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ABSTRACT 

If  is a polynomial of degree at most n having all its zeros in  P z 1z  , then it was recently claimed by Shah and 

Liman ([1], estimates for the family of $B$-operators, Operators and Matrices, (2011), 79-87) that for every , 
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  where  is a -operator with parameters B n 0 1 2, ,    in 

the sense of Rahman [2],  and  z R  z    3
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. Unfortunately the proof of this re- 

sult is not correct. In this paper, we present certain more general sharp Lp-inequalities for -operators which not only 

provide a correct proof of the above inequality as a special case but also extend them for  as well. 
n
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1. Introduction and Statement of Results 

Let  denote the space of all complex polynomials  n
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   of degree at most n . For nP ,  
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and denote for any complex function :    the 
composite function of  and P  , defined by  

, as        :P z P z  z  P  . 
A famous result known as Bernstein’s inequality (for 

reference, see [3, p. 531], [4, p. 508] or [5] states that if 
, then nP

    ,P z n P z


 


        (1.1) 

whereas concerning the maximum modulus of  P z  on 
the circle 1z R  , we have  

    , 1nP Rz R P z R
 
  ,     (1.2) 

(for reference, see [6, p. 442] or [3, Vol. 1, p. 137]). 

Inequalities (1.1) and (1.2) can be obtained by letting 
 in the inequalities  p 

    ,
p p

P z n P z p 1          (1.3) 

and 

    , 1, 0n

p p
P Rz R P z R p ,     (1.4) 

respectively. Inequality (1.3) was found by Zygmund [7] 
whereas inequality (1.4) is a simple consequence of a 
result of Hardy [8] (see also [9, Th. 5.5]). Since in- 
equality (1.3) was deduced from M. Riesz’s interpolation 
formula [10] by means of Minkowski’s inequality, it was 
not clear, whether the restriction on p was indeed essen- 
tial. This question was open for a long time. Finally 
Arestov [11] proved that (1.3) remains true for 0 1p   
as well. 

If we restrict ourselves to the class of polynomials 

nP  having no zero in 1z  , then Inequalities (1.1) 
and (1.2) can be respectively replaced by 
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Inequality (1.5) was conjectured by Erdös and later 
verified by Lax [12], whereas Inequality (1.6) is due to 
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Ankey and Ravilin [13]. 
Both the Inequalities (1.5) and (1.6) can be obtain by 

letting  in the inequalities  p 
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Inequality (1.7) is due to De-Bruijn [14] for . 
Rahman and Schmeisser [15] extended it for 

1p 
0 1p   

whereas the Inequality (1.8) was proved by Boas and 
Rahman [16] for  and later it was extended for 

 by Rahman and Schmeisser [15]. 
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0 p 1
Q. I. Rahman [2] (see also Rahman and Schmeisser [4, 

p. 538]) introduced a class n  of operators  that 
carries a polynomial  into 
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where 0 1,   and 2  are such that all the zeros of  
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0 1 2: ,1 ,2U z C n z C n z        (1.10) 
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As a generalization of Inequality (1.1) and (1.5), Q. I. 

Rahman [2, inequality 5.2 and 5.3] proved that if 
 and  then for ,nP nB 1,z   
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and if   in ,nP   0P z  1,z   then 1,z   
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As a corresponding generalization of Inequalities (1.2) 
and (1.4), Rahman and Schmeisser [4, p. 538] proved 
that if  then ,nP 1,z   

      0 1 2, , .n
nB P z R P z    


    (1.14) 

and if   in ,nP   0P z  1,z   then as a special 
case of Corollary 14.5.6 in [4, p. 539], we have 
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where   : ,z Rz R 1   and  0 1 2, ,n      is defined 
by (1.13). 

Inequality (1.15) also follows by combining the 
Inequalities (5.2) and (5.3) due to Rahman [2]. 

As an extension of Inequality (1.14) to pL -norm, re- 
cently Shah and Liman [1, Theorem 1] proved: 

Theorem A. If nP , then for every  and 
, 

1R 
1p 

      1 2 3, , ,n
n pp

B P z R P z       (1.16) 

where nB ,  z R  z  and  0 1 2, ,n     is de- 
fined by (1.13). 

