

Application of $\alpha\delta$ -Closed Sets

Kokilavani Varadharajan¹, Basker Palaniswamy^{2*}

¹Department of Mathematics, Kongunadu Arts and Science College, Coimbatore, India ²Department of Mathematics, Kalaivani College of Technology, Coimbatore, India Email: *baskiii2math@gmail.com

Received January 4, 2012; revised November 29, 2012; accepted December 4, 2012

ABSTRACT

In this paper, we introduce the notion of $\alpha\delta$ -US spaces. Also we study the concepts of $\alpha\delta$ -convergence, sequentially $\alpha\delta$ -compactness, sequentially $\alpha\delta$ -continuity and sequentially $\alpha\delta$ -sub-continuity and derive some of their properties.

Keywords: $\alpha\delta$ -US Spaces; $\alpha\delta$ -Convergence; Sequentially $\alpha\delta$ -Compactness; Sequentially $\alpha\delta$ -Continuity; Sequentially $\alpha\delta$ -Sub-Continuity

1. Introduction

In 1967, A. Wilansky [1] introduced and studied the concept of US spaces. Also, the notion of $\alpha\delta$ -closed sets of a topological space is discussed by R. Devi, V. Kokilavani and P. Basker [2,3]. The concept of slightly continuous functions is introduced and investigated by Erdal Ekici *et al.* [4]. In this paper, we define that a sequence $\{x_n\}$ in a space X is $\alpha\delta$ -converges to a point $x \in X$ if $\{x_n\}$ is eventually in every $\alpha\delta$ -open set containing x. Using this concept, we define the $\alpha\delta$ -US space, Sequentially- $\alpha\delta$ -continuous, Sequentially-Nearly- $\alpha\delta$ -continuous and Sequentially- $\alpha\delta$ -compact of a topological space (X, τ) .

2. Preliminaries

Throughout this paper, spaces X and Y always mean topological spaces. Let X be a topological space and A, a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. A subset A is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A)), the δ -interior [5] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $Int_{\delta}(A)$. The subset A is called δ -open if $A = Int_{\delta}(A)$, *i.e.*, a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed.

Alternatively, a set $A \subset (X, \tau)$ is called δ -closed if $A = cl_{\delta}(A)$, where

$$cl_{\delta}(A) = \{x \mid x \in U \in \tau \Rightarrow int(cl(A)) \cap A \neq \varphi\}$$
. The fa-

mily of all δ -open (resp. δ -closed) sets in X is denoted by $\delta O(X)$ (resp. $\delta C(X)$). A subset A of X complement of a α -open are called α -closed. The intersection of all α -closed sets containing A is called the α -closure of A and is denoted by $\alpha cl(A)$, Dually, α -interior of A is defined to be the union of all α -open sets contained in A and is denoted by $\alpha int(A)$.

is called α -open [6] if $A \subset int(cl(int(A)))$ and the

We recall the following definition used in sequel.

Definition 2.1. A subset A of a space X is said to be (a) An α -generalized closed [7] (ag-closed) set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .

(b) An $\alpha\delta$ -closed [8] set if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in (X, τ) .

The complement of a $\alpha\delta$ -closed set is said to be $\alpha\delta$ -open. The intersection of all $\alpha\delta$ -closed sets of X containing A is called $\alpha\delta$ -closure of A and is denoted by $\alpha\delta_{Cl}(A)$. The union of all $\alpha\delta$ -open sets of X contained in A is called $\alpha\delta$ -interior of A and is denoted by $\alpha\delta_{tw}(A)$.

3. $\alpha\delta$ -US Spaces

Definition 3.1. A sequence $\{x_n\}$ in a space X, $\alpha\delta$ -converges to a point $x \in X$ if $\{x_n\}$ is eventually in every $\alpha\delta$ -open set containing x.

Definition 3.2. A space X is said to be $\alpha\delta$ -US if every sequence in X, $\alpha\delta$ -converges to a point of X.

