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ABSTRACT 

In this paper, Rayleigh surface wave is studied at a stress free thermally insulated surface of a two-temperature ther- 
moelastic solid half-space in absence of energy dissipation. The governing equations of two-temperature generalized 
thermoelastic medium without energy dissipation are solved for surface wave solutions. The appropriate particular solu- 
tions are applied to the required boundary conditions to obtain the frequency equation of the Rayleigh wave. Some spe- 
cial cases are also derived. The non-dimensional speed is computed numerically and shown graphically to show the 
dependence on the frequency and two-temperature parameter. 
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1. Introduction 

Lord and Shulman [1] and Green and Lindsay [2] ex- 
tended the classical dynamical coupled theory of ther- 
moelasticity to generalized thermoelasticity theories. 
These theories treat heat propagation as a wave pheno- 
menon rather than a diffusion phenomenon and predict a 
finite speed of heat propagation. Ignaczak and Ostoja- 
Starzewski [3] explained in detail, the above theories in 
their book on “Thermoelasticity with Finite Wave Speeds”. 
The theory of thermoelasticity without energy dissipation 
is another generalized theory, which was formulated by 
Green and Naghdi [4]. It includes the isothermal dis-
placement gradients among its independent constitutive 
variables and differs from the previous theories in that it 
does not accommodate dissipation of thermal energy. 
The representative theories in the range of generalized 
thermoelasticity are reviewed by Hetnarski and Ignaczak 
[5]. Wave propagation in thermoelasticity has many ap-
plications in various engineering fields. Some problems 
on wave propagation in coupled or generalized thermoe-
lasticity are studied by various researchers, for example, 
Deresiewicz [6], Sinha and Sinha [7], Sinha and Elsibai 
[8,9], Sharma, et al. [10], Othman and Song [11], Singh 
[12,13], and many more. 

Gurtin and Williams [14,15] suggested the second law 
of thermodynamics for continuous bodies in which the 
entropy due to heat conduction was governed by one 
temperature, that of the heat supply by another tempera- 
ture. Based on this suggestion, Chen and Gurtin [16] and 

Chen et al. [17,18] formulated a theory of thermoelasti- 
city which depends on two distinct temperatures, the con- 
ductive temperature   and the thermodynamic tem- 
perature T. The two-temperature theory involves a mate- 

rial parameter a . The limit  implies that 0  0a 
T

T

 and the classical theory can be recovered from 
two-temperature theory. The two-temperature model has 
been widely used to predict the electron and phonon 
temperature distributions in ultrashort laser processing of 
metals. Warren and Chen [19] stated that these two tem- 
peratures can be equal in time-dependent problems under 
certain conditions, whereas  and T  are generally dif- 
ferent in particular problems involving wave propagation. 
Following Boley and Tolins [20], they studied the wave 
propagation in the two-temperature theory of coupled 
thermoelasticity. They showed that the two temperatures 

 and 



 , and the strain are represented in the form of 
a travelling wave plus a response, which occurs instan- 
taneously throughout the body. Puri and Jordan [21] dis- 
cussed the propagation of harmonic plane waves in two 
temperature theory. Quintanilla and Jordan [22] presen- 
ted exact solutions of two initial-boundary value prob- 
lems in the two temperature theory with dual-phase-lag 
delay. Youssef [23] formulated a theory of two-tempera- 
ture generalized thermoelasticity. Kumar and Mukhopad- 
hyay [24] extended the work of Puri and Jordan [21] in 
the context of the linear theory of two-temperature ge- 
neralized thermoelasticity formulated by Youssef [23]. 
Magana and Quintanilla [25] studied the uniqueness and 
growth of solutions in two-temperature generalized ther-  
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moelastic theories. Recently, Youssef [26] presented a 
theory of two-temperature thermoelasticity without ener- 
gy dissipation. 

