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ABSTRACT 

The purpose of this paper is to find the admitted Lie group of the reduction of the Navier-Stokes equations 

           2, , , , 2 , , 1 , , 2 0yy t sy ss sU t s y U t s y y sU t s y y s U t s y sU       where s z y  using the basic Lie 

symmetry method. This equation is constructed from the Navier-Stokes equations rising to a partially invariant solu-
tions of the Navier-Stokes equations. Two-dimensional optimal system is determined for symmetry algebras obtained 
through classification of their subalgebras. Some invariant solutions are also found. 
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1. Introduction 

Mathematical modeling is a basis for analyzing physical 
phenomena. Almost all fundamental equations of mathe- 
matical physics are nonlinear, and in general, are very 
difficult to solve explicitly. Group analysis is a method 
for constructing exact solutions of differential equations. 
This method uses the symmetry properties for construc- 
ting exact solutions. There are two types of solutions, the 
class of invariant solutions and partially invariant solu- 
tions which can be obtained by group analysis. Con- 
structing of invariant and partially invariant solutions 
consists of some steps: choosing a subgroup of the ad- 
mitted group, finding a representation of solution, sub- 
stituting the representation into the studied system of 
equations and the study of compatibility of the obtained 
(reduced) system of equations. 

This paper is devoted to use the basic Lie symmetry 
method for finding the admitted Lie group of the re- 
duction of the Navier-Stokes equations, 

      
   2

, , , , 2 , ,

1 , , 2 0

yy t sy

ss s

U t s y U t s y y sU t s y y

s U t s y sU

 

   


   (1) 

where  is a dependent variable and U ,t s z y y ,  are 
independent variables. This equation is constructed from 
the Navier-Stokes equations. Subgroups for studying are 
taken from the part of optimal system of subalgebras 
considered for the gas dynamics equations [1]. One sub- 
group is not admitted the Navier-Stokes equations, par- 

tially invariant solutions can be found for the Navier- 
Stokes equations. These facts allow us to assume that one 
can construct partially invariant solution with respect to a 
Lie group, which is not necessary admitted. The pro- 
posed research will deal with two-dimensional optimal 
system of subalgebras for the reduction of the Navier- 
Stokes equations [1]. It is determined for symmetry 
algebras obtained through classification of their sub- 
algebras. Example of some invariant solutions are also 
found. They can return to new solutions of the Navier- 
Stokes equations. 

2. Invariant and Partially Invariant 
Solutions 

The notion of invariant solution was introduced by 
Sophus Lie [2]. The notion of a partially invariant solu- 
tion was introduced by Ovsiannikov [3]. This notion of 
partially invariant solutions generalizes the notion of an 
invariant solution, and extends the scope of applications 
of group analysis for constructing exact solutions of 
partial differential equations. The algorithm of finding 
invariant and partially invariant solutions consists of the 
following steps. 

Let  be a Lie algebra with the basis rL 1, , rX X . 
The universal invariant J consists of s m n r    fun- 
ctionally independent invariants  

      1 2, , , , , , ,m n rJ J x u J x u J x u    

where  are the numbers of independent and depen- ,n m
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dent variables, respectively and  is the total rank of 
the matrix composed by the coefficients of the generators 

r

, 1, 2, ,i X i  

 
 

r . If the rank of the Jacobi matrix  
1

1

, ,

, ,

m n r

m

J J

u u

 






 is equal to , then one can choose  q

, , qthe first  invariants q m 1J J

 
  such that the rank  

of the Jacobi matrix 


1

1

, ,

, ,

q

m

J J

u u








q is equal to . A  

partially invariant solution is characterized by two 
integers: 0   and 0  . These solutions are also 
called  , H   -solutions. The number   is called the 
rank of a partially invariant solution. This number gives 
the number of the independent variables in the repre- 
sentation of the partially invariant solution. The number 
  is called the defect of a partially invariant solution. 
The defect is the number of the dependent functions 
which can not be found from the representation of par- 
tially invariant solution. The rank   and the defect   
must satisfy the conditions  

  
0, 0, ,

max , ,0 1, 1 ,

n r n

r n m q r m min

    






     

    




 

where   is the maximum number of invariants which 
depends on the independent variables only. Note that for 
invariant solutions, 0   and . q m

For constructing a representation of a  , -H    
solution one needs to choose l m    invariants and 
separate the universal invariant in two parts: 

  1 1 2, , , , , .m n rl l lJ J J J J J    , J   

The number  satisfies the inequality 1 . 
The representation of the 

l l q m  
 ,H   -solution is obtained 

by assuming that the first  coordinates l J  of the 
universal invariant are functions of the invariants J :  

 .J W J

.l

l
l m

              (2) 

Equation (2) form the invariant part of the represen- 
tation of a solution. The next assumption about a par- 
tially invariant solution is that Equation (2) can be solved 
for the first  dependent functions, for example, l

  1 2, , , , , 1, ,i i l l mu u u u x i        (3) 

It is important to note that the functions  
 are involved in the expressions for the fun- 

ctions . The functions  
are called superfluous. The rank and the defect of the 

,iW

,u
 1, ,i  

i

 ,H

, 1, ,i   1 2, ,l lu u  

  -solution are m l  
n r

 and 
m n r l   

0


Note that if 
     , respectively. 