Definition 3.3. A space X is said to be

(a) $T_1^{\#\alpha\delta}$ if each pair of distinct points x and y in X there exists an $\alpha\delta$ -open set U in X such that $x \in U$ and $y \notin U$ and a $\alpha\delta$ -open set V in X such that $y \in V$ and $x \notin V$.

(b) $T_2^{\#\alpha\delta}$ if for each pair of distinct points x and y in X there exists an $\alpha\delta$ -open sets U and V such

^{*}Corresponding author.

that $U \cap V = \varphi$ and $x \in U$, $y \in V$.

Theorem 3.4. Every $\alpha\delta$ -US-space is $T_1^{\#\alpha\delta}$.

Proof. Let X be an $\alpha\delta$ -US-space and x, y be two distinct points of X. Consider the sequence $\{x_n\}$, where $x_n = x$ for any $n \in N$. Clearly

 $\{x_n\}$ $\alpha\delta$ -converges to x. Since $x \neq y$ and X is $\alpha\delta$ -US, $\{x_n\}$ does not $\alpha\delta$ -converges to y, *i.e.*, there exists an $\alpha\delta$ -open set U containing x but not y. Similarly, we obtain an $\alpha\delta$ -open set V containing v but not x. Thus, X is $T_1^{\#\alpha\delta}$. **Theorem 3.5.** Every $T_2^{\#\alpha\delta}$ -space is $\alpha\delta$ -US. **Proof.** Let X be a $T_2^{\#\alpha\delta}$ space and $\{x_n\}$ a se-

quence in X. Assume that $\{x_n\} \alpha \delta$ -converges to two distinct points x and y. Then $\{x_n\}$ is eventually in every $T_2^{\#\alpha\delta}$ then $\{x_n\}$ is eventually in two disjoint $\alpha\delta$ -open sets. This is a contradiction. Therefore, X is $\alpha\delta$ -US.

Definition 3.6. A subset A of a space X is said to be

(a) Sequentially $\alpha\delta$ -closed if every sequence in A $\alpha\delta$ -converges to a point in A,

(b) Sequentially $\alpha \delta O$ -compact if every sequence in A has a subsequence which $\alpha\delta$ -converges to a point in A.

Theorem 3.7. A space is $\alpha\delta$ -US if and only if the diagonal set Δ is a sequentially $\alpha\delta$ -closed subset of the product space $X \times X$.

Proof. Suppose that X is an $\alpha\delta$ -US space and $\{(x_n, x_n)\}$ is a sequence in the diagonal Δ . It follows that $\{x_n\}$ is a sequence in X. Since X is $\alpha\delta$ -US, the sequence $\{(x_n, x_n)\}$ $\alpha\delta$ -converges to (x, x) which clearly belongs to Δ . Therefore, Δ is a sequentially $\alpha\delta$ -closed subset of $X \times X$. Conversely, suppose that the diagonal Δ is a sequentially $\alpha\delta$ -closed subset of $X \times X$. Assume that a sequence $\{x_n\}$ is $\alpha\delta$ -converging to x and y. Then it follows that $\{(x_n, x_n)\} \alpha \delta$ -converges to (x, y). By hypothesis, since Δ is sequentially $\alpha\delta$ closed, we have $(x, y) \in \Delta$. Thus x = y. Therefore, X is $\alpha\delta$ -US.

Theorem 3.8. If a space X is $\alpha\delta$ -US and a subset M of X is sequentially $\alpha \delta O$ -compact, then M is sequentially $\alpha\delta$ -closed.

Proof. Assume that $\{x_n\}$ is any sequence in M which $\alpha\delta$ -converges to a point $x \in X$. Since M is sequentially $\alpha \delta O$ -compact, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\} \alpha \delta$ -converges to $m \in M$. Since X is $\alpha \delta$ -ÚS, we have x = m. This shows that M is sequentially $\alpha\delta$ -closed.

Theorem 3.9. The product space of an arbitrary family of $\alpha\delta$ -US topological space is an $\alpha\delta$ -US topological space.