In the present paper, Youssef [26] theory is applied to 
study the Rayleigh wave at the thermally insulated stress- 
free surface of an isotropic two-temperature thermoelas- 
tic solid half-space without energy dissipation. The fre- 
quency equation of the Rayleigh wave is obtained. The 
frequency equation is also approximated by assuming 
small thermal coupling. The dependence of numerical 
values of non-dimensional speed of the Rayleigh wave 
on material parameters, frequency and two-temperature 
parameters is shown graphically for a particular material 
of the model. 

2. Basic Equations 

We consider a two-temperature thermoelastic solid half- 
space in absence of energy dissipation. Following Youssef 
[26], the governing equations for a two-temperature ge- 
neralized thermoelastic half-space without energy dissi- 
pation are 

i) The heat conduction equation  

, ,ii E kk0K c T e             (1) 

ii) The displacement-strain relation 

 , ,

1
,

2ij i j j ie u u  

,i

           (2) 

iii) The equation of motion  

  , , ,i j ij i jju u u              (3) 

iv) The constitutive equations 

 2 ,ij ij kk ije e                 (4) 

where  3 2 t ,      is the coupling parameter and 
,t  is the thermal expansion coefficient.   and   

are called Lame’s elastic constants. ij  is the Kronecker 
delta. K 

T T

 is material characteristic constant. T is the 
mechanical temperature,  is the reference tem- 
perature. 0

0 T  0

    with 0 1T  . ij  is the stress 
tensor. ij  is the strain tensor. e   is the mass density. 

Ec  is the specific heat at constant strain. iu  are the 
components of the displacement vector.  is the con- 
ductive temperature and satisfies the relation 



, ,iia                 (5) 

where  is the two-temperature parameter. The 
superposed dots in the above equations denote the time 
derivatives. The subscripts followed by comma in these 
equations denote the space derivatives. 

0a 

3. Analytical 2D Solution 

We consider a homogeneous and isotropic two-tempe- 
rature thermoelastic medium without energy dissipation 

of an infinite extent with Cartesian coordinates system 
 , ,x y z , which is previously at uniform temperature 0 . 
The origin is taken on the plane surface  and the 
z-axis is taken normally into the medium . The 
surface 

T
0z 
z  0

0z   is assumed stress-free and thermally insu- 
lated. The present study is restricted to the plane strain 
parallel to -x z  plane, with the displacement vector 

 ,u1,0u u 3 . Now, Equation (3) has the following two 
components in -x z  plane 

   1,11 3,13 1,33 ,1 12 ,u u u u               (6) 

   3,33 1,13 3,11 ,3 32 ,u u u u               (7) 

The heat conduction Equation (1) is written in x-z 
plane as 

   
2 2

,11 ,33 0 1,1 3,32 2
,EK c T u

t t

   
    

 
u



  (8) 

and, Equation (5) becomes, 

 ,11 ,33 .a                (9) 

The displacement components u1 and u3 are written in 
terms of scalar potentials  and q   as 

1 3,   .
q q

u u
x z z x

   
   


   

     (10) 

Using Equations (9) and (10) in Equations (6) to (8), 
we obtain 

2 2 2
2
12 2 2

2 2

2 2
,

q q q
c

t x z

a
x z






   
     

     
         

    (11) 

2 2 2
2
22 2

c
t x 2z

     
    

             (12) 

2 2

2 2

2 2 2

2 2 2

2 2 2

0 2 2 2
,

E E

K
x z

c a c
t t x

q q
T

t x z

 







    
   

 2

2z

      
       

   
     

  (13) 

where 
 2

1

2
,c

 



  2
2c




 . 

Using the following quantities 

 1

x
x

c 
  , 

 1

z
z

c 
  , t t  , 

2
1c



  , 

 2

1

q
q

c 
  , 

 2

1c




  , 
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 2

1

a
a

c 





   

where 2
1 Ec c K    , in Equations (11) to (13) and 

suppressing the primes, we obtain the Equations (11) to 
(13) in dimensionless form as 

2 2 2 2 2

2 2 2 2 2
,

q q q
a

t x z x z
        

            





  (14) 

2 2 2

2 2 2 2

1
,

t v x z

    
    


          (15) 

2 2 2

2 2 2

2 2 2

2 2 2

1
,

q q

t x z

a
t x z








   
   

   
     

   
   







    (16) 

where 
2

2 1
2
2

c
v

c
 , and 

2
0

2 2
1

,
E

T

c c




              (17) 

is the coefficient of thermoelastic coupling. 
For thermoelastic surface waves in the half-space pro- 

pagating in x-direction, the potential functions , q  and 
  are taken in the following form  

         ˆ ˆˆ, , , ,  exp ,q z q z z i x    t   

2

  (18) 

where , 2 2c    is wave number and c  is the 
phase velocity. 