  , the above algorithm is the algo- 
rithm for finding a representation of an invariant solution. 
If 0  , then Equation (3) do not define all dependent 

functions. Since a partially invariant solution satisfies the 
restrictions (2), this algorithm cuts out some particular 
solutions from the set of all solutions. 

After constructing the representation of an invariant or 
partially invariant solution (3), it has to be substituted 
into the original system of equations. The system of 
equations obtained for the functions  and superfluous 
functions 

W
 , 1, 2, ,ku k l m    is called the reduced 

system. This system is overdetermined and requires an 
analysis of compatibility. Compatibility analysis for in- 
variant solutions is easier than for partially invariant 
solutions. Another case of partially invariant solutions 
which is easier than the general case occurs when J  
only depends on the independent variables 

  
 

1 1 2 2, ,

.

l l l l

m n r m n r

J J x J J x

J J x 

   

   

 



 ,
 

In this case, a partially invariant solution is called 
regular, otherwise it is irregular. The number    is 
called the measure of irregularity. 

The process of studying compatibility consists of re- 
ducing the overdetermined system of partial differential 
equations to an involutive system. During this process 
different subclasses of  ,H    partially invariant 
solutions can be obtained. Some of these subclasses can 
be  1 1 1,H   -solutions with subalgebra 1H H . In 
this case 1 1,     . The study of compatibility of 
partially invariant solutions with the same rank 1  , 
but with smaller defect 1   is simpler than the study 
of compatibility for  ,H   -solutions. In many ap- 
plications, there is a reduction of a  ,H   -solution to 
a  1 ,0H   solution. In this case the  ,H   -solu- 
tion is called reducible to an invariant solution. The 
problem of reduction to an invariant solution is important 
since invariant solutions are usually studied first. 

3. The Unsteady Navier-Stokes Equations 

Unsteady motion of incompressible viscous fluid is 
governed by the Navier-Stokes equations 

,

0,
t p     

 

u u u u

u

 


          (4) 

where    1 2 3, , , ,u u u u v w u  is the velocity field, p  
the fluid pressure, is   the gradient operator in the 

three-dimensional space 
is 

  1 2 3, , , ,x x x x y zx   and
  is the Laplacian. A group classification of the 
Navier-Stokes equations in the three-dimensional case1 
was done in [5]. The Lie group admitted by the Navier- 
Stokes equations is infinite. Its Lie algebra can be pre- 
sented in the form of the direct sum , where the 
infinite-dimensional ideal  is generated by the ope- 

5L L 
L

1A classification of the two-dimensional Navier-Stokes equations was 
studied in [4]. 
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rators2 
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

  



      

 
 

with arbitrary functions    , 1, 2,3i t i   and  t . 
The subalgebra  has the following basis:  5L

 
02 2 ,

, 3

t i x i u p ti i

ik i x k x i u k ik i k

Y t x u p Z

Z x x u u u i k

         

         

,

.
 

The Galilean algebra  is contained in 10L 5L L  . 
Several articles [7-13] are devoted to invariant solutions 
of the Navier-Stokes equations3. While partially invariant 
solutions of the Navier-Stokes equations have been less 
studied4, there has been substantial progress in studying 
such classes of solutions of inviscid gas dynamics equ- 
ations [18-25]. 

4. The Reduction of the Navier-Stokes 
Equations 

The reduction of the Navier-Stokes equations to partial 
differential equation in three independent variables is 
described. In this section analysis of compatibility of 
regular partially invariant solutions with defect 1 and 
rank 1 of the subalgebras  
 , , ,x x u t t x y zt t x y z           

t x y z      
 is given. Note 

that the generator t x y z  is not admitted 
by the Navier-Stokes equations. The groups are taken 
from the optimal system constructed for the gas dy- 
namics equations [26]. 

The Navier-Stokes equations are used in the com- 
ponent form: 

,t x y z x xx yy zu uu vu wu p u u u        z

z

  (5) 

,t x y z y xx yy zzv uv vv wv p v v v           (6) 

,t x y z x xx yy zw uw vw ww p w w w         (7) 

0.x y zu v w                    (8) 

The dependent variables  and  are fun- 
ctions of the space variables 

, ,u v w
, ,

p
x y z  and time  .t

Invariants of the Lie group corresponding to subalgebra 
generated by  , , ,x x u t t x y zt t x y           z  
are 

, , ,v w p z y  

The representation of the regular partially invariant 
solution is 

    , ,v V s w W s p P s    ,      (9) 

where s z y . For the function  , , ,u u t x y z  there 
is no restrictions. Substituting the representation of 
partially invariant solution (9) into the Navier-Stokes 
Equations (5)-(8), we obtain  