Proof. Let $\{x_{\lambda} : \lambda \in \Delta\}$ be a family of $\alpha\delta$ -US topological spaces with the index set Δ . The product space of $\{x_{\lambda} : \lambda \in \Delta\}$ is denoted by $\prod X_{\lambda}$. Let $\{x_n(\lambda)\}$ be a sequence in $\prod X_{\lambda}$. Suppose that

 $\{x_n(\lambda)\}$ $\alpha\delta$ -converges to two distinct points x and y in $\prod X_{\lambda}$. Then there exists a $\lambda_0 \in \Delta$ such that $x(\lambda_0) \neq y(\lambda_0)$. Then $\{x_n(\lambda_0)\}$ is a sequence in X_{λ_0} . Let V_{λ_0} be any $\alpha\delta$ -open in X_{λ_0} containing $x(\lambda_0)$. Then $V = V_{\lambda_0} \times \prod_{\lambda \neq \lambda_0} X_{\lambda}$ is a $\alpha \delta$ -open set of $\prod X_{\lambda}$ containing x. Therefore, $\{x_n(\lambda)\}\$ is eventually in V. Thus $\{x_n(\lambda_0)\}$ is eventually in V_{λ_0} and it $\alpha\delta$ -converges to $x(\lambda_0)$. Similarly, the sequence $\{x_n(\lambda_0)\}\alpha\delta$ converges to $y(\lambda_0)$. This is a contradiction as X_{λ_0} is a $\alpha\delta$ -US space. Therefore, the product space $\prod X_{\lambda}$ is $\alpha\delta$ -US.

4. Sequentially $\alpha \delta O$ -Compact Preserving Functions

Definition 4.1. A function $f: X \to Y$ is said to be

(a) Sequentially- $\alpha\delta$ -continuous at $x \in X$ if the sequence $\{f(x_n)\}$ ad-converges to f(x) whenever a sequence $\{x_n\}$ $\alpha\delta$ -converges to x. If f is sequentially $\alpha\delta$ -continuous at each $x \in X$, then it is said to be sequentially $\alpha\delta$ -continuous.

(b) Sequentially-Nearly- $\alpha\delta$ -continuous, if for each sequence $\{x_n\}$ in X that $\alpha\delta$ -converges to $x \in X$, there exists subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that the sequence $\{f(x_{n_k})\}$ $\alpha\delta$ -converges to $\{f(x_n)\}$.

(c) Sequentially-Sub- $\alpha\delta$ -continuous if for each point $x \in X$ and each sequence $\{x_n\}$ in $\alpha\delta$ -converging to, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and a point $y \in Y$ such that the sequence $\{f(x_{n_k})\}$ $\alpha\delta$ -converges to *y* .

(d) Sequentially, $\alpha \delta O$ -compact preserving if the image f(M) of every sequentially $\alpha \delta O$ -compact set M of X is a sequentially $\alpha \delta O$ -compact subset of Y.

Theorem 4.2. Let $f_1: X \to Y$ and $f_2: X \to Y$ be two sequentially $\alpha\delta$ -continuous functions. If Y is $\alpha\delta$ -US, then the set $E = \{x \in X : f_1(x) = f_2(x)\}$ is sequentially $\alpha\delta$ -closed.

Proof. Suppose that Y is $\alpha\delta$ -US and $\{x_n\}$ is any sequence in E that f_1 -converges to $x \in X$. Since f_1 and f_2 are sequentially $\alpha\delta$ -continuous functions, the sequence $\{f_1(x_n)\}$ (respectively, $\{f_2(x_n)\}$) converges to $f_1(x)$ (respectively, $f_2(x)$). Since $x_n \in E$ for each $n \in N$ and Y is $\alpha \delta$ -US, $f_1(x) = f_2(x)$ and hence $x \in E$. This shows that E is sequentially $\alpha \delta$ closed

Lemma 4.3. Every function $f: X \to Y$ is sequentially sub $\alpha\delta$ -US $\alpha\delta$ -US continuous if Y is sequentially $\alpha\delta O$ -compact.

