Some $\boldsymbol{L}_{\boldsymbol{p}}$ Inequalities for \boldsymbol{B}-Operators

Nisar Ahmad Rather, Sajad Hussain Ahangar
Department of mathematics, University of Kashmir, Harzarbal, Sringar, India.
Email: dr.narather@gmail.com, ahangarsajad@gmail.com

Received November 8, 2012; revised December 8, 2012; accepted December 15, 2012

Abstract

If $P(z)$ is a polynomial of degree at most n having all its zeros in $|z| \geq 1$, then it was recently claimed by Shah and Liman ([1], estimates for the family of \$B\$-operators, Operators and Matrices, (2011), 79-87) that for every $R \geq 1$, $p \geq 1,\|B[P \circ \rho](z)\|_{p} \leq \frac{R^{n}\left|\phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|+\left|\lambda_{0}\right|}{\|1+z\|_{p}}\|P(z)\|_{p}$, where B is a \mathcal{B}_{n}-operator with parameters $\lambda_{0}, \lambda_{1}, \lambda_{2}$ in the sense of Rahman [2], $\rho(z)=R z$ and $\phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)=\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}$. Unfortunately the proof of this result is not correct. In this paper, we present certain more general sharp L_{p}-inequalities for \mathcal{B}_{n}-operators which not only provide a correct proof of the above inequality as a special case but also extend them for $0 \leq p<1$ as well.

Keywords: L^{p}-Inequalities; \mathcal{B}_{n}-Operators; Polynomials

1. Introduction and Statement of Results

Let \mathcal{P}_{n} denote the space of all complex polynomials $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree at most n. For $P \in \mathcal{P}_{n}$, define

$$
\begin{aligned}
& \|P(z)\|_{0}:=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta\right\}, \\
& \|P(z)\|_{p}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}\right\}^{1 / p}, 0<p<\infty \\
& \|P(z)\|_{\infty}:=\operatorname{Max}_{z z=1}|P(z)|,
\end{aligned}
$$

and denote for any complex function $\rho: \mathbb{C} \rightarrow \mathbb{C}$ the composite function of P and ρ, defined by $(P \circ \rho)(z):=P(\rho(z))(z \in \mathbb{C})$, as $P \circ \rho$.
A famous result known as Bernstein's inequality (for reference, see [3, p. 531], [4, p. 508] or [5] states that if $P \in \mathcal{P}_{n}$, then

$$
\begin{equation*}
\left|P^{\prime}(z)\right|_{\infty} \leq n\|P(z)\|_{\infty}, \tag{1.1}
\end{equation*}
$$

whereas concerning the maximum modulus of $P(z)$ on the circle $|z|=R>1$, we have

$$
\begin{equation*}
\|P(R z)\|_{\infty} \leq R^{n}\|P(z)\|_{\infty}, R \geq 1, \tag{1.2}
\end{equation*}
$$

(for reference, see [6, p. 442] or [3, Vol. 1, p. 137]).

Inequalities (1.1) and (1.2) can be obtained by letting $p \rightarrow \infty$ in the inequalities

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{p} \leq n\|P(z)\|_{p}, p \geq 1 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R z)\|_{p} \leq R^{n}\|P(z)\|_{p}, R>1, p>0 \tag{1.4}
\end{equation*}
$$

respectively. Inequality (1.3) was found by Zygmund [7] whereas inequality (1.4) is a simple consequence of a result of Hardy [8] (see also [9, Th. 5.5]). Since inequality (1.3) was deduced from M. Riesz's interpolation formula [10] by means of Minkowski's inequality, it was not clear, whether the restriction on p was indeed essential. This question was open for a long time. Finally Arestov [11] proved that (1.3) remains true for $0<p<1$ as well.

If we restrict ourselves to the class of polynomials $P \in \mathcal{P}_{n}$ having no zero in $|z|<1$, then Inequalities (1.1) and (1.2) can be respectively replaced by

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{\infty} \leq \frac{n}{2}\|P(z)\|_{\infty}, \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R z)\|_{\infty} \leq \frac{R^{n}+1}{2}\|P(z)\|_{\infty} \quad R>1 . \tag{1.6}
\end{equation*}
$$

Inequality (1.5) was conjectured by Erdös and later verified by Lax [12], whereas Inequality (1.6) is due to

Ankey and Ravilin [13].
Both the Inequalities (1.5) and (1.6) can be obtain by letting $p \rightarrow \infty$ in the inequalities

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{p} \leq n \frac{\|P(z)\|_{p}}{\|1+z\|_{p}}, p \geq 0 \tag{1.7}
\end{equation*}
$$

and for $R>1, p>0$,

$$
\begin{equation*}
\|P(R z)\|_{p} \leq \frac{\left\|R^{n} z+1\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.8}
\end{equation*}
$$

Inequality (1.7) is due to De-Bruijn [14] for $p \geq 1$. Rahman and Schmeisser [15] extended it for $0 \leq p<1$ whereas the Inequality (1.8) was proved by Boas and Rahman [16] for $p \geq 1$ and later it was extended for $0 \leq p<1$ by Rahman and Schmeisser [15].
Q. I. Rahman [2] (see also Rahman and Schmeisser [4, p. 538]) introduced a class \mathcal{B}_{n} of operators B that carries a polynomial $P \in \mathcal{P}_{n}$ into

$$
\begin{align*}
B[P](z) & :=\lambda_{0} P(z)+\lambda_{1}\left(\frac{n z}{2}\right) \frac{P^{\prime}(z)}{1!} \\
& +\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{P^{\prime \prime}(z)}{2!} \tag{1.9}
\end{align*}
$$

where λ_{0}, λ_{1} and λ_{2} are such that all the zeros of

$$
\begin{equation*}
U(z):=\lambda_{0}+\lambda_{1} C(n, 1) z+\lambda_{2} C(n, 2) z^{2} \tag{1.10}
\end{equation*}
$$

where $C(n, r)=\frac{n!}{r!(n-r)!} 0 \leq r \leq n$, lie in half plane $|z| \leq|z-n / 2|$.
As a generalization of Inequality (1.1) and (1.5), Q. I. Rahman [2, inequality 5.2 and 5.3] proved that if $P \in \mathcal{P}_{n}$, and $B \in \mathcal{B}_{n}$ then for $|z| \geq 1$,

$$
\begin{equation*}
|B[P](z)| \leq\left|\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|\|P(z)\|_{\infty}, \tag{1.11}
\end{equation*}
$$

and if $P \in \mathcal{P}_{n}, \quad P(z) \neq 0$ in $|z|<1$, then $|z| \geq 1$,

$$
\begin{equation*}
|B[P](z)| \leq \frac{1}{2}\left\{\left|\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|+\left|\lambda_{0}\right|\right\}\|P(z)\|_{\infty} \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)=\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8} . \tag{1.13}
\end{equation*}
$$

As a corresponding generalization of Inequalities (1.2) and (1.4), Rahman and Schmeisser [4, p. 538] proved that if $P \in \mathcal{P}_{n}$, then $|z|=1$,

$$
\begin{equation*}
|B[P \circ \rho](z)| \leq R^{n}\left|\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|\|P(z)\|_{\infty} . \tag{1.14}
\end{equation*}
$$

and if $P \in \mathcal{P}_{n}, \quad P(z) \neq 0$ in $|z|<1$, then as a special case of Corollary 14.5.6 in [4, p. 539], we have

$$
\begin{align*}
& |B[P \circ \rho](z)| \\
& \leq \frac{1}{2}\left\{R^{n}\left|\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|+\left|\lambda_{0}\right|\right\}\|P(z)\|_{\infty}, \tag{1.15}
\end{align*}
$$

where $\rho(z):=R z, R \geq 1$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is defined by (1.13).

Inequality (1.15) also follows by combining the Inequalities (5.2) and (5.3) due to Rahman [2].

As an extension of Inequality (1.14) to L_{p}-norm, recently Shah and Liman [1, Theorem 1] proved:

Theorem A. If $P \in \mathcal{P}_{n}$, then for every $R \geq 1$ and $p \geq 1$,

$$
\begin{equation*}
\|B[P \circ \rho](z)\|_{p} \leq R^{n} \mid \phi_{n}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\|P(z)\|_{p} \tag{1.16}
\end{equation*}
$$

where $B \in \mathcal{B}_{n}, \quad \rho(z)=R z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is defined by (1.13).

While seeking the analogous result of (1.15) in L_{p} norm, they [1, Theorem 2] have made an incomplete attempt by claiming to have proved the following result:

Theorem B. If $P \in \mathcal{P}_{n}$, and $P(z)$ does not vanish for $|z| \leq 1$, then for each $p \geq 1, \quad R \geq 1$,

$$
\begin{equation*}
\|B[P \circ \rho](z)\| \leq \frac{R^{n}\left|\phi_{n}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\right|+\left|\lambda_{0}\right|}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.17}
\end{equation*}
$$

where $B \in \mathcal{B}_{n}, \quad \rho(z)=R z$ and $\phi_{n}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is defined by (1.13).