  0,t x y z xx yy zzu uu Vu Wu u u u         (10) 

     2 1 2W sV V sP y s V sV    0,       (11) 

     2 1 2W sV W P y s W sW    0,       (12) 

  0.xyu sV W             (13) 

Since  and W  only depend on V s , Equations (11) 
and (12) can be split with respect to : y

   0, 0,W sV V sP W sV W P           (14) 

   2 21 2 0, 1 2s V sV s W sW    0.       (15) 

Solving Equation (15), we have 

  1 2 3arctan , arctan .V C s C W C s C    4  

Multiplying the first equation by s  and combining it 
with the second equation of (14), we obtain  

   0.W sV V sW     

Let 0W sV 
0,

, then 1 2 3 4 . This 
means that 

0C C C C   
0V W   and hence 5 . Sub- 

stituting  and W  in Equation (13), we have 
P C

uV 0x  . 
It means that  depend on  or u , ,t y z  , ,t s yu U . 
Equation (10) becomes  

    22 1 2yy t sy ss sU U y sU y s U sU 0.       (16) 

Thus, there is a solution of the Navier-Stokes equ- 
ations of the type 

  5, , , 0, 0, ,u U t s y v w p C     

where the function  , ,U t s y  satisfies Equation (16). 
If 0V sW  

C
, then 2 4  In this case 

5

,V C W C  .
P  . Note that the Galilei transformation applied to 

 and W , also change V s . Substituting V  and W  
in Equation (13), we have  or 0xu   s y, ,tu U . 
Equation (10) becomes 

    
  

2
2

2 4

2 1

2 0.

yy y t sy

s

U C U U y sU y s U

C y s C y U

    

   

ss
  (17) 

Thus, there is a solution of the Navier-Stokes equ- 
ations of the type 

2There is still no complete classification of the subalgebras of the Lie 
algebra 5L L  . Classification of infinite—dimensional subalgebras 
of this algebra was studied in [6]. 
3Short reviews devoted to invariant solutions of the Navier-Stokes 
equations can be found in [14-16]. 
4Firstly the approach of partially invariant solutions to the Navier-
Stokes equations was applied in [17]. 

  2 4, , , , , ,u U t s y v C w C p C   5  

where the function  , ,U t s y  satisfies Equation (17). 
These solutions are partially invariant solution with 
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respect to the group which are not admitted Lie algebra 
 , , ,x x u t t x y zt t x y z            . 

5. Admitted Group of Equation (16) 

In this section, the Lie group admitted by Equation (16) 
is studied. It was obtained from the Navier-Stokes equ- 
ations and gives rise to a partially invariant solutions of 
the Navier-Stokes equations  

       
   2

, , , , 2 , ,

1 , , 2 0

yy t sy

ss s

U t s y U t s y y sU t s y y

s U t s y sU

 

   
 

where the function U depends on  and , ,t s y s z y . 
Assume that the generator has a representation of the 

form 

   
   

, , , , , ,

, , , , , , .

t s
t s

y U
y U

X t s y U t s y U

t s y U t s y U

 

 

  

  




 

The second prolongation of the operator X  is  

     

   

   

   
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2 , , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , .
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y tt

y

tyts

sy ss

yy

U U
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U U
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UU
U Uts ty

U U
U Usy ss

U
U yy

X X t s y U t s y U

t s y U t s y U

t s y U t s y U

t s y U t s y U

t s y U
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 

 

 



    

   

  

  

 

U

U





s

 

The coefficients of the prolonged operator are defined 
by formulae 

   ; , 1, 2,3ji xU U
i j iD U D i j      

   ,1 2 1

2 1 , 2
; , 1, 2,3i i i jU U x

i i j iD U D i j      

; , 1, 2,3i i ij
i j

D U U i j
x U U

  
    
  

 .  

Here we used the notations 1 2 3, ,x t x s x y    and 
for the derivatives 

   , .i i ij j iU D U U D U   

The determining equations are  

 
 

2

0
0.

F
X F


              (18) 

All necessary calculations here were carried out on a 
computer using the symbolic manipulation program 
REDUCE. 

The result of the calculations is the admitted Lie group 
with the basis of the generators: 

 

  
 

1 2 3

4

2
5 6

7

2 2
8

9 10

1
, , ,

2 ,

2
, 1

2
2 ,

4 4 4 1

, , , ,

t s s y

t y U

2

,

,

s U s

s y U

t y U

U U

s
X X X

y y

X t y U

t
yX syU X s sy

y

ts
X t yU

y

X t ty t s y U

X U X b t s y

       

     

        

     

       

   

   (19) 

where  , ,b t s y  is an arbitrary solution of  

    22 1 2yy t sy ss sb b y sb y s b sb 0.       