Proof. Let $\{x_n\}$ be a sequence in X that $\alpha\delta$ -US converges to $x \in X$. It follows that $\{f(x_n)\}$ is a sequence in Y. Since Y is sequentially $\alpha\delta O$ -compact,

3

there exists a subsequence $\{f(x_{n_k})\}$ of $\{f(x_n)\}$ that $a\delta$ -converges to a point $y \in Y$. Therefore $f: X \to Y$ is sequentially sub $a\delta$ -continuous.

Theorem 4.4. Every sequentially nearly $\alpha\delta$ -continuous function is sequentially $\alpha\delta O$ -compact preserving.

Proof. Let $f: X \to Y$ be a sequentially nearly $\alpha\delta$ continuous function and M be any sequentially $\alpha\delta O$ compact subset of X. We will show that f(M) is a sequentially $\alpha\delta O$ -compact subset of Y. So, assume that $\{y_n\}$ is any sequence in f(M). Then for each $n \in N$, there exists a point $x_n \in M$ such that $f(x_n) = y_n$. Now M is sequentially $\alpha\delta O$ -compact, so there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ that $\alpha\delta$ -converges to a point $x \in M$. Since f is sequentially nearly $\alpha\delta$ -continuous, there exists a subsequence

 $\{x_{n_k}(i)\}\$ of $\{x_{n_k}\}\$ such that $\{f(x_{n_k}(i))\}\$ $a\delta$ -converges to f(x). Therefore, there exists a subsequence

 $\{y_{n_k}(i)\}\$ of $\{y_n\}\$ that $a\delta$ -converges to f(x). This implies that f(M) is a sequentially $a\delta O$ -compact set of Y.

Theorem 4.5. Every sequentially $\alpha\delta O$ -compact preserving function is sequentially sub- $\alpha\delta$ -continuous.

Proof. Suppose that $f: X \to Y$ is a sequentially $\alpha \delta O$ -compact preserving function. Let x be any point of X and $\{x_n\}$ a sequence that $\alpha\delta$ -converges to x. We denote the set $\{x_n : n \in N\}$ by A and put $M = A \cup \{x\}$. Since $\{x_n\} \alpha \delta$ -converges to x, M is sequentially $\alpha \delta O$ -compact. By hypothesis, f is sequentially $\alpha \delta O$ -compact subset of Y. Now in f(M) there exists a subsequence $\{f(x_{n_k})\}$ of $\{f(x_n)\}$ that $\alpha\delta$ -converges to a point $y \in f(M)$. This implies that f sequentially sub- $\alpha\delta$ -continuous.

Theorem 4.6. A function $f: X \to Y$ is sequentially $\alpha \delta O$ -compact preserving if and only if

 $f/M: M \to f(M)$ is sequentially sub- $\alpha\delta$ -continuous for each sequentially $\alpha\delta O$ -compact set M of X.

Proof. Necessity: Suppose that $f: X \to Y$ is a sequentially $a\delta O$ -compact preserving function. Then f(M) is sequentially $a\delta O$ -compact in Y for each sequentially $a\delta O$ -compact subset M of X. Therefore, by Theorem 3.5 $f/M: M \to f(M)$ is sequentially sub- $a\delta$ -continuous.

Sufficiency: Let M be any sequentially $\alpha\delta O$ -compact set of X. We will show that f(M) is sequentially $\alpha\delta O$ -compact subset of Y. Let $\{y_n\}$ be any sequence in f(M). Then for each $n \in N$, there exists a point $x_n \in M$ such that $f(x_n) = y_n$. Since $\{x_n\}$ is a sequence in the sequentially $\alpha\delta O$ -compact set M there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ that $\alpha\delta$ -converges to a point in M. By hypothesis $f/M: M \to f(M)$ is sequentially sub- $\alpha\delta$ -continuous, hence there exists a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ that $\alpha\delta$ -converges to $y \in f(M)$. This implies that f(M) is sequentially $\alpha\delta O$ -compact in Y.