Further, it has been claimed in [1] to have proved the Inequality (1.17) for self-inversive polynomials as well.

Unfortunately the proof of Inequality (1.17) and other related results including the key lemma [1, Lemma 4] given by Shah and Liman is not correct. The reason being that the authors in [1] deduce:

1) line 10 from line 7 on page 84 ,
2) line 19 on page 85 from Lemma 3 [1] and,
3) line 16 from line 14 on page 86 ,
by using the argument that if $P^{\star}(z):=z^{n} \overline{P(1 / \bar{z})}$, then for $\rho(z)=R z, R \geq 1$ and $|z|=1$,

$$
\left|B\left[P^{\star} \circ \rho\right](z)\right|=\left|B\left[\left(P^{\star} \circ \rho\right)^{\star}\right](z)\right|,
$$

which is not true, in general, for every $R \geq 1$ and $|z|=1$. To see this, let

$$
P(z)=a_{n} z^{n}+\cdots+a_{k} z^{k}+\cdots+a_{1} z+a_{0}
$$

be an arbitrary polynomial of degree n, then

$$
\begin{aligned}
& P^{\star}(z):=z^{n} \overline{P(1 / \bar{z})} \\
& =\bar{a}_{0} z^{n}+\bar{a}_{1} z^{n-1}+\cdots+\bar{a}_{k} z^{n-k}+\cdots+\bar{a}_{n} .
\end{aligned}
$$

Now with $\omega_{1}:=\lambda_{1} n / 2$ and $\omega_{2}:=\lambda_{2} n^{2} / 8$, we have $B\left[P^{\star} \circ \rho\right](z)$ $=\sum_{k=0}^{n}\left(\lambda_{0}+\omega_{1}(n-k)+\omega_{2}(n-k)(n-k-1)\right) \bar{a}_{k} z^{n-k} R^{n-k}$,
and in particular for $|z|=1$, we get

$$
\begin{aligned}
& B\left[P^{\star} \circ \rho\right](z)=R^{n} z^{n} \\
& \cdot \sum_{k=0}^{n}\left(\lambda_{0}+\omega_{1}(n-k)+\omega_{2}(n-k)(n-k-1)\right) a_{k}\left(\frac{z}{R}\right)^{k}
\end{aligned}
$$

whence

$$
\begin{aligned}
& \left|B\left[P^{\star} \circ \rho\right](z)\right| \\
& =R^{n}\left|\sum_{k=0}^{n} \overline{\left(\lambda_{0}+\omega_{1}(n-k)+\omega_{2}(n-k)(n-k-1)\right)} a_{k}\left(\frac{z}{R}\right)^{k}\right| \\
& \text { But } \\
& \qquad\left|B\left[\left(P^{\star} \circ \rho\right)^{\star}\right](z)\right| \\
& \quad=R^{n}\left|\sum_{k=0}^{n}\left(\lambda_{0}+\omega_{1} k+\omega_{2} k(k-1)\right) a_{k}\left(\frac{z}{R}\right)^{k}\right|
\end{aligned}
$$

so the asserted identity does not hold in general for every $R \geq 1$ and $|z|=1$ as e.g. the immediate counterexample of $P(z):=z^{n}$ demonstrates in view of $P^{\star}(z)=1$, $\left|B\left[P^{\star} \circ \rho\right](z)\right|=\left|\lambda_{0}\right|$ and

$$
\left|B\left[\left(P^{\star} \circ \rho\right)^{\star}\right](z)\right|=\left|\lambda_{0}+\lambda_{1}\left(n^{2} / 2\right)+\lambda_{2} n^{3}(n-1) / 8\right|
$$

for $|z|=1$.
Authors [1] have also claimed that Inequality (1.17) and its analogue for self-inversive polynomials are sharp has remained to be verified. In fact, this claim is also wrong.

The main aim of this paper is to establish L_{p}-mean extensions of the inequalities (1.14) and (1.15) for $0 \leq p<\infty$ and present correct proofs of the results mentioned in [1]. In this direction, we first present the following result which is a compact generalization of the Inequalities (1.1), (1.2), (1.14) and (1.16) and also extend Inequality (1.17) for $0 \leq p<1$ as well.
Theorem 1. If $P \in \mathcal{P}_{n}$ then for $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$, $0 \leq p<\infty$ and $R>r \geq 1$,

$$
\begin{align*}
& \left\|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right\|_{p} \\
& \leq \mid R^{n}-\alpha r^{n}\left\|\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right\| P(z) \|_{p}, \tag{1.18}
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \quad \rho_{t}(z)=t z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is given by (1.13). The result is best possible and equality holds in (1.18) for $P(z)=z^{n}$.

If we choose $\alpha=0$ in (1.18), we get the following result which extends Theorem A to $0 \leq p<1$,

Corollary 1. If $P \in \mathcal{P}_{n}$ then for $0 \leq p<\infty$ and $R>1$,

$$
\begin{equation*}
\|B[P \circ \rho](z)\|_{p} \leq R^{n} \mid \phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\|P(z)\|_{p}, \tag{1.19}
\end{equation*}
$$

where $B \in \mathcal{B}_{n}, \quad \rho(z)=R z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is given
by (1.13).
Remark 1. Taking $\lambda_{0}=0=\lambda_{2}$ in (1.19) and noting that in this case all the zeros of $U(z)$ defined in (1.10) lie in $|z| \leq|z-n / 2|$, we get for $R>1$ and $0 \leq p<\infty$

$$
\left\|P^{\prime}(R z)\right\|_{p} \leq n R^{n-1}\|P(z)\|_{p}
$$

which includes (1.4) as a special case. Next if we choose $\lambda_{1}=0=\lambda_{2}$ in (1.19), we get inequality (1.4). Inequality (1.11) also follows from Theorem 1 by letting $p \rightarrow \infty$ in (1.18).

Theorem 1 can be sharpened if we restrict ourselves to the class of polynomials $P(z)$ which does not vanish in $|z|<1$ In this direction, we next present the following interesting compact generalization of Theorem B which yields L_{p} mean extension of the inequality (1.12) for $0 \leq p<\infty$ which among other things includes a correct proof of inequality (1.17) for $1 \leq p<\infty$ as a special case.

Theorem 2. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish for $|z|<1$ then for $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1, \quad 0 \leq p<\infty$ and $R>r \geq 1$,
$\left\|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right\|_{p}$
$\leq \frac{\left\|\left(R^{n}-\alpha r^{n}\right) \phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) z+(1-\alpha) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}$
where $B \in \mathcal{B}_{n}, \quad \rho_{t}(z)=t z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is defined by (1.13). The result is best possible and equality holds in (1.18) for $P(z)=a z^{n}+b, \quad|a|=|b|=1$.

If we take $\alpha=0$ in (1.20), we get the following result which is the generalization of Theorem B for $p \geq 1$ but also extends it for $0 \leq p<\infty$

Corollary 2. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish for $|z|<1$ then for $0 \leq p<\infty$ and $R>1$,

$$
\begin{equation*}
\|B[P \circ \rho](z)\|_{p} \leq \frac{\left\|R^{n} \phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) z+\lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.21}
\end{equation*}
$$

$B \in \mathcal{B}_{n}, \quad \rho(z)=R z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is defined by (1.13).

By triangle inequality, the following result is an immediately follows from Corollary 2.

Corollary 3. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish for $|z|<1$ then for $0 \leq p<\infty$ and $R>1$,

$$
\begin{equation*}
\|B[P \circ \rho](z)\|_{p} \leq \frac{R^{n}\left|\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|+\left|\lambda_{0}\right|}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.22}
\end{equation*}
$$

$B \in \mathcal{B}_{n}, \quad \rho(z)=R z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is defined by (1.13).

Remark 2. Corollary 3 establishes a correct proof of a result due to Shah and Liman [1, Theorem 3] for $p \geq 1$ and also extends it for $0 \leq p<1$ as well.

Remark 3. If we choose $\lambda_{0}=0=\lambda_{2}$ in (1.21), we get for $R>1$ and $0 \leq p<\infty$,

$$
\left\|P^{\prime}(R z)\right\|_{p} \leq \frac{n R^{n-1}}{\|1+z\|_{p}}\|P(z)\|_{p}
$$

which, in particular, yields Inequality (1.7). Next if we take $\lambda_{1}=0=\lambda_{2}$ in (1.21), we get Inequality (1.8). Inequality (1.12) can be obtained from corollary 2 by letting $p \rightarrow \infty$ in (1.20).
By using triangle inequality, the following result immediately follows from Theorem 2.