Substituting Equation (18) in Equations (14) and (16), 
we obtain 

2 2 2 2
1 2

1 ˆˆ 0,a D q a a D 





           






 (19) 

2 2
3 4

ˆˆ 0,a D q a a D               (20) 

where 
2

2
2

d
,

d
D

z
  and 

   

2 2 2 2 2
1 2

2 2 2
3 4

1
,      , 

,      1

a a a

a a a

    


  






      
 

    


. 

Eliminating  from Equations (19) and (20), we 
obtain the following auxiliary equation 

ˆˆ,q 

4 2
0 1 2 0,A D A D A          (21) 

where 

 2
0

1
1 ,A a




     

 23
1 2 1 3 4 ,

a
A a a a a a a


 

       

2 1 4 2 3.A a a a a   

With the help of Equation (21) and keeping in mind 
that ˆˆ,q 0

,q
 as  for surface waves, the solu- 

tions 
z 

  are written as 

    1 2exp exp expq A z B z x t             

(22) 

     1 1 2 2exp exp expA z B z x t               

(23) 
where 

2
1 1 0 22

1 2
0

41
,

2

A A A A

A




   
 
  

   (24) 

2
1 1 0 22

2 2
0

41
,

2

A A A A

A




   
 
  

    (25) 

and 

 
  

2 2 2

2 2

1
,     1,2 .

1 1

i

i

i

i
a

  


 

 
 

 
    (26) 

Substituting Equation (18) in Equation (15) and keep- 
ing in mind that ˆ 0   as  for surface waves, 
we obtain the following solution  

z 

3exp ,C z x        t      (27) 

where 
2 2

3 1 c v   2 .            (28) 

4. Derivation of Frequency Equation 

The mechanical and thermal conditions at the thermally 
insulated surface 0z   are 

i) Vanishing of the normal stress component  

0,zz                   (29) 

ii) Vanishing of the tangential stress component 

0,zx                   (30) 

iii) Vanishing of the normal heat flux component  

0,
z





                 (31) 

where 

2 2 2 2

2 2

2 2

2 2

2 2

,

zz

q q

x z 2

q

x z z

a
x z

   

 

     
       


     

     
         

  (32) 
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2 2 2

2 2
2 .zx

q

x z z x

  
   

       
     (33) 

Equation (29) to (31) are written in non-dimensional 
form as 

2 2 2 2

2 2 2

2 2
2
1 2 2

2

0,

q q q

x zx z z

c a
x z

 

 

     
          

     
          





    (34) 

2 2 2

2 2
2 0

q

x z z x

   
  

   
,          (35) 

0.
z





              (36) 

Making use of solutions (22), (23) and (27) for  
 in the Equations (34) to (36), we obtain the 

following homogenous system of three equations in A, B 
and C 

, ,q  

    
    

2 2 2 2 2 2
1 1 1 1

2 2 2 2 2 2
2 1 2 2

2
3

2 1 1

2 1 1

2 0,

c a A

c a

C

        

        

 





       
        

 

B

0,

 

(37) 

 2
1 2 32 2 1A B C         (38) 

1 1 2 2 0,A B                 (39) 

The non-trivial solution of Equations (37) to (39) 
exists if the determinant of the coefficients of A, B and C 
vanishes, i.e., 

 
 

     
    

2
1 2 3 2 1

2
3

2
2 2 1 1 1 2 2 1 1 2

2 2
1 1 2 2 1 1 2

4

1

2

1 1 = 0,c a

     



             

      



 

     
    

 

(40) 

which is the the frequency equation of thermoelastic 
Rayleigh wave in a two-temperature generalized ther- 
moelastic medium without energy dissipation.  