6. Optimal System of Subalgebras 

The problem is to construct subalgebras of the algebra 
, which can be a source of invariant solutions of Equ- 

ation (1). The classification of subalgebras can be done 
relatively easy for small dimensions. The optimal system 
of subalgebras of the Lie algebra spanned by the gene- 
rators 

10L

1 9, ,X X  are constructed here. 
The table of commutators ,i jX X    is 

 
Xj

Xi
1X 2X 3X 4X  5X  6X  7X 8X 9X

1X  0 0 0 2X1 2X2 0 2X2 4X4 0 

2X  0 0 0 X2 −X9 X3 0 2X5 0 

3X  0 0 0 X3 0 −X2 −X9 2X7 0 

4X  −2X1 −X2 −X3 0 −X5 0 X7 2X8 0 

5X  22X 9X 0 5X  0 X7 0 0 0 

6X  0 3X 2X 0 7X  0 5X 0 0 

7X  32X 0 9X 7X  0 5X  0 0 0 

8X  44X 52X 72X 82X  0 0 0 0 0 

9X  0 0 0 0 0 0 0 0 0 

 
Inner automorphisms [24] are constructed with the 

help of the table of commutators. 
To construct inner automorphisms, one has to solve 

the Lie equations. For example, for the automorphism 

1A , one has the system of ordinary differential equations  

31 2 4
4 5 7 8

dd d d
2 , 2 , 2 , 4 .

d d d d

xx x x
x x x

a a a a
        x  

and the initial values at 0a   

1 1 2 2 3 3 4 4, , , .x x x x x x x x     

Therefore, the automorphism 1A  only changes the 
coordinates 1 2 3, ,x x x  and 4x  by the formulae 
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2
1 1 1 4 1 8 2 2 1 5

3 3 1 7 4 4 1 8

2 4 , 2

2 , 4 .

,x x a x a x x x a x

x x a x x x a x

    
   

 

The remaining coordinates are unchanged. 
In the same way, one obtains the automorphisms 

   = 2, ,9 :iA i 

2 2 2 2 4 3 3 2 6

2
5 5 2 8 9 9 2 5 2

: , ,

2 ,

A x x a x x x a x

8x x a x x x a x a x

   

    
 

3 2 2 3 6 3 3 3 4

2
7 7 2 8 9 9 3 7 3 8

: , ,

2 ,

A x x a x x x a x

x x a x x x a x a x

   

    
 

4 4

4 4

2 2 2
4 1 1 2 2 3 3

2 2
5 5 7 7 8 8

: e , e , e

e , e , e

a a

a a

A x x x x x x

x x x x x x 

  

  

4

42

,a

a
 

5 2 2 5 1 5 5 5 4

2
7 7 5 6 9 9 5 2 5

: 2 ,

,

A x x a x x x a x

1

,

x x a x x x a x a x

   

    
 

   
   
   
   

6 2 2 6 3 6

3 2 6 3 6

5 5 6 7 6

7 5 6 7 6

: cos sin

sin cos ,

cos sin ,

sin cos

,A x x a x a

x x a x a

x x a x a

x x a x a

 

 

 

 

 

7 3 3 7 1 5 5 7 6

2
7 7 7 4 9 9 7 3 7

: 2 , ,

,

A x x a x x x a x

1x x a x x x a x a x

   

    
 

8 4 4 8 1 5 5 8 2

2
7 7 8 3 8 8 8 4 8

: 4 , 2 ,

2 , 2 4

A x x a x x x a x

1x x a x x x a x a

   

     x
 

9 1 1 2 2 3 3

4 4 5 5 6 6

7 7 8 8 9 9

: , ,

, ,

, ,

,

,

.

A x x x x x x

x x x x x x

x x x x x x

  

  

  

 

Also there is the involution 

3 3 6 6 7: , ,E x x x x x x      7 .  

6.1. Decomposition of the Algebra  L9

Before constructing an optimal system, let us study the 
algebraic structure of the algebra . The algebra  is 
decomposed as 

9L 9L
4I L , where 9 2 3, , , 5 7 ,I X X X

X
X X

,X
 

is an ideal and 1 4 6 8  is a subalgebra. 
According to the algorithm for constructing an optimal 
system of the algebra , we use the two-step algorithm 
developed in [21]. First, an optimal system of sub- 
algebras of the algebra  is obtained. The next step is 
to glue the subalgebras from the optimal system of sub- 
algebras of the algebra  and the ideal 

 , ,X

9

4L

4L

4L X

L

I  together. 
Any subalgebra of a Lie algebra is completely defined 

by its basis generators. Any vector of the basis is a linear 
combination of the basis of generator of this Lie algebra. 
Hence, the subalgebra is completely defined by co- 

efficients of these linear combinations. For example, let 
 1 2, , ,k

kL Y Y Y 
9L

 be a -dimensional subalgebra of 
the algebra . Operators  are  

k

i  , 1,2, ,Y i k 
9

1

, 1, ,i iY x X i 
 

   .k

, ,

 

Conditions for  to be a subalgebra are  kL

1

, ; , 1, 2
k

i j ijY Y C Y i j k


 

       .  