Corollary 4. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish for $|z|<1$, then for $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1 \quad 0 \leq p<\infty$ and $R>r \geq 1$,

$$
\begin{align*}
& \left\|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{\mathrm{r}}\right](z)\right\|_{p} \\
& \leq \frac{\left[\left|\left(R^{n}-\alpha r^{n}\right) \phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|+\left|(1-\alpha) \lambda_{0}\right|\right]}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.23}
\end{align*}
$$

$B \in \mathcal{B}_{n}, \quad \rho_{t}(t)=t z \quad$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is defined by (1.13).

A polynomial $P \in \mathcal{P}_{n}$ is said be self-inversive if $P(z) \equiv v P^{\star}(z)$ where $|v|=1$ and $P^{\star}(z)$ is the conjugate polynomial of $P(z)$, that is, $P^{\star}(z):=z^{n} \overline{P(1 / \bar{z})}$.

Finally in this paper, we establish the following result for self-inversive polynomials, which includes a correct proof of an another result of Shah and Liman [1, Theorem 2] as a special case.
Theorem 3. If $P \in \mathcal{P}_{n}$ and $P(z)$ is a self-inversive polynomial, then for $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1 \quad 0 \leq p<\infty$ and $R>r \geq 1$,

$$
\begin{align*}
& \left\|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right\|_{p} \\
& \leq \frac{\left\|\left(R^{n}-\alpha r^{n}\right) \phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) z+(1-\alpha) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}, \tag{1.24}
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \quad \rho_{t}(t)=t z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is given by (1.13). The result is sharp and an extremal polynomial is $P(z)=c\left(a z^{n}+\bar{a}\right), \quad a c \neq 0$.

For $\alpha=0$, we get the following result.
Corollary 5. If $P \in \mathcal{P}_{n}$ and $P(z)$ is a self-inversive polynomial, then for $0 \leq p<\infty$ and $R>1$,

$$
\begin{align*}
& \|B[P \circ \rho](z)\|_{p} \\
& \leq \frac{\left\|R^{n} \phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) z+\lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}, \tag{1.25}
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \quad \rho(z)=R z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is given by (1.13).

The following result is an immediate consequence of

Corollary 5.
Corollary 6 If $P \in \mathcal{P}_{n}$ and $P(z)$ is a self-inversive polynomial, then for $0 \leq p<\infty$ and $R>1$,

$$
\begin{align*}
& \|B[P \circ \rho](z)\|_{p} \\
& \leq \frac{\left[\left|R^{n} \phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|+\left|\lambda_{0}\right|\right]}{\|1+z\|_{p}}\|P(z)\|_{p}, \tag{1.26}
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \quad \rho(z)=R z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is given by (1.13).

Remark 4. Corollary 6 establishes a correct proof of a result due to Shah and Liman [1, Theorem 3] for $p \geq 1$ and also extends it for $0 \leq p<1$ as well.

Remark 5. A variety of interesting results can be easily deduced from Theorem 3 in the same way as we have deduced from Theorem 2. Here we mention a few of these. Taking $\lambda_{0}=0=\lambda_{2}=$ in (1.25), we get for $R>1$ and $0 \leq p<\infty$,

$$
\left\|P^{\prime}(R z)\right\|_{p} \leq \frac{n R^{n-1}}{\|1+z\|_{p}}\|P(z)\|_{p}
$$

which, in particular, yields a result due to Dewan and Govil [17] and A. Aziz [18] for polynomials $P \in \mathcal{P}_{n}^{\star}$. Next if we choose $\lambda_{1}=0=\lambda_{2}$ in (1.25), we get for $R<1 ; 0 \leq p<\infty$

$$
\|P(R z)\|_{p} \leq \frac{\left\|R^{n} z+1\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}
$$

The above inequality is a special case of a result proved by Aziz and Rather [19].

Lastly letting $p \rightarrow \infty$ in (1.25), it follows that if $P(z)$, is a self-inversive polynomial then

$$
\begin{align*}
& \|B[P \circ \rho](z)\|_{\infty} \\
& \leq \frac{1}{2}\left\{R^{n}\left|\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|+\left|\lambda_{0}\right|\right\}\|P(z)\|_{\infty}, \tag{1.27}
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \rho(z)=R z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is defined by (1.13). The result is sharp.

Inequality (1.27) is a special case of a result due to Rahman and Schmeisser [4, Cor. 14.5.6].

2. Lemma

For the proof of above theorems we need the following Lemmas:

The following lemma follows from Corollary 18.3 of [20, p. 86].

Lemma 1. If $P \in \mathcal{P}_{n}$ and $P(z)$ has all zeros in $|z| \leq 1$, then all the zeros of $B[P](z)$ also lie in $z \mid \leq 1$.
Lemma 2. If $P \in \mathcal{P}_{n}$ and $P(z)$ have all its zeros in $|z| \leq 1$ then for every $R \geq r \geq 1$, and $|z|=1$,

$$
|P(R z)| \geq\left(\frac{R+1}{r+1}\right)^{n}|P(r z)|
$$

Proof. Since all the zeros of $P(z)$ lie in $|z| \leq 1$, we write

$$
P(z)=C \prod_{j=1}^{n}\left(z-r_{j} \mathrm{e}^{\mathrm{i} \theta_{j}}\right)
$$

where $r_{j} \leq 1$. Now for $0 \leq \theta<2 \pi, R \geq r \geq 1$, we have

$$
\begin{aligned}
\left|\frac{R \mathrm{e}^{\mathrm{i} \theta}-r_{j} \mathrm{e}^{\mathrm{i} \theta_{j}}}{r \mathrm{e}^{\mathrm{i} \theta}-r_{j} \mathrm{e}^{\mathrm{i} \theta_{j}}}\right| & =\left\{\frac{R^{2}+r_{j}^{2}-2 R r_{j} \cos \left(\theta-\theta_{j}\right)}{r+r_{j}^{2}-2 r r_{j} \cos \left(\theta-\theta_{j}\right)}\right\}^{1 / 2} \\
& \geq\left\{\frac{R+r_{j}}{r+r_{j}}\right\} \geq\left\{\frac{R+1}{r+1}\right\}, \text { for } j=1,2, \cdots, n .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left|\frac{P\left(\mathrm{Re}^{\mathrm{i} \theta}\right)}{P\left(r \mathrm{e}^{\mathrm{i} \theta}\right)}\right|=\prod_{j=1}^{n}\left|\frac{\mathrm{R} \mathrm{e}^{\mathrm{i} \theta}-r_{j} \mathrm{e}^{\mathrm{i} \theta_{j}}}{r \mathrm{e}^{\mathrm{i} \theta}-r_{j} \mathrm{e}^{\mathrm{i} \theta_{j}}}\right| \\
& \geq \prod_{j=1}^{n}\left(\frac{R+1}{r+1}\right)=\left(\frac{R+1}{r+1}\right)^{n},
\end{aligned}
$$

for $0 \leq \theta<2 \pi$. This implies for $|z|=1$ and $R \geq r \geq 1$,

$$
|P(R z)| \geq\left(\frac{R+1}{r+1}\right)^{n}|P(r z)|
$$

which completes the proof of Lemma 2.
Lemma 3. If $P \in \mathcal{P}_{n}$ and $P(z)$ has no zero in $|z|<1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1, \quad R>r \geq 1$ and $|z|=1$,

$$
\begin{align*}
& \left|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right| \\
& \leq\left|B\left[P^{\star} \circ \rho_{R}\right](z)-\alpha B\left[P^{\star} \circ \rho_{r}\right](z)\right|, \tag{2.1}
\end{align*}
$$

where $P^{\star}(z):=z^{n} \overline{P(1 / \bar{z})}$ and $\rho_{t}(z)=t z$.
Proof. Since the polynomial $P(z)$ has all its zeros in $|z| \geq 1$, therefore, for every real or complex number λ with $|\lambda|>1$, the polynomial $f(z)=P(z)-\lambda P^{\star}(z)$, where $P^{\star}(z):=z^{n} \overline{P(1 / \bar{z})}$ has all zeros in $|z| \leq 1$. Applying Lemma 2 to the polynomial $f(z)$, we obtain for every $R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\left|f\left(R \mathrm{e}^{\mathrm{i} \theta}\right)\right| \geq\left(\frac{R+1}{r+1}\right)^{n}\left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \tag{2.2}
\end{equation*}
$$

Since $f\left(R \mathrm{e}^{\mathrm{i} \theta}\right) \neq 0$ for every $R>r \geq 1, \quad 0 \leq \theta<2 \pi$ and $R+1>r+1$, it follows from (2.2) that

$$
\left|f\left(R \mathrm{e}^{\mathrm{i} \theta}\right)\right|>\left(\frac{R+1}{r+1}\right)^{n}\left|f\left(R \mathrm{e}^{\mathrm{i} \theta}\right)\right| \geq\left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|
$$

for every $R>r \geq 1$ and $0 \leq \theta<2 \pi$. This gives

$$
|f(r z)|<|f(R z)| \text { for }|z|=1, \text { and } R>r \geq 1
$$

Using Rouche's theorem and noting that all the zeros of $f(R z)$ lie in $|z| \leq 1 / R<1$, we conclude that the polynomial

$$
\begin{aligned}
T(z) & =f(R z)-\alpha f(r z) \\
& =\{P(R z)-\alpha P(r z)\}-\lambda\left\{P^{\star}(R z)-\alpha P^{\star}(r z)\right\}
\end{aligned}
$$

has all its zeros in $|z|<1$ for every real or complex α with $|\alpha| \geq 1$ and $R>r \geq 1$.

