 (27.868) 

64.9379 
64.9376 (64.936) 

64.9376 
65.1140 (65.114) 

116.7498 
116.7490 (116.748) 

116.7490 
117.2580 (117.258) 

183.1140 
183.1123 (183.110) 

183.1122 
184.3002 (184.300) 

2 

SPT 
HPT 
FPT 
CPT 

3.5893 
3.5893 
3.5897 
3.5956 

22.1521 
22.1522 
22.1544 
22.1916 

53.0271 
53.0273 
53.0363 
53.1850 

96.1203 
96.1209 
96.1467 
96.5757 

151.3011 
151.3023 
151.3624 
152.3637 

5 

SPT 
HPT 
FPT 
CPT 

3.8911 
3.8912 (3.891) 

3.8927 
3.8999 (3.899) 

22.6047 
22.6052 (22.604) 

22.6143 
22.6595 (22.659) 

53.7068 
53.7086 (53.710) 

53.7450 
53.9256 (53.925) 

97.0673 
97.0725 (97.073) 

97.1771 
97.6980 (97.698) 

152.5063 
152.5184 (152.516) 

152.7615 
153.9769 (153.977) 

10 

SPT 
HPT 
FPT 
CPT 

4.3653 
4.3653 (4.364) 

4.3670 
4.3757 (4.375) 

24.1648 
24.1650 (24.165) 

24.1757 
24.2297 (24.229) 

57.0607 
57.0615 (57.061) 

57.1041 
57.3198 (57.319) 

102.8991 
102.9015 (102.901) 

103.0240 
103.6459 (103.646) 

161.4674 
161.4729 (161.471) 

161.7575 
163.2080 (163.208) 

The results in parenthesis are obtained in [32]. 

 
culated by CPT. 

The critical buckling temperature difference crt  as a 
function of /a b  for various values of the power law 
index k  under a uniform, linear and non-linear tem-
perature loads is depicted in Figure 2. It is observed that, 

with increasing the plate aspect ratio /a b , the critical 
buckling temperature difference also increases gradually, 
whatever the material gradient index k is. Since the ce-
ramic plate is weaker than the metallic one, thus the 
critical buckling temperature of the first plate is higher  
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Table 3. Critical buckling temperature change crt  of FGM plate under non-linear temperature rise for different values of index k, 

aspect ratio /a b , and temperature exponent    / 10a h  . 

/ 1a b   / 2a b   / 3a b   
k  Theory 

2   5   10   2   5   10   2   5   10   

0 

SPT 
HPT 
FPT 
CPT 

4.8414 
4.8410 
4.8408 
5.1147 

9.6829 
9.6821 
9.6817 
10.2294 

17.7520 
17.7505 
17.7498 
18.7540 

11.2294 
11.2269 
11.2246 
12.8093 

22.4589 
22.4538 
22.4492 
25.6186 

41.1747 
41.1654 
41.1568 
46.9675 

20.0164 
20.0066 
19.9919 
25.6336 

40.0328 
40.0133 
39.9838 
51.2673 

73.3935 
73.3577 
73.3037 
93.9900 

1 

SPT 
HPT 
FPT 
CPT 

2.1068 
2.1066 
2.1065 
2.2072 

4.3182 
4.3179 
4.3178 
4.5241 

8.1906 
8.1900 
8.1898 
8.5812 

4.9517 
4.9508 
4.9499 
5.5391 

10.1496 
10.1476 
10.1458 
11.3534 

19.2512 
19.2475 
19.2440 
21.5346 

8.9711 
8.9673 
8.9615 
11.0921 

18.3880 
18.3802 
18.3684 
22.7355 

34.8774 
34.8626 
34.8402 
43.1235 

2 

SPT 
HPT 
FPT 
CPT 

1.6765 
1.6766 
1.6812 
1.7627 

3.2736 
3.2738 
3.2828 
3.4419 

6.1232 
6.1235 
6.1404 
6.4379 

3.9243 
3.9246 
3.9493 
4.4256 

7.6627 
7.6633 
7.7116 
8.6417 

14.3327 
14.3339 
14.4242 
16.1638 

7.0655 
7.0659 
7.1433 
8.8640 

13.7962 
13.7970 
13.9483 
17.3080 

25.8051 
25.8066 
26.0895 
32.3737 

5 

SPT 
HPT 
FPT 
CPT 

1.5955 
1.5964 
1.6141 
1.7083 

2.8485 
2.8500 
2.8816 
3.0498 

4.9990 
5.0017 
5.0571 
5.3522 

3.6479 
3.6521 
3.7444 
4.2885 

6.5126 
6.5202 
6.6849 
7.6562 

11.4292 
11.4425 
11.7317 
13.4363 

6.3635 
6.3755 
6.6569 
8.5888 

11.3609 
11.3822 
11.8847 
15.3337 

19.9377 
19.9751 
20.8569 
26.9097 

10 

SPT 
HPT 
FPT 
CPT 

1.6766 
1.6770 
1.6974 
1.8092 

2.8844 
2.8851 
2.9202 
3.1126 

4.7717 
4.7728 
4.8310 
5.1492 

3.7953 
3.7970 
3.9016 
4.5414 

6.5293 
6.5322 
6.7122 
7.8130 

10.8015 
10.8062 
11.1040 
12.9250 

6.5362 
6.5402 
6.8510 
9.0951 

11.2448 
11.2515 
11.7862 
15.6470 

18.6022 
18.6134 
19.4980 
25.8848 

 
Table 4. Critical buckling temperature change crt  of FGM plate under non-linear temperature rise for different values of index k, 

aspect ratio /a b , and temperature exponent    / 5a h  . 