For a classification of subalgebra, the coefficients ijC  
have to be simplified by using the automorphism and 
subalgebra conditions. 

6.2. Classification of the Algebra  L4

Let us classify the algebra . The 
table of commutators of the algebra  is 

 4
1 4 6 8, , ,L X X X X

4L
 

Xj 

Xi
1X  4X  6X  8X  

1X  0 12X  0 44X  

4X  12X  0 0 82X  

6X  0 0 0 0 

8X  44X  82X  0 0 

 
Since the generator 6X  composes the center, the 

optimal system of subalgebras of  
can be easily constructed by classifying the subalgebra 

 4
1 4 6 8, , ,L X X X X

 3
1 4 8, ,L X X X  and gluing it with the center  6X . 

The idea of construction is as follows. 
Let a subalgebra  of dimension  be formed 

by the operators  

rL 4r 

1 1 2 4 3 6 4 8 , 1, ,i i i i iY a X a X a X a X i r       

where  , 1, , ; 1, 2,3,4ija i r j   are arbitrary con- 
stants. 

For the classification of  we need to study two 
steps. 

4L

1) All coefficients 3i  are zero, , 
it means that we will construct an optimal system of the 
subalgebra 

a  3 0 1, 2,3, 4ia i 

 3L X X 1 4, ,X 8

2) At least one of the coefficients of  is not equal 
to zero. 

. 

3ia

Let us study the first step, and construct an optimal 
system of the subalgebra . For convenience, we will 
denote the generators 

3L

iX  by i. 

6.2.1. One-Dimensional Subalgebras of the Algebra 
L3  

Let 1 4 8Y x x x  1 4 8  which forms a one-dimensional 
subalgebra of the algebra . The process of simpli- 
fication of the coefficients of the operator  is se- 
parated into the following cases. 

3L
Y
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Case 1. Assume that 8 . Then one can divide  
by 

0x  Y

8x . Hence, without loss of generality one can con- 
sider 

1 4 8Y x x x  1 4 8  

By means of transformation 1A , it can transformed to 
an operator with . 4 0x 

0x Case 1.1. Let 1 . By means of transformation 4A , 
one can transform it to  1 8 , where 1   . 

Case 1.2. Let 1 , then the representative of the 
class is the operator . 

0x 
8

Case 2. Assume that . Then one has 
. 

8 0x 
1 4

Case 2.1. Let . Dividing the operator Y  by 

4

Y x x 1 4

4 0x 
x , one obtains 1 4Y x . By using the automor- 
phism 

x1  4

1A , the operator  is transformed to Y 4X . 
Case 2.2. Let , then . 4 0x  Y  1

6.2.2. Two-Dimensional Subalgebras of the Algebra 
L3





 
Let a subalgebra be formed by the operators  

1 2 3 , 1,2i i i iY a a a i   1 4 8  

where  are arbitrary constants.  , 1, 2; 1,2,3ija i j 

Note that the rank of the matrix  is  11 12 13

21 22 23

a a a

a a a



 

equal to two. 
Case 1. Assume that 13 0a  . We can divide  by 
. Hence, by subtracting the operator 

1Y

13a  13a a
2 2

23 1

21 22 0a a

Y   

from , one can assume  and 2Y 23 0a   .  

Using the automorphisms 1A , the operator 1  is trans- 
formed to . The subalgebra condition gives  

Y

1 11Y a 1 8

    11 21 22 11 21 22,a a a a a a      1 8 1 8 1 8 1 8  

where   and   are arbitrary constants. Calculating 
the left hand side and comparing the coefficients on the 
left hand side with coefficients on the right hand side, 
one has 

 11 22 21 22 11 21 222 4 2a a a a a a a .       1 4 8 1 4 8

2 .

 

Therefore 

11 22 11 21 21 22 222 , 4 ,a a a a a a a          

Further consideration depends on values of the coeffi- 
cients 11 21 22 . If 22 , then  which is a 
contradiction to the condition . Hence, 

. One can assume that . Therefore 

, ,a a a

0
2, 4a

0a  21 0a 
2 2
21 22a a

22 1a 
0

22a 
11    
a
, and . 2a a11  

0
21

Case 1.1. If 21 , then using the automorphism 
4A , the operators  and  are transformed to 

, . 
1Y

 4 1
0a 

2Y

1Y  8 1 2

Case 1.2. If 21 , then the operators  and  
are . 

Y

1Y 2Y

1 2,Y Y 8 4

Case 2. Assume that 13 . If 23 , then by 
exchanging 1  and , this becomes the previous case. 
Hence, one can take 

0a 

0

0a 
Y 2Y

a23  . Therefore, the operators 
are 1 11 12 ,Y a a 2Y 21 22a a   11 4 4 . Because the rank of 
the matrix  

11 12

21 22

a a

a a

 
 
 

 

is equal to 2, then by taking linear combinations of the 
operators 1  and  they can be transformed to Y 2Y 1Y  1  
and 2Y  4 . 