Applying Lemma 1 to polynomial $T(z)$ and noting that B is a linear operator, it follows that all the zeros of polynomial

$$
\begin{aligned}
B[T](z) & =B\left[f \circ \rho_{R}\right](z)-\alpha B\left[f \circ \rho_{r}\right](z) \\
& =\left\{B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right\} \\
& -\lambda\left\{B\left[P^{\star} \circ \rho_{R}\right](z)-\alpha B\left[P^{\star} \circ \rho_{r}\right](z)\right\}
\end{aligned}
$$

lie in $|z|<1$ where $\rho_{t}(z)=t z$. This implies

$$
\begin{align*}
& \left|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right| \\
& \leq\left|B\left[P^{\star} \circ \rho_{R}\right](z)-\alpha B\left[P^{\star} \circ \rho_{r}\right](z)\right| \tag{2.3}
\end{align*}
$$

for $|z| \geq 1$ and $R>r \geq 1$. If Inequality (2.3) is not true, then there exits a point $z=z_{0}$ with $\left|z_{0}\right| \geq 1$ such that

$$
\begin{align*}
& \left|B\left[P \circ \rho_{R}\right]\left(z_{0}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(z_{0}\right)\right| \\
& \leq\left|B\left[P^{\star} \circ \rho_{R}\right]\left(z_{0}\right)-\alpha B\left[P^{\star} \circ \rho_{r}\right]\left(z_{0}\right)\right| \tag{2.4}
\end{align*}
$$

But all the zeros of $P^{\star}(R z)$ lie in $|z|<1 / R<1$, therefore, it follows (as in case of $f(z)$) that all the zeros of $P^{\star}(R z)-\alpha P^{\star}(r z)$ lie in $|z|<1$ Hence, by Lemma 1, we have

$$
B\left[P^{\star} \circ \rho_{R}\right]\left(z_{0}\right)-\alpha B\left[P^{\star} \circ \rho_{r}\right]\left(z_{0}\right) \neq 0
$$

We take

$$
\lambda=\frac{B\left[P \circ \rho_{R}\right]\left(z_{0}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(z_{0}\right)}{B\left[P^{\star} \circ \rho_{R}\right]\left(z_{0}\right)-\alpha B\left[P^{\star} \circ \rho_{r}\right]\left(z_{0}\right)}
$$

then λ is well defined real or complex number with $|\lambda|>1$ and with this choice of λ, we obtain $B[T]\left(z_{0}\right)=0$ where $\left|z_{0}\right| \geq 1$. This contradicts the fact that all the zeros of $B[T](z)$ lie in $|z|<1$. Thus (2.3) holds true for $|\alpha| \leq 1$ and $R>r \geq 1$.

Next we describe a result of Arestov [11].
For $\delta=\left(\delta_{0}, \delta_{1}, \cdots, \delta_{n}\right) \in \mathbb{C}^{n+1}$ and
$P(z)=\sum_{j=0}^{n} a_{j} z^{j} \in \mathcal{P}_{n}$, we define

$$
\Lambda_{\delta} P(z)=\sum_{j=0}^{n} \delta_{j} a_{j} z^{j}
$$

The operator Λ_{δ} is said to be admissible if it pre-
serves one of the following properties:

1) $P(z)$ has all its zeros in $\{z \in \mathbb{C}:|z| \leq 1\}$.
2) $P(z)$ has all its zeros in $\{z \in \mathbb{C}:|z| \geq 1\}$.

The result of Arestov [11] may now be stated as follows.
Lemma 4. [11, Theorem 4] Let $\phi(x)=\psi(\log x)$ where ψ is a convex non decreasing function on \mathbb{R}. Then for all $P \in \mathcal{P}_{n}$ and each admissible operator Λ_{δ},

$$
\begin{aligned}
& \int_{0}^{2 \pi} \phi\left(\left|\Lambda_{\delta} P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|\right) \mathrm{d} \theta \\
& \leq \int_{0}^{2 \pi} \phi\left(C(\delta, n)\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|\right) \mathrm{d} \theta,
\end{aligned}
$$

where $C(\delta, n)=\max \left(\left|\delta_{0}\right|,\left|\delta_{n}\right|\right)$.
In particular, Lemma 4 applies with $\phi: x \rightarrow x^{p}$ for every $p \in(0, \infty)$. Therefore, we have

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left(\left|\Lambda_{\delta} P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}\right) \mathrm{d} \theta\right\}^{1 / p} \tag{2.5}\\
& \leq C(\delta, n)\left\{\int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta\right\}^{1 / p} .
\end{align*}
$$

We use (2.5) to prove the following interesting result.
Lemma 5. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every $p>0, R>r \geq 1$ and for σ real, $0 \leq \sigma<2 \pi$,

$$
\begin{align*}
& \int_{0}^{2 \pi} \mid\left\{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{\mathrm{r}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right) \mathrm{e}^{\mathrm{i} \sigma}\right. \\
& \left.\left.\quad+\left\{B\left[P^{\star} \circ \rho_{R}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{\mathrm{r}}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right\}\right\} \mid \mathrm{d} \theta \tag{2.6}\\
& \leq\left|\left(R^{n}-\alpha r^{n}\right) \phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\bar{\alpha}) \bar{\lambda}_{0}\right|^{p} \\
& \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta,
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \rho_{t}(z):=t z$,
$B\left[P^{\star} \circ \rho_{t}\right]^{\star}(z):=\left(B\left[P^{\star} \circ \rho_{t}\right](z)\right)^{\star}$ and $\phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is defined by (1.13).

Proof. Since $P \in \mathcal{P}_{n}$ and $P^{\star}(z):=z^{n} \overline{P(1 / \bar{z})}$, by Lemma 3, we have for $|z| \geq 1$,

$$
\begin{align*}
& \left|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right| \\
& \leq\left|B\left[P^{\star} \circ \rho_{R}\right](z)-\alpha B\left[P^{\star} \circ \rho_{r}\right](z)\right|, \tag{2.7}
\end{align*}
$$

Also, since

$$
\begin{aligned}
& P^{\star}(R z)-\alpha P^{\star}(r z) \\
& =R^{n} z^{n} \overline{P(1 / R \bar{z})}-\alpha r^{n} z^{n} \overline{P(1 / r \bar{z})},
\end{aligned}
$$

$$
\begin{aligned}
& B\left[P^{\star} \circ \rho_{R}\right](z)-\alpha B\left[P^{\star} \circ \rho_{r}\right](z) \\
& =\lambda_{0}\left\{R^{n} z^{n} \overline{P(1 / R \bar{z})}-\alpha r^{n} z^{n} \overline{P(1 / r \bar{z})}\right\} \\
& +\lambda_{1}\left(\frac{n z}{2}\right)\left\{\left(n R^{n} z^{n-1} \overline{P(1 / R \bar{z}}\right)-R^{n-1} z^{n-2} \overline{P^{\prime}(1 / R \bar{z})}\right) \\
& \left.-\alpha\left(n r^{n} z^{n-1} \overline{P(1 / r \bar{z})}-r^{n-1} z^{n-2} \overline{P^{\prime}(1 / r \bar{z})}\right)\right\} \\
& +\frac{\lambda_{2}}{2!}\left(\frac{n z}{2}\right)^{2}\left\{\left(n(n-1) R^{n} z^{n-2} \overline{P(1 / R \bar{z})}\right.\right. \\
& \left.-2(n-1) R^{n-1} z^{n-3} \overline{P^{\prime}(1 / R \bar{z})}+R^{n-2} z^{n-4} \overline{P^{\prime \prime}(1 / R \bar{z})}\right) \\
& -\alpha\left(n(n-1) r^{n} z^{n-2} \overline{P(1 / r \bar{z})}-2(n-1) r^{n-1} z^{n-3} \overline{P^{\prime}(1 / r \bar{z})}\right. \\
& \left.\left.+r^{n-2} z^{n-4} \overline{P^{\prime \prime}(1 / r \bar{z})}\right)\right\}
\end{aligned}
$$