While seeking the analogous result of (1.15) in pL  
norm, they [1, Theorem 2] have made an incomplete 
attempt by claiming to have proved the following result: 

Theorem B. If nP , and  does not vanish 
for 

 P z
1,z   then for each , , 1p  1R 
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p

where nB ,  z R  z  and  1 2 3, ,n     is de- 
fined by (1.13). 

Further, it has been claimed in [1] to have proved the 
Inequality (1.17) for self-inversive polynomials as well. 

Unfortunately the proof of Inequality (1.17) and other 
related results including the key lemma [1, Lemma 4] 
given by Shah and Liman is not correct. The reason 
being that the authors in [1] deduce:  

1) line 10 from line 7 on page 84,  
2) line 19 on page 85 from Lemma 3 [1] and, 
3) line 16 from line 14 on page 86, 

by using the argument that if    : 1nP z z P z , then 
for  z R  z ,  and 1R  1,z    
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which is not true, in general, for every  and 1R 
1z  . To see this, let 
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and in particular for 1z  , we get 
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so the asserted identity does not hold in general for every 
 and 1R  1z   as e.g. the immediate counterexample 

of  demonstrates in view of   : nzP z   1P z  ,  

  0B P z     and 

       2 3
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for 1.z   
Authors [1] have also claimed that Inequality (1.17) 

and its analogue for self-inversive polynomials are sharp 
has remained to be verified. In fact, this claim is also 
wrong. 

The main aim of this paper is to establish pL -mean 
extensions of the inequalities (1.14) and (1.15) for 

 and present correct proofs of the results 
mentioned in [1]. In this direction, we first present the 
following result which is a compact generalization of the 
Inequalities (1.1), (1.2), (1.14) and (1.16) and also extend 
Inequality (1.17) for  as well. 
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where   and ,nB  t z t  z  0 1 2, ,n     is given 
by (1.13). The result is best possible and equality holds 
in (1.18) for     .nP z z

0If we choose    in (1.18), we get the following 
result which extends Theorem A to   0 1p  ,

Corollary 1. If  then for  and 
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where   and ,nB  z R  z  0 1 2, ,n     is given 

by (1.13). 
Remark 1. Taking 0 20    in (1.19) and noting 

that in this case all the zeros of U(z) defined in (1.10) lie 
in 2z z n  , we get for and  1R  0 p  

   1n

p p
P Rz nR P z   , 

which includes (1.4) as a special case. Next if we choose 

1 20    in (1.19), we get inequality (1.4). Inequality 
(1.11) also follows from Theorem 1 by letting  
in (1.18). 

p 

Theorem 1 can be sharpened if we restrict ourselves to 
the class of polynomials  P z  which does not vanish in 

1z   In this direction, we next present the following 
interesting compact generalization of Theorem B which 
yields pL  mean extension of the inequality (1.12) for 
0 p    which among other things includes a correct 
proof of inequality (1.17) for 1  as a special 
case. 
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where ,nB   t z t z  and  0 1 2, ,n      is de- 
fined by (1.13). The result is best possible and equality 
holds in (1.18) for  P z a ,nz b   1a b  .  

If we take 0   in (1.20), we get the following 
result which is the generalization of Theorem B for 

 but also extends it for  1p  0 p  
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,nB   z R  z  and  0 1 2, ,n     is defined by 
(1.13). 

By triangle inequality, the following result is an 
immediately follows from Corollary 2.  

Corollary 3. If nP  and  does not vanish 
for 

 P z
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 0 1 2 0, ,

1

n
n

p
p

R
B P z P z

z

    






  (1.22) 

p

,nB   z R  z  and  0 1 2, ,n     is defined by 
(1.13). 

Remark 2. Corollary 3 establishes a correct proof of a 
result due to Shah and Liman [1, Theorem 3] for  
and also extends it for 

1p 
0 p 1   as well. 
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Remark 3. If we choose 0 20  


 in (1.21), we 
get for  and , 1R  0 p 
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 in (1.21), we get Inequality (1.8). Ine-
quality (1.12) can be obtained from corollary 2 by letting 
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,nB   and  t t t  z  0 1 2, ,n     is defined by 
(1.13).  

A polynomial  is said be self-inversive if 
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 P z

  P z  : 1nP z z P z . 
Finally in this paper, we establish the following result 

for self-inversive polynomials , which includes a correct 
proof of an another result of Shah and Liman [1, Theo- 
rem 2] as a special case. 
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where   and ,nB  t t t  z  0 1 2, ,n     is given 
by (1.13). The result is sharp and an extremal polynomial 
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where   and ,nB  z R  z  0 1 2, ,n     is given 
by (1.13). 