6.2.3. Three-Dimensional Subalgebras of the Algebra 
L3  

Let a subalgebra be formed by these operators  

1 2 3 , 1,2,3i i i iY a a a i   1 4 8  

where  , 1, 2,3; 1, 2,3ija i j   are arbitrary constants. 
Since the rank of the matrix  

















333231

232221

131211

aaa

aaa

aaa

 

is equal to three, the basis if this subalgebra can be taken 
as 

1 2 3, ,Y Y Y .  1 4 8  

6.2.4. Optimal System of Subalgebras of the Algebra 
 , ,L3 1 4 8


 

The result of classifying the algebra  is the 
following: 

 , ,L3 1 4 8

 
Dimension 

1 2 3 

1  1,4  1,4,8  

4  4,8   

8   1 8,1 4   

 1 8    

 
where 1   . 

6.3. Optimal System of Subalgebras of the 
Algebra  L4 1,4,6,8

.

 

Let us consider the second step where at least one of the 
coefficients 3i  is not equal to zero. Without loss of 
generality one can assume that 

a

1 11 12 14

1 2 4 , 2, , , 4i i i i

Y a a a

Y a a a i r r

   
    

6 1 4 8

1 4 8
4

 

Using the conditions for  to be a subalgebra, one L
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obtains  

, ; ,i j ij ij ij ijY Y i j           6 1 4 8 1,2, , 4.



1, 2, , 4.

 

Because  is a subalgebra and the gene- 
rator 6 forms the center, then 

3L  1,4,8

ˆ ˆ ˆ, ; ,i j ij ij ijY Y i j         1 4 8  

Comparing the coefficients, one obtains  
0;, 1, 2, , 4ij j   

3L  1 4

3L

Y a a   6 1 4

4L

. Because of these results and since 
the algebra  has already been classified, 
therefore this allows simplifying the process of con- 
structing the optimal system of the algebra . This 
process construct by using the result of the optimal sy- 
stem of algebra : we have to classify each optimal 
system of subalgebras of  together with the generator 

1 11 12 14 . Here we give one example of 
this process. Other elements of the optimal system of the 
algebra  are constructed in the similar way. 

, ,8

a 8

4L

3L

Let us consider the subalgebra  , 1 8 1 4 . For con- 
structing three-dimensional subalgebras of the algebra 

 one considers  4L

1 11 12 14 2 3, ,Y a a a Y Y       6 1 4 8 1 8 1 .4

8 1

 

Since  can be written as: 1Y

    1 11 12 14 12 14 ,Y a a a a a       6 1 1 4  

by forming a linear combination with  and , the 
operator 1  can be taken in the form 

2Y 3Y
Y 1 1a 1 6 1Y . The 

subalgebra conditions gives  

 
    

11 11

11

, 4a a

a  

   

     

6 1 1 8 4

6 1 1 8 1 4
 

where ,   and   are arbitrary constants. Comparing 
the coefficients on the left side with the coefficients on 
the right side, one obtains 

110, 0, 0, 0.a       

Thus, one obtains that 1Y  6 , and the subalgebra is 
.  , , 6 1 8 1 4

The result of calculation is an optimal system of 
subalgebras of the algebra  which is 4 , , ,L  1 4 6 8

 

Dimension 

1 2 3 4 

1 1, 4 1, 4, 6 1, 4, 6, 8 

4 4, 6 1, 4, 8  

6 4, 8 4, 6, 8  

8 1, 6 4  6, 1 4,1 8    

1 6  8, 6 4    

1 8   1 8, 6     

4 6  1 4,1 8     

8 6     

1 6 8       

where   is an arbitrary real parameter and 1   . 

6.4. Optimal System of Subalgebras of the 
Algebra  L9

After constructing an optimal system of subalgebras of 
the algebra , the next step is the construction of an 
optimal system of subalgebras of the algebra  

4L

 9 , , , , , , ,L  1 2 6 7 8 9,3 4 5 , by gluing subalgebras from 
the optimal system of subalgebras of the algebra  and 
the ideal 

4L
 , , , ,I 3 5 7 9 2  together. 