and therefore,

$$
\begin{align*}
& B\left[P^{\star} \circ \rho_{R}\right]^{\star}(z)-\alpha B\left[P^{\star} \circ \rho_{r}\right]^{\star}(z) \\
& =\left(B\left[P^{\star} \circ \rho_{R}\right](z)-\alpha B\left[P^{\star} \circ \rho_{r}\right](z)\right)^{\star} \\
& =\left(\bar{\lambda}_{0}+\bar{\lambda}_{1} \frac{n^{2}}{2}+\overline{\lambda_{2}} \frac{n^{3}(n-1)}{8}\right)\left\{R^{n} P(z / R)-\bar{\alpha} r^{n} P(z / r)\right\} \\
& -\left(\bar{\lambda}_{1} \frac{n}{2}+\overline{\lambda_{2}} \frac{n^{2}(n-1)}{4}\right)\left\{R^{n-1} z P^{\prime}(z / R)-\bar{\alpha} r^{n-1} z P^{\prime}(z / r)\right\} \\
& +\bar{\lambda}_{2} \frac{n^{2}}{8}\left\{R^{n-2} z^{2} P^{\prime \prime}(z / R)-\bar{\alpha} r^{n-2} z^{2} P^{\prime \prime}(z / r)\right\} . \tag{2.8}
\end{align*}
$$

Also, for $|z|=1$,

$$
\begin{aligned}
& \left|B\left[P^{\star} \circ \rho_{R}\right](z)-\alpha B\left[P^{\star} \circ \rho_{r}\right](z)\right| \\
& =\left|B\left[P^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}(z)\right| .
\end{aligned}
$$

Using this in (2.7), we get for $|z|=1$,

$$
\begin{aligned}
& \left|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right| \\
& \leq\left|B\left[P^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}(z)\right| .
\end{aligned}
$$

As in the proof of Lemma 3, the polynomial $P^{\star} \circ \rho_{R}(z)-\alpha P^{\star} \circ \rho_{r}(z)$, has all its zeros in $|z|<1$ and by Lemma $1, B\left[P^{\star} \circ \rho_{R}\right](z)-\alpha B\left[P^{\star} \circ \rho_{r}\right](z)$, also has all its zero in $|z|<1$, therefore,
$B\left[P^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}(z)$ has all its zeros in $|z| \geq 1$. Hence by the maximum modulus principle, for $|z|=1$,

$$
\begin{align*}
& \left|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right| \\
& <\left|B\left[P^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}(z)\right| . \tag{2.9}
\end{align*}
$$

A direct application of Rouche's theorem shows that with $P(z)=a_{n} z^{n}+\cdots+a_{0}$,

$$
\begin{aligned}
& \Lambda_{\delta} P(z) \\
& =\left\{B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right\} \mathrm{e}^{\mathrm{i} \sigma}+B\left[P^{\star} \circ \rho_{R}\right]^{\star}(z) \\
& -\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}(z) \\
& =\left\{\left(R^{n}-\alpha r^{n}\right)\left(\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\bar{\alpha}) \bar{\lambda}_{0}\right\} \\
& \cdot a_{n} z^{n}+\cdots \\
& +\left\{\left(R^{n}-\bar{\alpha} r^{n}\right)\left(\bar{\lambda}_{0}+\bar{\lambda}_{1} \frac{n^{2}}{2}+\bar{\lambda}_{2} \frac{n^{3}(n-1)}{8}\right)+\mathrm{e}^{\mathrm{i} \sigma}(1-\alpha) \lambda_{0}\right\} \\
& \cdot a_{0},
\end{aligned}
$$

has all its zeros in $|z| \geq 1$ for every real σ, $0 \leq \sigma \leq 2 \pi$. Therefore, Λ_{δ} is an admissible operator. Applying (2.5) of Lemma 4, the desired result follows immediately for each $p>0$.
From Lemma 5, we deduce the following more general result.
Lemma 6. If $P \in \mathcal{P}_{n}$, then for every $p>0$, $R>r \geq 1$ and σ real $0 \leq \sigma \leq 2 \pi$,

$$
\begin{align*}
& \int_{0}^{2 \pi} \mid\left\{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma} \\
& +\left.\left\{B\left[P^{\star} \circ \rho_{R}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{\mathrm{r}}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|^{p} \mathrm{~d} \theta \tag{2.10}\\
& \leq\left|\left(R^{n}-\alpha r^{n}\right) \phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\bar{\alpha}) \bar{\lambda}_{0}\right|^{p} \\
& \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta,
\end{align*}
$$

Proof. Let $P \in \mathcal{P}_{n}$ and let $z_{1}, z_{2}, \cdots, z_{n}$ be the zeros of $P(z)$. If $\left|z_{j}\right| \geq 1$ for all $j=1,2, \cdots, n$, then the result follows by Lemma 5 . Henceforth, we assume that $P(z)$ has at least one zero in $|z|<1$ so that we can write

$$
\begin{aligned}
& P(z)=P_{1}(z) P_{2}(z) \\
& =a \prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(z-z_{j}\right), \\
& 0 \leq k \leq n-1, a \neq 0
\end{aligned}
$$

where the zeros $z_{1}, z_{2}, \cdots, z_{k}$ of $P_{1}(z)$ lie in $|z| \geq 1$ and the zeros $z_{k+1}, z_{k+2}, \cdots, z_{n}$ of $P_{2}(z)$ lie in $|z|<1$. First we suppose that $P_{1}(z)$ has no zero on $|z|=1$ so that all the zeros of $P_{1}(z)$ lie in $|z|>1$. Since all the zeros of $(n-k)$ th degree polynomial $P_{2}(z)$ lie in $|z|<1$, all the zeroes of its conjugate polynomial $P_{2}^{\star}(z)=z^{n-k} \overline{P_{2}(1 / \bar{z})}$ lie in $|z|>1$ and $\left|P_{2}^{\star}(z)\right|=\left|P_{2}(z)\right|$ for $|z|=1$. Now consider the polynomial

$$
\begin{aligned}
& f(z)=P_{1}(z) P_{2}^{\star}(z) \\
& =a \prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(1-z \bar{z}_{j}\right),
\end{aligned}
$$

then all the zeroes of $f(z)$ lie in $|z|>1$, and for $|z|=1$,

$$
\begin{align*}
& |f(z)|=\left|P_{1}(z)\right|\left|P_{2}^{\star}(z)\right| \tag{2.11}\\
& =\left|P_{1}(z)\right|\left|P_{2}(z)\right|=|P(z)|
\end{align*}
$$

Therefore, it follows by Rouche's Theorem that the polynomial $g(z)=P(z)+\beta f(z)$ has all its zeros in $|z|>1$ for every β, with $|\beta|>1$ so that all the zeros of $T(z)=g(\tau z)$ lie in $|z| \geq 1$ for some $\tau>1$. Applying (2.9) and (2.8) to the polynomial $T(z)$, we get for $R>1$ and $|z|<1$,

$$
\begin{aligned}
& \left|B\left[T \circ \rho_{R}\right](z)-\alpha B\left[T \circ \rho_{r}\right](z)\right| \\
& <\left|B\left[T^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[T^{\star} \circ \rho_{r}\right]^{\star}(z)\right| \\
& =\left\lvert\,\left(\bar{\lambda}_{0}+\bar{\lambda}_{1} \frac{n^{2}}{2}+\bar{\lambda}_{2} \frac{n^{3}(n-1)}{8}\right)\right. \\
& \cdot\left\{R^{n} T(z / R)-\bar{\alpha} r^{n} T(z / r)\right\} \\
& -\left(\bar{\lambda}_{1} \frac{n}{2}+\bar{\lambda}_{2} \frac{n^{2}(n-1)}{4}\right) \\
& \cdot\left\{R^{n-1} z T^{\prime}(z / R)-\bar{\alpha} r^{n-1} z T^{\prime}(z / r)\right\} \\
& \left.+\bar{\lambda}_{2} \frac{n^{2}}{8}\left\{R^{n-2} z^{2} T^{\prime \prime}(z / R)-\bar{\alpha} r^{n-2} z^{2} T^{\prime \prime}(z / r)\right\} \right\rvert\,
\end{aligned}
$$