Corollary 4.7. If a function $f: X \to Y$ is sequentially sub- $a\delta$ -continuous and f(M) is sequentially $a\delta$ -closed in Y for each sequentially $a\delta O$ -compact set M of X, then f is sequentially $a\delta O$ -compact preserving.

Proof. It will be sufficient to show that

 $f/M: M \to f(M)$ is sequentially sub- $a\delta$ -continuous for each sequentially $a\delta O$ -compact set M of X and by Lemma 3.3. We have already done. So, let $\{x_n\}$ be any sequence in M that $a\delta$ -converges to a point $x \in M$. Then, since f is sequentially sub- $a\delta$ -continuous there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and a point $y \in Y$ such that $\{f(x_{n_k})\}a\delta$ -converges to y. Since $\{f(x_{n_k})\}$ is a sequence in the sequentially $a\delta$ closed set f(M) of Y, we obtain $y \in f(M)$. This implies that $f/M: M \to f(M)$ is sequentially sub $a\delta$ -continuous.

5. Slightly $\alpha\delta$ -Continuous Functions

Definition 5.1. A function $f: X \to Y$ is said to be slightly $\alpha\delta$ -continuous if for each $x \in X$ and for each $v \in CO(Y, f(x))$, there exists $U \in \alpha\delta O(X, x)$ such that $f(U) \subset V$, where CO(Y, f(x)) is the family of clopen sets containing f(x) in a space Y.

Definition 5.2. Let (D, \leq) be a directed set A net $\{x_{\lambda} : \lambda \in D\}$ in X is said to be $\alpha\delta$ -convergent to a point $x \in X$ if $\{x_{\lambda}\}_{\lambda \in D}$ is eventually in each $U \in \alpha\delta O(X, x)$.

Theorem 5.3. For a function $f: X \rightarrow Y$, the following are equivalent:

(a) f is slightly $\alpha\delta$ -continuous.

(b) $f^{-1}(v) \in \alpha \delta O(X)$ for each $V \in CO(Y)$.

(c) $f^{-1}(v)$ is $\alpha\delta$ -cl-open for each $V \in CO(Y)$.

(d) for each $x \in X$ and for each net $\{x_{\lambda}\}_{\lambda \in D}$ in X.

Proof. $(a) \Rightarrow (b)$. Let $V \in CO(Y)$ and let

 $x \in f^{-1}(V)$, then $(x) \in V$. Since f is slightly $\alpha\delta$ -continuous, there is a $U \in \alpha\delta O(X, x)$ such that

 $(U) \subset V$. Thus $f^{-1}(U) = \bigcup_{x} \{ U : x \in f^{-1}(V) \}$, that is $f^{-1}(U)$ is a union of $\alpha\delta$ -open sets. Hence

 $f^{-1}(U) \in \alpha \delta O(X).$

 $(b) \Rightarrow (c)$. Let $V \in CO(Y)$, then $(Y - V) \in CO(X)$.

By hypothesis $f^{-1}(Y-V) = X - f^{-1}(V) \in \alpha \delta O(X)$. Thus $f^{-1}(U)$ is $\alpha \delta$ -closed. $(c) \Rightarrow (d)$. Let $\{x_{\lambda}\}_{\lambda \in D}$ be a net in $X \alpha \delta$ -con4

verging to x and let $V \in CO(Y, f(x))$. There is thus a $U \in \alpha \delta O(X, x)$ such that $(U) \subset V$. There is thus a $\lambda_0 \in D$ such that $\lambda_0 \leq \lambda$ implies $x_{\lambda} \in U$ since $\{x_{\lambda}\}_{\lambda \in D}$ is $\alpha \delta$ -convergent to x. Thus

 $f(x_{\lambda}) \in f(U) \subset V$ for all λ . Thus $\{f(x_{\lambda})\}_{\lambda \in D}$ is $\alpha \delta$ convergent to f(x).