As it was seen for the algebra , the process of 
constructing an optimal system of subalgebras of the 
algebra  by gluing the algebra  and the ideal 

4L

4L9L I  
consists of the following steps. In the first step, the 
vectors 

   
 

 
 

2,3,5,7,9 1,4,6,8

2,3,5,7,9

, 1, 2, ,

1, 2, , ,

i ij j ij j
j j

i k ij j
j

Y a X b X i

Y c X i s

 




  

 

,k 






 

are composed. Here the vectors  

 1,4,6,8
ij j

j

b X

  

are basis elements from one of the k-dimensional 
subalgebras  of the optimal system of the algebra . 
In matrix form, this step can be explained by the con- 
struction of the matrix  

kL 4L

 

2 3 5 7 9 1 4 6 8 

A B 

C 0 

 
where the matrices A, B and C consist of the coefficients  

 
, , ,

1, 2, , ; 2,3,5,7,9; 1, 4,6,8; 1, 2, , .

ij i ja b c

i k j

 

      s
  

In this step, the matrix A is arbitrary. The rank of the 
matrix 

 
 
 

A B

C 0
 

is equal to k s  and this is the dimension of the 
subalgebra of the algebra . The matrix C is chosen to 
be the simplest by taking linear combinations of it co- 
lumns and has to take all possible values of the given 
rank s. Note also that the matrix A can be simplified with 
the help of the matrix C. 

9L

The next step is the process of checking the subalgebra 
conditions and checking linear dependence of commu- 
tators on the basis generators of the subalgebra. 

In this manuscript, we study only two-dimensional 
subalgebras of the algebra , because the two-dimen- 9L
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sional subalgebras allow obtaining invariant solutions 
which reduce the initial system of partial differential 
equations to a system of ordinary differential equations. 

Let us give an example for constructing two-dimen- 
sional subalgebras, using the subalgebra  1 8 . The 
maximum possible dimension of a subalgebra of the 
algebra  after gluing a subalgebra to the ideal 4L I  is 
two. In this case, the matrix C is a  matrix, the rank 
of which is equal to one: 

1 5

 
2 3 5 7 9 1 4 6 8 

12a  13a  15a  17a  19a    0 0 1 

22c  23c  25c  27c  29c  0 0 0 0 

 
By virtue of the automorphism 6A : 

   
   
   
   

2 2 6 3 6

3 2 6 3 6

5 5 6 7 6

7 5 6 7 6

cos sin ,

sin cos ,

cos sin ,

sin cos .

x x a x a

x x a x a

x x a x a

x x a x a

 

 

 

 

 

We can consider three cases: 

1) , 2 2
22 23 0c c 

2) , 2 2 2 2
22 23 25 270, 0c c c c   

3) . 2 2 2 2
22 23 25 27 290, 0, 0c c c c c    

Case 1. By using the automorphism 6A  one can 
assume 22 23  In this case, by means of linear 
combinations and by the automorphisms 

 1,  0.c c 
2 3 5 7, , ,A A A A  

the table of coefficients is transformed to  
 

2 3 5 7 9 1 4 6 8 

0 0 0 0 19a    0 0 1 

1 0 25c  27c  29c  0 0 0 0 

 
The subalgebra conditions give 

 

  

19 25 27 29

25 27

19 25 27 29

,

2 2 2

,

a c c c

c c

a c c c


 

  

    

  

      

1 8 9 2 5 7 9

2 3 5

1 8 9 2 5 7 9
 

where the coefficients   and   are arbitrary con- 
stants. Comparing the coefficients, one obtains 

27 29 250, 2, 1, 0, 0, 1.c c c            

Therefore, in this case the subalgebra is  
 19 ,a    1 8 9 2 5 . 

Case 2. Since , or 22 23 . Be- 
cause of , by virtue of the automorphism 

6

2 2
22 23 0c c 
0

0, 0c c 
2 2
25 27c c

A  one can take 25 27 . By means of linear 
combinations and by the automorphisms 

1,c c 0
2 3, , 5 7,A A A A , 

the coefficients are transformed to 
 

2 3 5 7 9 1 4 6 8 

0 0 0 0 19a    0 0 1 

0 0 1 0 29c  0 0 0 0 

 
The subalgebra condition gives  

 
  

19 29

19 29

, 2

,

a c

a c

 

  

   

    

1 8 9 5 9 2

1 8 9 5 9
 

where the coefficients   and   are arbitrary con- 
stants. Comparing the coefficients, one obtains 

0, 0, 0.      

This is a contradiction to 0  . Therefore, there 
exists no subalgebra in this case. 

Case 3. Assume that  and 2 2 2 2
22 23 25 270, 0c c c c   

29 0c  , or 22  0c  , 23  0c  , 25 , 27  0c    0c  . Since 

29 0c  , without loss of generality one can choose 

29 1c  . By taking linear combinations and by virtue of 
the automorphism 2 3 5 7,, ,A A A A  the table of coefficients 
can be transformed to  

 

2 3 5 7 9 1 4 6 8 

0 0 0 0 0   0 0 1 

0 0 0 0 1 0 0 0 0 

 
The subalgebra conditions give  

    , 0      1 8 9 1 8 9 ,  

which is satisfied with 

0, 0.    

Therefore, the subalgebra is  , 1 8 9 . Other ele- 
ments of the optimal system of the algebra  are 
constructed in the similar way. 