that is,

$$
\begin{align*}
& \left|B\left[T \circ \rho_{R}\right](z)-\alpha B\left[T \circ \rho_{r}\right](z)\right| \\
& <\left\lvert\,\left(\bar{\lambda}_{0}+\bar{\lambda}_{1} \frac{n^{2}}{2}+\bar{\lambda}_{2} \frac{n^{3}(n-1)}{8}\right)\right. \\
& \left\{R^{n} g(\tau z / R)-\bar{\alpha} r^{n} g(\tau z / r)\right\} \\
& -\left(\bar{\lambda}_{1} \frac{n}{2}+\bar{\lambda}_{2} \frac{n^{2}(n-1)}{4}\right) \tag{2.12}\\
& \times\left\{R^{n-1} \tau z g^{\prime}(\tau z / R)-\bar{\alpha} r^{n-1} \tau z g^{\prime}(\tau z / r)\right\} \\
& \left.+\bar{\lambda}_{2} \frac{n^{2}}{8}\left\{R^{n-2} z^{2} \tau^{2} g^{\prime \prime}(\tau z / R)-\bar{\alpha} r^{n-2} z^{2} \tau^{2} g^{\prime \prime}(\tau z / r)\right\} \right\rvert\,
\end{align*}
$$

for $|z|<1$. If $z=\mathrm{e}^{\mathrm{i} \theta} / \tau, 0 \leq \theta<2 \pi$, then $|z|=(1 / \tau)<1$ as $\tau>1$ and we get

$$
\left|B\left[g \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta} / \tau\right)-\alpha B\left[g \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta} / \tau\right)\right|
$$

$$
\begin{aligned}
& <\left\lvert\,\left(\bar{\lambda}_{0}+\bar{\lambda}_{1} \frac{n^{2}}{2}+\bar{\lambda}_{2} \frac{n^{3}(n-1)}{8}\right)\right. \\
& \cdot\left\{R^{n} g\left(\mathrm{e}^{\mathrm{i} \theta} / R\right)-\bar{\alpha} r^{n} g\left(\mathrm{e}^{\mathrm{i} \theta} / r\right)\right\} \\
& -\left(\bar{\lambda}_{1} \frac{n}{2}+\bar{\lambda}_{2} \frac{n^{2}(n-1)}{4}\right) \\
& \times\left\{R^{n-1} \mathrm{e}^{\mathrm{i} \theta} g^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta} / R\right)-\bar{\alpha} r^{n-1} \mathrm{e}^{\mathrm{i} \theta} g^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta} / r\right)\right\} \\
& \left.+\bar{\lambda}_{2} \frac{n^{2}}{8}\left\{R^{n-2} \mathrm{e}^{\mathrm{i} \theta} g^{\prime \prime}\left(\mathrm{e}^{\mathrm{i} \theta} / R\right)-\bar{\alpha} r^{n-2} \mathrm{e}^{\mathrm{i} \theta} g^{\prime \prime}\left(\mathrm{e}^{\mathrm{i} \theta} / r\right)\right\} \right\rvert\,
\end{aligned}
$$

Equivalently, for $|z|=1$,

$$
\begin{aligned}
& \left|B\left[g \circ \rho_{R}\right](z)-\alpha B\left[g \circ \rho_{r}\right](z)\right| \\
& <\left|B\left[g^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[g^{\star} \circ \rho_{r}\right]^{\star}(z)\right|,
\end{aligned}
$$

where $\rho_{t}(z)=t z$.
Since $g(z)$ has all its zeros in $|z|>1$, it follows that $g^{\star}(z)$ has its zeros in $|z|<1$ and hence (proceeding similarly as in proof of Lemma 3) the polynomial $g^{\star} \circ \rho_{R}(z)-\alpha g^{\star} \circ \rho_{r}(z)$ also has all its zeros in $|z|<1$. By Lemma 1,
$B\left[g^{\star} \circ \rho_{R}\right](z)-\alpha B\left[g^{\star} \circ \rho_{r}\right](z)$ has all zeros in $|z|<1 \quad$ and thus $B\left[g^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[g^{\star} \circ \rho_{r}\right]^{\star}(z)$ does not vanish in $|z|<1$.

An application of Rouche's theorem shows that the polynomial

$$
\begin{align*}
& L(z)=\left\{B\left[g \circ \rho_{R}\right](z)-\alpha B\left[g \circ \rho_{r}\right](z)\right\} \mathrm{e}^{\mathrm{i} \sigma} \\
& +B\left[g^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[g^{\star} \circ \rho_{r}\right]^{\star}(z) \tag{2.13}
\end{align*}
$$

has all zeros in $|z|>1$. Writing in $g(z):=P(z)+\beta f(z)$ and noting that B is a linear operator, it follows that the polynomial

$$
\begin{align*}
L(z)= & \left\{B\left[g \circ \rho_{R}\right](z)-\alpha B\left[g \circ \rho_{r}\right](z)\right\} \mathrm{e}^{\mathrm{i} \sigma} \\
+ & \left\{B\left[g^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[g^{\star} \circ \rho_{r}\right]^{\star}(z)\right\} \\
+ & \beta\left[\left\{B\left[f \circ \rho_{R}\right](z)-\alpha B\left[f \circ \rho_{R}\right](z)\right\} \mathrm{e}^{\mathrm{i} \sigma},\right. \tag{2.14}\\
& \left.+\left\{B\left[f^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[f^{\star} \circ \rho_{r}\right]^{\star}(z)\right\}\right]
\end{align*}
$$

has all its zeros in $|z|>1$ for every β with $|\beta|>1$.
We claim

$$
\begin{align*}
& \left|\left\{B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[P^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}(z)\right\}\right| \tag{2.15}\\
& \leq\left|\left\{B\left[f \circ \rho_{R}\right](z)-\alpha B\left[f \circ \rho_{R}\right](z)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[f^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[f^{\star} \circ \rho_{r}\right]^{\star}(z)\right\}\right|,
\end{align*}
$$

for $|z| \leq 1$. If Inequality (2.15) is not true, then there exists a point $z=z_{0}$ with $\left|z_{0}\right| \leq 1$ such that

$$
\begin{aligned}
& \left|\left\{B\left[P \circ \rho_{R}\right]\left(z_{0}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(z_{0}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[P^{\star} \circ \rho_{R}\right]^{\star}\left(z_{0}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}\left(z_{0}\right)\right\}\right| \\
& >\left|\left\{B\left[f \circ \rho_{R}\right]\left(z_{0}\right)-\alpha B\left[f \circ \rho_{R}\right]\left(z_{0}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[f^{\star} \circ \rho_{R}\right]^{\star}\left(z_{0}\right)-\bar{\alpha} B\left[f^{\star} \circ \rho_{r}\right]^{\star}\left(z_{0}\right)\right\}\right|,
\end{aligned}
$$

Since $f(z)$ has all its zeros in $|z|>1$, proceeding similarly as in the proof of (2.13), it follows that $\left\{B\left[f \circ \rho_{R}\right](z)-\alpha B\left[f \circ \rho_{R}\right](z)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[f^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[f^{\star} \circ \rho_{r}\right]^{\star}(z)\right\} \neq 0$ for $|z| \leq 1$ We take

$$
\beta=\frac{\left[\left\{B\left[P \circ \rho_{R}\right]\left(z_{0}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(z_{0}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[P^{\star} \circ \rho_{R}\right]^{\star}\left(z_{0}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}\left(z_{0}\right)\right\}\right]}{\left[\left\{B\left[f \circ \rho_{R}\right]\left(z_{0}\right)-\alpha B\left[f \circ \rho_{R}\right]\left(z_{0}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[f^{\star} \circ \rho_{R}\right]^{\star}\left(z_{0}\right)-\bar{\alpha} B\left[f^{\star} \circ \rho_{r}\right]^{\star}\left(z_{0}\right)\right\}\right]}
$$

so that β is a well-defined real or complex number with $|\beta|>1$ and with this choice of β, from (2.14), we get $L\left(z_{0}\right)=0$. This clearly is a contradiction to the fact

$$
\begin{aligned}
& \left.\int_{0}^{2 \pi}\left|\left\{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[P^{\star} \circ \rho_{R}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|\right|^{p} \mathrm{~d} \theta \\
& \leq \int_{0}^{2 \pi}\left|\left\{B\left[f \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[f \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[f^{\star} \circ \rho_{R}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\bar{\alpha} B\left[f^{\star} \circ \rho_{r}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|^{p} \mathrm{~d} \theta .
\end{aligned}
$$

Lemma 4 and (2.7) applied to f, gives for each $p>0$,

$$
\begin{align*}
& \left.\int_{0}^{2 \pi} \mid\left\{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[P^{\star} \circ \rho_{R}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right)\right\}\left.\right|^{p} \mathrm{~d} \theta \\
& \leq\left|\left(R^{n}-\alpha r^{n}\right) \phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\bar{\alpha}) \bar{\lambda}_{0}\right|^{p} \times \int_{0}^{2 \pi}\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \tag{2.16}\\
& =\left|\left(R^{n}-\alpha r^{n}\right) \phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\bar{\alpha}) \bar{\lambda}_{0}\right|^{p} \times \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta .
\end{align*}
$$