/ 1a b   / 2a b   / 3a b   
k  Theory 

2   5   10   2   5   10   2   5   10   

0 

SPT 
HPT 
FPT 
CPT 

16.7416 
16.7353 
16.7270 
20.5039 

33.4833 
33.4706 
33.4541 
41.0078 

61.3861 
61.3628 
61.3325 
75.1810 

32.8985 
32.8633 
32.7842 
51.2823 

65.7971 
65.7266 
65.5685 
102.5646 

120.6281 
120.4989 
120.2090 
188.0351 

48.6540 
48.5388 
48.1978 
102.5796 

97.3080 
97.0776 
96.3955 
205.1592 

178.3980 
177.9756 
176.7252 
376.1253 

1 

SPT 
HPT 
FPT 
CPT 

7.4586 
7.4561 
7.4529 
8.8709 

15.2878 
15.2827 
15.2762 
18.1827 

28.9971 
28.9875 
28.9751 
34.4879 

15.0945 
15.0800 
15.0476 
22.1983 

30.9390 
30.9094 
30.8430 
45.4997 

58.6835 
58.6274 
58.5014 
86.3014 

22.9714 
22.9214 
22.7734 
44.4106 

47.0843 
46.9819 
46.6785 
91.0281 

89.3070 
89.1127 
88.5373 
172.6573 

2 

SPT 
HPT 
FPT 
CPT 

5.8880 
5.8885 
5.9430 
7.0886 

11.4979 
11.4981 
11.6045 
13.8415 

21.5048 
21.5065 
21.7057 
25.8898 

11.7774 
11.7751 
11.9755 
17.7406 

22.9970 
22.9923 
23.3838 
34.6407 

43.0146 
43.0059 
43.7381 
64.7936 

17.7227 
17.7018 
18.0864 
35.4938 

34.6058 
34.5650 
35.3160 
69.3061 

64.7282 
64.6519 
66.0566 
129.6333 

5 

SPT 
HPT 
FPT 
CPT 

5.3654 
5.3742 
5.5741 
6.8687 

9.5789 
9.5945 
9.9515 
12.2627 

16.8104 
16.8378 
17.4644 
21.5203 

10.1426 
10.1682 
10.8794 
17.1895 

18.1076 
18.1534 
19.4230 
30.6885 

31.7779 
31.8582 
34.0863 
53.8566 

14.4932 
14.5269 
15.9245 
34.3909 

25.8748 
25.9349 
28.4301 
61.3982 

45.4087 
45.5142 
49.8932 
107.7502 

10 

SPT 
HPT 
FPT 
CPT 

5.5369 
5.5400 
5.7630 
7.2736 

9.5255 
9.5308 
9.9144 
12.5134 

15.7580 
15.7669 
16.4014 
20.7009 

10.2387 
10.2435 
11.0005 
18.2025 

17.6144 
17.6226 
18.9250 
31.3150 

29.1395 
29.1530 
31.3076 
51.8043 

14.3554 
14.3463 
15.7723 
36.4172 

24.6965 
24.6810 
27.1342 
62.6510 

40.8554 
40.8297 
44.8880 
103.6433 

 
than that of the second. For the FGM plate, crt  de-
creases as the metallic constituent in the plate increases.  

Figure 3 investigates the critical buckling temperature 
difference crt  of homogeneous and FG plates versus 

the side-to-thickness ratio /a h  under various types of 
temperature loads. Figure 4 gives similar for FG plates 
versus the aspect ratio /a b . The buckling temperature 
of the homogeneous plate is considerably higher than  
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Figure 1. Critical buckling temperature difference 

crt  due to uniform, linear and non-linear tempera-

ture rise across the thickness versus the side-to- 
thickness ratio /a h . 

 

 

 

Figure 2. Critical buckling temperature difference 

crt  due to uniform, linear and non-linear tempera-

ture rise across the thickness versus the aspect ratio 
/a b . 
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Figure 3. Critical buckling temperature difference 

crt  due to uniform, linear and non-linear tempera-
ture rise across the thickness versus the side-to- 
thickness ratio /a h . 

 

 

Figure 4. Critical buckling temperature difference 

crt  due to uniform, linear and non-linear tempera-

ture rise across the thickness versus the aspect ratio 
/a b . 

 
that for the FGM one, especially for the comparatively 
thicker plates. Again, because of the thicker plates are 
stronger than the thinner ones, thus the critical buckling 
temperature of the first type is higher than that of the 
second one. Note that crt  of the plate under uniform 
temperature rise is smaller than that of the plate under 
linear temperature rise and the latter is smaller than that 
of the plate under non-linear temperature rise. 

6. CONCLUSIONS 

The thermal buckling analysis for ceramic-metal FG plates 

under uniform, linear and nonlinear thermal loading 
through the thickness is investigated in this paper. The 
constituent materials are graded from the ceramic sur-
face to the metallic surface according to the power law 
variation. The SPT is used to deduce the equilibrium and 
stability equations for a simply supported functionally 
graded rectangular plate under thermal loading. The re-
sults obtained using SPT are compared with those ob-
tained using HPT, FPT and CPT; and compared with 
published ones. The numerical results of critical buck-
ling temperature difference using SPT are very close to 
those of HPT and the two theories have similar trends 
for all cases of loading. The critical buckling tempera-
ture difference is proportional to the plate aspect ratio. 
The thicker plates need a temperature to buckle higher 
than that the thinner plates need it. The critical buckling 
temperature differences of functionally graded plates are 
generally lower than the corresponding ones for homo-
geneous ceramic plates. 
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