The following result is an immediate consequence of 

Corollary 5. 
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where ,nB   z R  z  and  0 1 2, ,n     is given 
by (1.13). 

Remark 4. Corollary 6 establishes a correct proof of a 
result due to Shah and Liman [1, Theorem 3] for  
and also extends it for 

1p 
0 p 1   as well. 

Remark 5. A variety of interesting results can be eas-
ily deduced from Theorem 3 in the same way as we have 
deduced from Theorem 2. Here we mention a few of 
these. Taking 2 0 0  
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which, in particular, yields a result due to Dewan and 
Govil [17] and A. Aziz [18] for polynomials n . 
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The above inequality is a special case of a result 
proved by Aziz and Rather [19]. 

Lastly letting  in (1.25), it follows that if p 
 P z , is a self-inversive polynomial then 
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where nB ,  z R  z  and  0 1 2, ,n     is de-
fined by (1.13). The result is sharp. 

Inequality (1.27) is a special case of a result due to 
Rahman and Schmeisser [4, Cor. 14.5.6]. 

2. Lemma 

For the proof of above theorems we need the following 
Lemmas: 

The following lemma follows from Corollary 18.3 of 
[20, p. 86]. 

Lemma 1. If nP  and  P z  has all zeros in 
1,z   then all the zeros of   B P z  also lie in 
1.z   

Lemma 2. If nP  and  P z  have all its zeros in 
1z   then for every  and 1,R r  1z  , 
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serves one of the following properties: 

1)  P z  has all its zeros in  : 1 .z z   

2)  P z  has all its zeros in : 1 .z z   

The result of Arestov [11] may now be stated as 
follows. 
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    .

R rB P z B P z

P z

  



 


 

As in the proof of Lemma 3, the polynomial  

R rB P z B       
 

    ,R rP z P z    

,

 has all its zeros in 1z    

and by Lemma 1,     ,R rz B P z          B P   

also has all its zero in 1,z   therefore,  

   r z   has all its zer  R B P z B P     
   os in 

1.z   Hence by t  for he maximum modulus principle,
1,z   

     

    .B P z B P z       
  

  (2.9) 
R r

R r

B P z B P  

   

  z
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A direct application of Rouche’s theorem shows that 
with     0 ,n

nP z a z a  

 

        

 

     

     

ie RB P z B P z B P z   

32
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,
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r
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n nn
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has all its zeros in 

      




1z   for every real ,  
0 2π.   Therefore, 

ma 4,
0

 is an admissible ope
.5) of Lem  the desired result foll

h 
ce the ra

result. 

rator. 
ows Applying (2

immediately for eac p . 
From Lemma 5, we dedu  following more gene l 

Lemma 6. If ,nP  then for every 0,p   
1R r   and   real 0 2π,   

      
    

     

 

2π i i iB   
0

ie

R r

p

R
 i

i
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2π i
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e e e

e d

, , e 1

e d ,

r

p
n n
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B P B P
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 (2.10) 

Proof. Let  and let be the zeros 
of . If



 nP
 

1 2, , , nz z z  
 P z 1jz   for , then the 

resu llows b a 5. assume that 
 zero i

all 1, 2, , 
 Henceforth, we 

n 

j n
lt fo

 P z  ha
y Lemm

s at least one 1z   so that we can 
write  

     

   
1 2

,
k n

j j

P z P z P z

a z z



    
1 1

0 1, 0,

j j k

z z

k n a

  



   

where the zeros  of ie in 1 2, , , kz z z  1P z  l 1z   
and the zeros n  of ie in  1 2, , ,k kz z z     2P z  l 1.z   
First we suppo has onse that  1P z   no zero  1z   so 
that all the zero in s of  1P z  lie 1.z   Since all the 

lie inzeros of  n k th olynomial  2P z    degree p
1z  , all the ze jugate po omial  

 
roes of its con lyn

 2 2 1n kP z z P z  l  ie in 1z   and  

   2 2P z P for z  1.z   Now consid e poly- 
nomial 

er th

     

   
1 2f z P z P z 

1 1

1 ,j
j j k

a z zz
  

 
k n

j

then all the zeroes of 

z
 

 f z  lie in 1z  , and for 
1,z   

     
     