Now if $P_{1}(z)$ has a zero on $|z|=1$, then applying (2.16) to the polynomial $\tilde{P}(z)=P_{1}(\mu z) P_{2}(z)$ where $0<\mu<1$, we get for each $p>0, R>r \geq 1$ and σ real,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|\left\{B\left[\tilde{P} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[\tilde{P} \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[\tilde{P}^{\star} \circ \rho_{R}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[\tilde{P}^{\star} \circ \rho_{r}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|^{p} \mathrm{~d} \theta \tag{2.17}\\
& \leq\left|\left(R^{n}-\alpha r^{n}\right) \phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\bar{\alpha}) \overline{\lambda_{0}}\right|^{p} \int_{0}^{2 \pi}\left|\tilde{P}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta
\end{align*}
$$

Letting $\mu \rightarrow 1$ in (2.17) and using continuity, the desired result follows immediately and this proves Lemma 6 .
Lemma 7. If $P \in \mathcal{P}_{n}$, then for every $p>0, R>r \geq 1$ and $0 \leq \sigma<2 \pi$,

$$
\begin{align*}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\left\{B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right\}+\mathrm{e}^{\mathrm{i} \sigma}\left\{B\left[P^{\star} \circ \rho_{R}\right](z)-\alpha B\left[P^{\star} \circ \rho_{\mathrm{r}}\right](z)\right\}\right|^{p} \mathrm{~d} \theta \mathrm{~d} \sigma \tag{2.18}\\
& \leq \int_{0}^{2 \pi}\left|\left(R^{n}-\alpha r^{n}\right) \phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\bar{\alpha}) \bar{\lambda}_{0}\right|^{p} \mathrm{~d} \sigma \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta,
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \rho_{t}(z)=t z$ and $\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ is defined by (1.13). The result is best possible and $P(z)=b z^{n}$ is an extremal polynomial for any $b \neq 0$.
Proof. By Lemma 6, for each $p>0,0 \leq \alpha<2 \pi$ and $R>r \geq 1$, the Inequality (2.6) holds. Since $B\left[P^{\star} \circ \rho_{R}\right]^{\star}(z)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}(z)$ is the conjugate polynomial of $B\left[P^{\star} \circ \rho_{R}\right](z)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right](z)$,

$$
\left|B\left[P^{\star} \circ \rho_{R}\right](z)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right](z)\right|=\left|B\left[P^{\star} \circ \rho_{R}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|,
$$

and therefore for each $p>0, R>r \geq 1$ and $0 \leq \alpha<2 \pi$, we have

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|\left\{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{\mathrm{r}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}+\mathrm{e}^{\mathrm{i} \sigma}\left\{B\left[P^{\star} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P^{\star} \circ \rho_{\mathrm{r}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|^{p} \mathrm{~d} \sigma \\
& =\int_{0}^{2 \pi}\left\|B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{\mathrm{r}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\left|\mathrm{e}^{\mathrm{i} \sigma}+\right| B\left[P^{\star} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P^{\star} \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\|^{p} \mathrm{~d} \sigma \tag{2.19}\\
& =\int_{0}^{2 \pi}\left\|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{\mathrm{r}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\left|+\mathrm{e}^{\mathrm{i} \sigma}\right| B\left[P^{\star} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{\mathrm{r}}\right]{ }^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\|^{p} \mathrm{~d} \sigma .
\end{align*}
$$

Integrating (2.19) both sides with respect to θ from 0 to 2π and using (2.6), we get

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\left\{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\} \mathrm{e}^{\mathrm{i} \sigma}+\left\{B\left[P^{\star} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P^{\star} \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|^{p} \mathrm{~d} \sigma \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} \| B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\left|\mathrm{e}^{\mathrm{i} \sigma}+\left|B\left[P^{\star} \circ \rho_{R}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \sigma \mathrm{~d} \theta,\right. \\
& =\int_{0}^{2 \pi}\left\{\int_{0}^{2 \pi}\left|\left(B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{\mathrm{r}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right) \mathrm{e}^{\mathrm{i} \sigma}+\left(B\left[P^{\star} \circ \rho_{R}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\bar{\alpha} B\left[P^{\star} \circ \rho_{r}\right]^{\star}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right)\right|^{p} \mathrm{~d} \theta\right\} \mathrm{d} \sigma \\
& \leq\left|\left(R^{n}-\alpha r^{n}\right) \phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\bar{\alpha}) \bar{\lambda}_{0}\right|^{p} \mathrm{~d} \sigma \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi}\left|\left(R^{n}-\alpha r^{n}\right) \phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\bar{\alpha}) \bar{\lambda}_{0}^{p}\right|^{p} \mathrm{~d} \sigma \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta,
\end{aligned}
$$

which establishes Inequality (2.18).

3. Proof of Theorems

Proof of Theorem. By hypothesis $P \in \mathcal{P}_{n}$, we can write

$$
\begin{aligned}
P(z) & =P_{1}(z) P_{2}(z) \\
& =a \prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(z-z_{j}\right), k \geq 1, a \neq 0,
\end{aligned}
$$

where the zeros $z_{1}, z_{2}, \cdots, z_{k}$ of $P_{1}(z)$ lie in $|z| \leq 1$ and the zeros $z_{k+1}, z_{k+2}, \cdots, z_{n}$ of $P_{2}(z)$ lie in $|z|>1$. First, we suppose that all the zeros of $P_{1}(z)$ lie in $|z|<1$. Since all the zeros of $P_{2}(z)$ lie in $|z|>1$, the polynomial $P_{2}^{\star}(z)=z^{n-k} \overline{P_{2}(1 / \bar{z})}$ has all its zeroes in $|z|<1$ and $\left|P_{2}^{\star}(z)\right|=\left|P_{2}(z)\right|$ for $|z|=1$. Now consider the polynomial

$$
M(z)=P_{1}(z) P_{2}^{\star}(z)=a \prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(1-z \bar{z}_{j}\right)
$$

then all the zeros of $M(z)$ lie in $|z|<1$, and for $|z|=1$,

$$
\begin{equation*}
|M(z)|=\left|P_{1}(z)\right|\left|P_{2}^{\star}(z)\right|=\left|P_{1}(z)\right|\left|P_{2}(z)\right|=|P(z)| \tag{3.1}
\end{equation*}
$$

Observe that $P(z) / M(z) \rightarrow 1 / \prod_{j=k+1}^{n}\left(-\bar{z}_{j}\right)$ when $z \rightarrow \infty$, so it is regular even at ∞ and thus from (3.1) and by the maximum modulus principle, it follows that

$$
|P(z)| \leq|M(z)| \text { for }|z| \geq 1
$$

Since $M(z) \neq 0$ for $|z| \geq 1$, a direct application of Rouche's theorem shows that the polynomial $H(z)=P(z)+\lambda M(z)$ has all its zeros in $|z|<1$ for every λ with $|\lambda|>1$. Applying Lemma 2 to the polynomial $H(z)$ and noting that the zeros of $H(R z)$ lie in $|z|<1 / R<1$, we deduce (as in Lemma 3) that for every real or complex α with $|\alpha| \leq 1$, all the zeros of polynomial

$$
\begin{aligned}
& G(z)=H(R z)-\alpha H(r z) \\
& =\{P(R z)-\alpha P(r z)\}-\lambda\{M(R z)-\alpha M(r z)\}
\end{aligned}
$$

lie in $|z|<1$. Applying Lemma 1 to $G(z)$ and noting that B is a linear operator, it follows that all the zeroes of

$$
\begin{aligned}
& B[G](z)=\left\{B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right\} \\
& -\lambda\left\{B\left[M \circ \rho_{R}\right](z)-\alpha B\left[M \circ \rho_{r}\right](z)\right\}
\end{aligned}
$$

lie in $|z|<1$ for every λ with $|\lambda|>1$. This implies for $|z|>1$,

$$
\begin{aligned}
& \left|B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)\right| \\
& \leq\left|B\left[M \circ \rho_{R}\right](z)-\alpha B\left[M \circ \rho_{r}\right](z)\right|,
\end{aligned}
$$

which, in particular, gives for each $p>0, R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \\
& \leq \int_{0}^{2 \pi}\left|B\left[M \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[M \circ \rho_{\mathrm{r}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \tag{3.2}
\end{align*}
$$