 $(d) \Rightarrow (a)$ Suppose that f is not slightly $\alpha\delta$ -continuous at a point $x \in X$, then there exists a

 $V \in CO(Y, f(x))$ such that f(U) does not contained in V for each $U \in \alpha \delta O(X, x)$. So

 $f(U)\cap(Y-V) \neq \varphi$ and thus $U\cap f^{-1}(Y-V) \neq \varphi$ for each $U \in \alpha \delta O(X,x)$, since $\alpha \delta O(X,x)$ is directed by set inclusion C, there exists a selection function x_U from $\alpha \delta O(X,x)$ into X for each $U \in \alpha \delta O(X,x)$. Thus $\{x_U\}_U \in \alpha \delta O(X,x)$ is a net in X $\alpha \delta$ -converging to x. Since $X_U \in U \cap f^{-1}(Y-V) = U - f^{-1}(V)$ and so $f(x_U) \notin V$, for each U,

 ${f(x_U)}_U \in \alpha \delta O(X, x)$ is not eventually in $V \in CO(Y, f(x))$, which is a contradiction. Hence (a) holds.

Theorem 5.4. If $f: X \to Y$ is slightly $\alpha\delta$ -continuous and $g: Y \to Z$ is slightly continuous, then their composition $g \circ f$ is slightly $\alpha\delta$ -continuous.

Proof. Let $V \in CO(Z)$, then $g^{-1}(V) \in CO(Y)$. Since f is slightly $\alpha\delta$ -continuous,

 $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in \alpha \delta O(X)$. Thus $g \circ f$ is Slightly $\alpha \delta$ -continuous.

Theorem 5.5. The following are equivalent for a function $f: X \rightarrow Y$:

(a) f is slightly $\alpha\delta$ -continuous,

(b) for each $x \in X$ and for each $V \in CO(Y, f(x))$,

there exists $\alpha\delta$ -cl-open set U such that $f(U) \subset U$,

(c) for each closed set F of Y, $f^{-1}(F)$ is $\alpha\delta$ -closed,

(d) $f(cl(A)) \subset \alpha \delta_{cl}(f(A))$ for each $A \subset X$ and (e) $cl(f^{-1}(B)) \subset f^{-1}(\alpha \delta_{cl}(B))$ for each $B \subset Y$.

Proof. $(a) \Rightarrow (b)$ Let $x \in X$ and

 $V \in CO(Y, f(x))$ by Theorem 4.3. $f^{-1}(V)$ is clopen. Put $U = f^{-1}(V)$, then $x \in U$ and $f(U) \subset V$. $(b) \Rightarrow (c)$ is obvious.

 $(c) \Rightarrow (d)$ since $\alpha \delta_{cl}(f(A))$ is the smallest $\alpha \delta$ closed set containing f(A), hence by (c), we have (d).

every closed set is $\alpha\delta$ -closed, thus

 $f^{-1}(Y-V) = X - f^{-1}(V)$ is closed and thus $\alpha\delta$ -closed, thus $f^{-1}(V) \in \alpha\delta O(X)$ and f is slightly $\alpha\delta$ -continuous.

Theorem 5.6. If $f: X \to Y$ is a slightly $\alpha\delta$ -continuous injection and Y is clopen T_1 , then X is $T_1^{\#\alpha\delta}$.

Proof. Suppose that Y is clopen T_1 . For any distinct points x and y in X, there exist $V, W \in CO(Y)$ such that $f(x) \in V, f(y) \notin V, f(x) \notin W$ and $f(y) \in W$. Since f is slightly $\alpha\delta$ -continuous,

 $f^{-1}(V)$ and $f^{-1}(W)$ are $\alpha\delta$ -open subsets of X such that $x \in f^{-1}(V), y \notin f^{-1}(V), x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is $T_1^{\#\alpha\delta}$.

Theorem 5.7. If $f: X \to Y$ is a slightly $\alpha\delta$ -continuous surjection and Y is clopen T_2 , then X is $T_2^{\#\alpha\delta}$.