1 2

1 2 .P z P P z 

f z P z P z

z

 

         (2.11) 

Therefore, it follows by Rouche’s Theorem that the 
polynomial      g z P z f z   has all its zeros in 

1z   for every ,  with 1   so 
of 

that all the zeros 
   T z g z  lie in 1  for z some 1  . Apply- 

ing  the p al  get for (2.9) and (2.8) to olynomi   , weT z
1  and R 1,z   
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2
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32
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2

1
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(2.12) 

for  If ie ,0 < 2πz     , then  1 1z    1.z 
as 1   and we get 

     i ie eR rB g B g        
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 RB g z B g z            r  has all zeros in 
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Equivalently, for 

1z   and thus    R rB g z B g z         
    

does not vanish in 1.z   
An application of Rouche’s theorem shows that the 

polynomial  

        
   

ieR r

R r

L z B g z B g z

B g z B g z

  

  

 

       

 

 
  

  (2.13) 

has all zeros in 1.z   Writing in  
     :=g z P z f z  and noting that B is a linear 

operator, it follows that the polynomial 
1,z   

        
    

      

    

i

i

e

e ,

R r

R r

R R

R r

L z B g z B g z

B g z B g z

B f z B f z
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(2.14) 

     

    ,

R r

RB g        r

B g z B g z

z B g z

  

   

 
  

 

where 
Since 

  .t z tz   
 g z  has all its zeros in 1,z   it follows 

that  g z  ha s its zeros in 1z   and hence (pro- 
rly as in proof of Lemma 3) the poly- 

nom
ceeding simila

ial    R rg z g z      has all its zeros in 1z   for every   with 1.    also has all its zeros 
in 1.  By L We claim z  emma 1,  

 

           
           

i

i

e

e ,

R r R r

R R R r

B P z B P z B P z B P z

B f z B f z B f z B f z





     

     

        

         

   

   

  

  
        (2.15) 

for 1.z   If Inequality (2.15) is not true, then there exists a point 0z z  with 0 1z   such that  

           
           

i
0 0 0

i
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e
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R R R r

B P z B P z B P z B P z
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0

0

Since  f z  has all its zeros in 1z  , proceeding similarly as in the proof of (2.13), it follows that 

          ie 0R R R rB f B z f z B f z B f z              
    for  1z   We take  

           
           

i
0 0

i
0 0

e

e

R rB P z B P z

B f z B f z





  


 

  


  0 0

0 0

R r

R R R r

B P z B P z

B f z B f z

  

   

       
         

 

   

  

  
 

 
so that   is a well-defined real or complex number 
with 1  and with this choice of  , from (2.14), we 
get . This clearly is a contradiction to the fact 

that 

 0 0L z 

 L z  has all its zeros in 1.z   Thus (2.15) holds, 
whi rticular gives for each ch in pa 0p   and   real, 

 

          2π i i i ie e e e d
p

R r rB P B P B P B    

           

i
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2π i i i i i

0

e

e e e e e d .

R

p

R R R r

P
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,f  gives for each 0p  , Lemma 4 and (2.7) applied to 

           
       
       

2π i i i i i

0

2π

2πi i
0 1 2 0 0

e e e e e d

, ,

, , e 1 e d .

p

R r R r

p p

p p
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B P B P B P B P
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i i
0 1 2 0 0

e 1 e dn nR r f 

     

 

       

        

    





   
  

    (2.16) 

Now if 

          

, then applying (2.16) to the polynomial      1 2P z P z P z 1P z  has a zero on 1z   where 
0 1  , we get for each  and 0p  , 1R r    real,  

         
       

2π i i i i i

0

2π

0

e e e e e d

d

p

R r R rB P B P B P B P    

i i
0 1 2 0, , e 1 e .

p p
n nR r P 

                    



      
  

    (2.17) 

tting 

           

Le 1  in (2.17) and using continuity, the desire  d result follows immediately and this proves Lemma 6.  
Lemma 7. If  then for every  and nP , 0p  , 1R r   0 2π  , 

           
       

2π 2π i

0 0
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0 1 2 00 0

e d

, , e 1 d e d ,
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      (2.18) 

where nB ,  t z tz   and  0 1 2, ,n   
0.