Again, (as in case of $H(z)) M(R z)-\alpha M(r z)$ has all its zeros in $|z|<1$, thus by Lemma 1,
$B\left[P \circ \rho_{R}\right](z)-\alpha B\left[P \circ \rho_{r}\right](z)$ also has all its zeros in $|z|<1$. Therefore, if $E(z)=e_{n} z^{n}+\cdots+e_{1} z+e_{0}$ has all its zeros in $|z|<1$, then the operator Λ_{δ} defined by

$$
\begin{align*}
\Lambda_{\delta} E(z) & =B\left[E \circ \rho_{R}\right](z)-\alpha B\left[E \circ \rho_{r}\right](z) \\
& =\left(R^{n}-\alpha r^{n}\right)\left(\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}\right) e_{n} z^{n} \\
& +\cdots+(1-\alpha) \lambda_{0} e_{0}, \tag{3.3}
\end{align*}
$$

is admissible. Since $M(z)=b_{n} z^{n}+\cdots+b_{0}$, has all its zeros in $|z|<1$, in view of (3.3) it follows by (2.5) of Lemma 4 that for each $p>0$,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|B\left[M \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[M \circ \rho_{\mathrm{r}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \tag{3.4}\\
& \leq\left|R^{n}-\alpha r^{n}\right|^{p}\left|\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right| \int_{0}^{2 \pi}\left|M\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta
\end{align*}
$$

Combining Inequalities (3.3), (3.4) and noting that $\left|M\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|=\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$, we obtain for each $p>0$ and $R>1$,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \tag{3.5}\\
& \leq\left.\left|R^{n}-\alpha r^{n}\right|^{p}\left|\phi_{n}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)\right|\right|_{0} ^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta
\end{align*}
$$

In case $P_{1}(z)$ has a zero on $|z|=1$, then Inequality (3.5) follows by continuity. This proves Theorem 1 for $p>0$. To obtain this result for $p=0$, we simply make $p \rightarrow 0+$.
Proof of Theorem 2. By hypothesis $P(z)$ does not vanish in $|z|<1, \quad \rho_{t}(z)=t z$ and $R>r \geq 1$, therefore, for $0 \leq \theta<2 \pi$, (2.1) holds. Also, for each $p>0$ and σ real, (2.18) holds.

Now it can be easily verified that for every real number σ and $s \geq 1$,

$$
\left|s+\mathrm{e}^{\mathrm{i} \sigma}\right| \geq\left|1+\mathrm{e}^{\mathrm{i} \sigma}\right| .
$$

This implies for each $p>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|s+\mathrm{e}^{\mathrm{i} \sigma}\right|^{p} \mathrm{~d} \sigma \geq \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \sigma}\right|^{p} \mathrm{~d} \sigma \tag{3.6}
\end{equation*}
$$

If $B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right) \neq 0$, we take

$$
s=\frac{B\left[P^{\star} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P^{\star} \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)}
$$

then by (2.1), $s \geq 1$ and we get with the help of (3.6),

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|\left\{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}+\mathrm{e}^{\mathrm{i} \sigma}\left\{B\left[P^{\star} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P^{\star} \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|^{p} \mathrm{~d} \sigma \\
& =\left|B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \sigma} \frac{B\left[P^{\star} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P^{\star} \circ \rho_{\mathrm{r}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)}\right|^{p} \mathrm{~d} \sigma \\
& =\left|B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \sigma}\right| \frac{B\left[P^{\star} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P^{\star} \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta \theta}\right)}{B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)}| |^{p} \mathrm{~d} \sigma \\
& \geq\left|B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \sigma}\right|^{p} \mathrm{~d} \sigma .
\end{aligned}
$$

For $B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)=0$, this inequality is trivially true. Using this in (2.18), we conclude that for each $p>0$,

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|B\left[P \circ \rho_{\mathrm{R}}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \sigma}\right|^{p} \mathrm{~d} \sigma \\
& \leq \int_{0}^{2 \pi}\left|\left(R^{n}-\alpha r^{n}\right) \phi\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mathrm{e}^{\mathrm{i} \sigma}+(1-\alpha) \lambda_{0}\right|^{p} \mathrm{~d} \sigma \\
& \cdot \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta,
\end{aligned}
$$

from which Theorem 2 follows for $p>0$. To establish this result for $p=0$, we simply let $p \rightarrow 0+$.

Proof of Theorem 3. Since $P(z)$ is a self-inversive polynomial, then we have for some v, with $|v|=1$ $P(z)=v P^{\star}(z)$ for all $z \in \mathbb{C}$, where $P^{\star}(z)$ is the conjugate polynomial $P(z)$. This gives, for $0 \leq \theta<2 \pi$

$$
\begin{aligned}
& \left|B\left[P \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \\
& =\left|B\left[P^{\star} \circ \rho_{R}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\alpha B\left[P^{\star} \circ \rho_{r}\right]\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| .
\end{aligned}
$$

Using this in place of (2.1) and proceeding similarly as in the proof of Theorem 2, we get the desired result for each $p>0$. The extension to $p=0$ obtains by letting $p \rightarrow 0+$.

REFERENCES

[1] W. M. Shah and A. Liman, "Integral Estimates for the Family of B-Operators," Operator and Matrices, Vol. 5, No. 1, 2011, pp. 79-87. doi:10.7153/oam-05-04
[2] Q. I. Rahman, "Functions of Exponential Type," Transactions of the American Society, Vol. 135, 1969, pp. 295-309. doi:10.1090/S0002-9947-1969-0232938-X
[3] G. Pólya an G. Szegö, "Aufgaben und Lehrsätze aus der Analysis," Springer-Verlag, Berlin, 1925.
[4] Q. I. Rahman and G. Schmessier, "Analytic Theory of Polynomials," Claredon Press, Oxford, 2002.
[5] A. C. Schaffer, "Inequalities of A. Markoff and S. Bernstein for Polynomials and Related Functions," Bulletin of the American Mathematical Society, Vol. 47, No. 8, 1941, pp. 565-579. doi:10.1090/S0002-9904-1941-07510-5
[6] G. V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias,
"Topics in Polynomials: Extremal Properties, Inequalities," Zeros, World Scientific Publishing Co., Singapore City, 1994.
[7] A. Zugmund, "A Remark on Conjugate Series," Proceedings London Mathematical Society, Vol. 34, No. 2, 1932, pp. 292-400.
[8] G. H. Hardy, "The Mean Value of the Modulus of an Analytic Function," Proceedings London Mathematical Society, Vol. 14, 1915, pp. 269-277. doi:10.1112/plms/s2_14.1.269
[9] Q. I. Rahman and G. Schmessier, "Les Inequalitués de Markoff et de Bernstein," Presses University Montréal, Montréal, Quebec, 1983.
[10] M. Riesz, "Formula d'Interpolation pour la Dérivée d’un Polynome Trigonométrique," Comptes Rendus de l'Académie des Sciences, Vol. 158, 1914, pp. 1152-1254.
[11] V. V. Arestov, "On Integral Inequalities for Trigonometric Polynimials and Their Derivatives," Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, Vol. 45, No. 1, 1981, pp. 3-22.
[12] P. D. Lax, "Proof of a Conjecture of P. Erdös on the Derivative of a Polynomial," Bulletin of the American Mathematical Society, Vol. 50, No. 5, 1944, pp. 509-513. doi:10.1090/S0002-9904-1944-08177-9
[13] N. C. Ankeny and T. J. Rivilin, "On a Theorm of S. Bernstein," Pacific Journal of Mathematics, Vol. 5, 1955, pp. 849-852. doi:10.2140/pjm.1955.5.849
[14] N. G. Brijn, "Inequalities Concerning Polynomials in the Complex Domain," Nederlandse Akademie Van Wetenschappen, Vol. 50, 1947, pp. 1265-1272.
[15] Q. I. Rahman and G. Schmessier, " L^{p} Inequalities for Polynomials," Journal of Approximation Theory, Vol. 53, No. 1, 1988, pp. 26-32. doi:10.1016/0021-9045(88)90073-1
[16] R. P. Boas Jr. and Q. I. Rahman, " L^{p} Inequalities for Polynomials and Entire Functions," Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, 1962, pp. 34-39. doi:10.1007/BF00253927
[17] K. K. Dewan and N. K. Govil, "An Inequality for Self-Inversive Polynomials," Journal of Mathematical Analysis and Applications, Vol. 45, 1983, p. 490. doi:10.1016/0022-247X(83)90122-1
[18] A. Aziz, "A New Proof of a Theorem of De Bruijn," Proceedings of the American Mathematical Society, Vol.

106, No. 2, 1989, pp. 345-350.
doi:10.1090/S0002-9939-1989-0933511-6
[19] A. Aziz and N. A. Rather, "Some Compact Generalizations of Zygmund-Type Inequalities for Polynomials,"

Nonlinear Studies, Vol. 6, No. 2, 1999, pp. 241-255.
[20] M. Marden, "Geometry of Polynomials," Mathematical Surveys, No. 3, American Mathematical Society, Providence, 1966.