5. Special Cases 

5.1. Small Thermal Coupling 

In order to have an idea of the effect of two-temperature 
parameter on the speed of propagation of Rayleigh wave, 
we consider the case of small thermoelastic coupling. For 
most of materials,   is small at normal temperature. 
Hence we can approximate the frequency equation by 

assuming . For , the Equations (24) and (25) 
are approximated as 

1 1

 

1 5

2

2

b b

a

c

 

1
2

2 4
2

5

2 1 5

2

1
1 1

2
1 ,

2

c

b

b

ba

b b b





 

 

  
  


  
   
   
  

 




  (41) 



 

 

1 5
2

2

2
2 4

22
5

2 1 5

2

1
1 1

2
1 ,

2

b bc

b

ba

bca

b b b




 






 

  
    

   
  
  

  




  (42) 

where 

 2 2
1 2 2b b 2     , 2

2

1
b a




  , 

  2 2 2 2
3 2b b       

  2 2
4 1

2
2 2

2 3
2 3

2 1 1

1
4

b b a

a a
b b

b b

 

 



 

  

      
   

, 

2
5 1 24b b b b  3 . 

With the help of these approximations for β1 and β2, 
the coupling coefficients 1  and 2  are approximated 
and hence the frequency Equation (40) is approximated. 

5.2. Isotropic Elastic Case 

If we neglect thermal parameters, then the frequency 
Equation (40) reduces to 

 22 2 2 2 22 4 1 1c v c c v    ,     (43) 

which is the frequency equation of Rayleigh wave for an 
isotropic elastic case. 

6. Numerical Example 

If we put  2 2
1 2c c i    , where  is the classi- 

cal Rayleigh wave velocity and 
c

1  and 2  are two 
reals, then 

1 2
2

1
2 2

i
c c c  

    
 2

 
 

       (44) 

1

2
c

c




  
 


The velocity of propagation is equal to   
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an   d the amplitude-attenuation factor is equal to

2
32

x
exp

c  
2

 
 with 0.   The non-dimensional speed  

of propagation is computed
parameters 

 for the following material 
27.59 Dyn cm   ,  1110

11 2  

1 1 1Cal cm s C     , 0

1.89 10 Dyn cm    , 2.7 g cm ,  
1 10.236 Cal g CEc     .  

0.492K    .02,

3

   0T 20 C  , 

gh wave i

x 

phically against th range

= 1 cm, c

The no
0.9554 . 

n-dimensional speed of R e s 
shown gra e 1

ayl i
 0. 0.5   of 

frequency in Figure 1, when two-temperature a  is 
0.75. With the increase in frequency, it increases very 
sharply at low frequency range and slowly for h her 
frequency range. The non-dimensional speed of Rayleigh 
wave is also shown graphically against the range  
0 1a   of two-temperature parameter in Figure 2, 
when the frequency 0.1

ig

  . With the increase in value 
of two-temperature parameter, it increases very slowly. It 
seems almost constant in Figure 2, but it increases for 
the whole range of the two-temperature parameter. 

7. Conclusion 

The appropriate solutions of the governing equations of 
neralized thermoelastic medium with- two-temperature ge

out energy dissipation are applied at the boundary con- 
ditions at a thermally insulated free surface of a half- 
space to obtain the frequency equation of Rayleigh wave. 
The frequency equation is approximated for the case of 
small thermal coupling and reduced for isotropic elastic 
case. From frequency equation of Rayleigh wave, it is 
observed that the phase speed of Rayleigh wave depends 
on various material parameters including the two-tem- 
perature parameter. The dependence of numerical values 
 

 

Figure 1. Variation of the non-dimensional speed of Ray-
leigh wave against frequency when a* = 0.75. 

 

 

Figure 2. Variation of the non-dimensional speed of Ray- 
leigh wave against two-temperature parameter when χ = 
0.1. 
 
of non-dimensional speed on the frequency and two- 
temperature parameter is shown graphically for a parti- 
cular material representing the model. 
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