 is de  by
tremal polynomial for any b   

fined  (1.13). The result is best possible and  is an 
ex

Proof. By Lemma 6, for each 

  nP z bz

0p  , 0 2π   and , the Inequality (2.6) holds. Since  1R r 

   R rB P z B P z         
    is the conjugate polynomial of    R rB P z B P z           ,  

       ie eR r R rB P z B P z B P B P                        
     i ,

and therefore for each  and 0p  , 1R r  0 2π   , we have 

            
         

         

2π i i i i

0
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2π i i i i i

0

2π i i i i
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        (2.19) 

ng (2.1

        

Integrati 9) both sides with respect to   from 0 to 2π  and using (2.6), we get  
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which establishes Inequality (2.18). 
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ms 

Proof of Theorem. By hypothesis , we can write  

,

where the zeros  of  lie in

 
3. Proof of Theore

     
     

2π i i

0

2π i i

0

e e d

e e d .

p

R r

p

R r

B P B P
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 (3.2) 

Again,(as in case of 

     

   
1 2

1 1

, 1, 0
k n

j j
j j k

P z P z P z

a z z z z k a
  



     
  H z )    M Rz M rz  has 

1,z   all its zeros in thus by Lemma 1,  

     z  R rB P z B P   also has all its zeros in  
1 2, , , kz z z  1P z  1z   

 Therefore, if   1 0
n

nE z e z e z e   1.z   has all 
it

and the ze in ros 1 2, , ,k k nz z z    of  2P z  lie 1.z   
First, we suppose that all the zeros of  1P z  lie in 

1.z   Since all the zeros of  P z  lie 2 in 1z  , the  

polynomial    2 2 1n kP z z P z  has all its zeroes in  

1z   and    2 2P z P z  for 1.z   Now consider  

the polynomial  

         1 2
1 1

1 ,
k n

j j
j j k

M z P z P z a z z zz
  

      

then all the zeros of  M z  lie in 1,z   and for 
1,z   

           1 2 1 2 .M z P z P z P z P z P z    (3.1) 

Observe that      1

n
1 jj k

z
 

  when  

  and thus from (3.1) 
us principle, it follows that  

P z M z  
z  , so it is regular even at 
and by the maximum modul

    for 1.P z M z z   

Since  for   0M z  1,z   a direct applicat n of 
Rouche ows that the polynomial  

io
’s theorem sh

    H z P z M  z  has all its zeros in 1z   for 
every   with 1.   ing L  2 to the - 
nomial  

Apply emma  poly
H z  t the zeros of and noting tha  H R  

in 
z  lie

1 1,z R   we deduce (as in Lemma 3) that for 
eal or complex every r   with 1,  all the zeros of  

lie in 

polynomial  
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at all
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which, in particular, gives for each 0p  , 1R r   
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s zeros in 1,z   then the operator   defined by 
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is admissible. Since   0 ,n
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zeros in 1,z   in v  by (2.5) of 
Lemma 4 that for each 
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   i ie eM P  , we obtain for each 0p   

1R  , 



  and 

    
   

2π

0

p
B P i i

2π i
0 1 2 0

e e d

, , e d ,

R r

ppn n
n

B P

R r P

 



   

     



  


   (3.5) 
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 1P z  has a zero on 1z  , then Inequality 
llo es Th

Proof of Theorem 2. By hypothesis  does not 
vanish in

(3.5) fo by continuity. This prov eorem 1 for 
0p   To obtain this result for 0p  , we simply make 

p 

ws 
.

0  . 
 P z

 1,z    t z tz   and  the fore, 
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> 1R r  , re
0 2π  , (2.1) holds. Also, for each 0p  and 

  real ) holds. 
Now it can be easily verified or every real 

num

, (2.18
that f
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p
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For      i ie e 0R rB B P     ,  this in-  

equality is trivially tru ng th

P 
e. Usi is in (2.18), we con- 

clude that for each 0p  , 
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from which Theorem 2 follows for . To establish 
this result for , we simply let 

Proof of Theorem 3. Since is a self-inversive 
polynomial, then we have f e



         

0p 
0p  

 
0p  . 

 P z  
or som   , with 1   

   P z P z   for all z , where  P z

r 
 is the 

mial vesconjugate polyno  P z . This gi , fo 0 2π    
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i i

e e

e e
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.

Using this in place of (2.1) and proceeding similarly as 
in the proof of Theorem 2, we get the desired result for 
each . The extension to obtains by letting 
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