Proof. For any pair of distinct points x and y in X, there exist disjoint clopen sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since f is slightly $\alpha\delta$ -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are $\alpha\delta$ -open in X containing x and y respectively. Therefore $f^{-1}(U) \cap f^{-1}(V) = \varphi$ because $U \cap V = \varphi$. This shows that X is $T_2^{\#\alpha\delta}$.

Definition 5.8. A space is called $\alpha\delta$ -regular if for each $\alpha\delta$ -closed set F and each point $x \notin F$, there exist disjoint open sets U and V such that $F \subset U$ and $x \in V$.

Definition 5.9. A space is said to be $\alpha\delta$ -normal if for every pair of disjoint $\alpha\delta$ -closed subsets F_1 and F_2 of X, there exist disjoint open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Theorem 5.10. If f is slightly $\alpha\delta$ -continuous injective open function from an $\alpha\delta$ -regular space X onto a space then Y is clopen regular.

Proof. Let *F* be clopen set in *Y* and be $y \notin F$, take y = f(x). Since *f* is slightly $\alpha\delta$ -continuous, $f^{-1}(F)$ is a $\alpha\delta$ -closed set, take $G = f^{-1}(F)$, we have $x \notin G$. Since *X* is $\alpha\delta$ -regular, there exist disjoint open sets *U* and *V* such that $G \subset U$ and $\in V$. We obtain that $F = f(G) \subset f(U)$ and $y = f(x) \in f(V)$ such that f(U) and f(V) are disjoint open sets. This shows that *Y* is clopen regular.

Theorem 5.11. If f is slightly $\alpha\delta$ -continuous injective open function from a $\alpha\delta$ -normal space X onto a space Y, then Y is *cl*-open normal.

Proof. Let F_1 and F_2 be disjoint *cl*-open subsets of Y Since f is slightly $\alpha\delta$ -continuous, $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are $\alpha\delta$ -closed sets. Take $U = f^{-1}(F_1)$ and $V = f^{-1}(F_2)$. We have $U \cap V = \varphi$. Since X is $\alpha\delta$ -regular, there exist disjoint open sets A and B such that $U \subset A$ and $V \subset B$. We obtain that

 $F_1 = f(U) \subset f(A)$ and $F_2 = f(V) \subset f(B)$ such that f(A) and f(B) are disjoint open sets. Thus, Y is *cl*-open normal.

REFERENCES

- A. Wilansky, "Between T₁ and T₂," *American Mathematical Monthly*, Vol. 74, No. 3, 1967, pp. 261-266.
- [2] R. Devi, V. Kokilavani and P. Basker, "On Strongly-αδ-Super-Irresolute Functions in Topological Spaces," *International Journal of Computer Applications*, Vol. 40, No.

17, 2012, pp. 38-42.

- [3] V. Kokilavani and P. Basker, "On *F^{-αδ}* Continuous Multifunctions," *International Journal of Computer Applications*, Vol. 41, No. 2, 2012, pp. 0975-8887.
- [4] E. Ekici and M. Caldas, "Slightly—Continuous Functions," *Boletim da Sociedade Paranaense de Matemática*, Vol. 35, No. 22, 2004, pp. 63-74.
- [5] N. V. Velicko, "H-Closed Topological Spaces," *Transactions of American Mathematical Society*, Vol. 78, 1968, pp. 103-118.
- [6] V. Kokilavani and P. Basker, "On Some New Applications in $\mathcal{R}^0_{\overline{\alpha\delta}}$ and $\mathcal{R}^1_{\overline{\alpha\delta}}$ Spaces via $\alpha\delta$ -Open Sets," *Elixir Applied Mathematics*, Vol. 45, 2012, pp. 7817-7821.
- [7] V. Kokilavani and P. Basker, "The αδ-Kernel and αδ-Closure via αδ-Open Sets in Topological Spaces," *International Journal of Mathematical Archive*, Vol. 3, No. 4, 2012, pp. 1665-1668.
- [8] V. Kokilavani and P. Basker, "D^{*αδ}-Sets and Associated Separation Axioms in Topological Spaces," *Elixir Discrete Mathematics*, Vol. 46, 2012, pp. 8207-8210.