9L

The list of two-dimensional subalgebras of the optimal 
system of the algebra  is presented in Table 1. 9L

7. Invariant Solutions of Equation (1) 

Invariant solutions of Equation (1) are presented in this 
section. Analysis of invariant solutions is presented in 
details for two examples. 

7.1. Subalgebra 7:  ,5 4 9  

The basis of this subalgebra is 

 

5

4 9

2
,

2 1

s U

t y

t
X syU

y

X X t y U 

   

.U       
 

Let a function 
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Table 1. Two-dimensional subalgebras of the optimal sys- 
tem of the algebra . L9

N Generator N Generator 

1 2, 3 11 1,    2 4 6 9  

2 2, 7 12 8,   4 6 9  

3 5, 7 13 8,    4 5 6 9  

4 2, 3 7  14 4 9 , 6 9  

5 1, 4 9  15 6 9 ,   1 8 9  

6 2, 4 9  16 2 + 7,  3 5 7  

7 5, 4 9  17 2 9 ,   1 7 9  

8 8, 4 9  18 5 9 ,   3 8 9  

9 1,  2 4 9  19 2 5 ,   1 8 9  

10 1,   4 6 9  20  1 8 2 9 ,  1 4 9

 

 , , ,f f t s y U  

be an invariant of the generator 5X . This means that 

2
0.s U

t
f syUf

y
   

The general solution of this equation is 

 
 2

4ˆ ˆ, , , e .
sy

tf F t y U U U   

After substituting it into the equation  
, one obtains the equation  4 9 0X X f 

0.  ˆ
ˆ2 1t y U

tF yF UF     

The characteristic system of the last equation is 

 
ˆd d d

.
ˆ2 1

t y U

t y U
 


 

Thus the universal invariant of this subalgebras con- 
sists of invariants 

 22
1 4ˆ ˆ, , e

sy

ty
Uy U U

t
  .  

Hence, a representation of the invariant solution is  

 

 
2

1 4e
sy

tU y q 
  

with arbitrary functions  and  q 2q y t . After sub- 
stituting this representation into Equation (1), one obtains 
the ordinary differential equation 

   2 28 2 4 2 2 6 4q q q q              0.  

The general solution of the last equation is 

2 3

8 4
1 1 2 2

2 1 1 2 1 1
e , ,

4 4 4 4 4 4

q q q
q C W C W



where 1 2

2 1 1 2 1 1
, , , , ,

4 4 4 4 4 4

q
W W

    
  
   

q 
  are Whitta-  

ker functions and  are arbitrary constants. 1 2,C C

7.2. Subalgebra 16:  2 7,3 5 7α    

The basis of this subalgebra consists of the generators  

 

   

2 7

3 5 7

1 2
2 ,

1 2

1 2 .

s y U

s

y U

ts
X X t yU

y

s s t
X X X

y

t s yU




 

 
      

 
  



    
 

     

 

In order to find an invariant solution, one needs to find 
a universal invariant of this subalgebra. Let a function 

 , , ,f f t s y U  

be an invariant of the generator 2 7X X . This means 
that 

1 2
2 0s y U

ts
f tf yUf

y

 
.   

 
 

The characteristic system of the last equation is 

 
d d d d

.
1 2 2 0

y s y U t

ts t yU
  

 
 

The general solution of this equation is 

   
2

4ˆ ˆˆ ˆ, , , 2 1 , e .
y

tf F t y U y y ts U U     

After substituting it into the equation 

 3 5 7 0X X X f    

one obtains the equation 

 2
ˆˆ

ˆˆ2 1 2 4 0.y U
t t t F yUF     

The characteristic system of this equation is  

 2

ˆˆd d
.

ˆ 0ˆ2 1 2 4

dy U t

yUt t t
 

 
 

Hence, the universal invariant of this subalgebras 
consists of invariants  

   

2
2

2

ˆ

4 1 2 4
4ˆ ˆˆ, e , 2 1 , e .

y
y

t t t
tt U y y ts U U




 
    

A representation of the invariant solution of this sub- 
algebra has the following form  

, , ,



              





 

  
   

2

2

22 1

44 1 2 4
e

y ts y

tt t t
U t







 
  

with an arbitrary function  t . After substituting the 
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representation of the invariant solution into Equation (1), 
the functions  t  has to satisfy the equation  

   24 4 0.t t t       1 2  

The general solution of the last equation is 

21 2 4C t    t

z

 

where  is constant. C
The two examples showed that there are solutions of 

the Navier-Stokes equations, which are partially invariant 
with respect to not admitted Lie algebra  

. t xt x z    yy 

8. Conclusion 

The algorithm of obtaining an optimal system of sub- 
algebras was applied to the reduction of the Navier- 
Stokes equations. Some exact invariant solutions corre- 
sponding to the optimal system are presented. Examples 
given in the manuscript showed that this algorithm can 
be applied to groups, which are not admitted. These 
possibilities extend an area of using group analysis for 
constructing exact solutions. 
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