

Calculation of Start-Oscillation-Current for Lossy Gyrotron Traveling-Wave Tube (Gyro-TWT) Using Linear Traveling-Wave Tube (TWT) Parameter Conversions

Heather H. Song

Department of Electrical and Computer Engineering, University of Colorado, Colorado Springs, USA. Email: hsong@uccs.edu

Received November 13th, 2012; revised December 13th, 2012; accepted December 25th, 2012

ABSTRACT

The start-oscillation-current of a gyro-TWT (gyrotron traveling-wave tube) determines the stable operating current level of the device. The amplifier is susceptible to oscillations when the operating current level is higher than the start-oscillation current. There are several ways of calculating the start-oscillation current, including using the linear and nonlinear theory of a gyro-TWT. In this paper, a simple way of determining the start-oscillation current of lossy gyro-TWT is introduced. The linear TWT parameters that include the effects of synchronism, loss, and gain, were converted to gyro-TWT parameters to calculate the start-oscillation-current. The dependence on magnetic field, loss, and beam alpha was investigated. Calculations were carried out for a V-band gyro-TWT for both operating and competing modes. The proposed method of calculating the start-oscillation current provides a simple and fast way to estimate the oscillation conditions and can be used for the design process of a gyro-TWT.

Keywords: Start-Oscillation-Current; Gyro-TWT; TWT; Lossy; Stable; Competing Mode

1. Introduction

The gyro-TWT (gyrotron traveling-wave tube) has long been viewed as an extremely promising device due to its high-power and broadband capabilities. Potential applications include radar, communication, surveillance, and scientific research [1]. However, in order for gyro-TWT to work properly, the interaction with competing mode must be suppressed. The beam current level where the unwanted oscillation takes place is called the "start-oscillation-current" $(I_s)'$ for gyro-TWT. Therefore in gyro-TWT, it is critical to operate the amplifier below I_s to ensure stability of the device. One way to increase I_s is to apply loss to the gyro-TWT circuit. Calculation results of I_s employing linear theory [2-4] and nonlinear theory [5] were reported for lossy gyro-TWT. However, using these methods require in-depth analysis on linear and nonlinear theories of gyro-TWT. In this paper, a simple method of obtaining I_s for lossy gyro-TWT by using the linear-TWT parameters is introduced. By using the linear TWT parameter conversions, the expression for I_s for the gyro-TWT was obtained. The parameter conversion process and the calculation results for I_s for gyro-TWT are presented.

2. Conversion of Linear TWT Parameters to Gyro-TWT

The gain parameter of a linear lossy TWT that corresponds to the start-oscillation condition can be expressed by Equation (1) [6]. For gyro-TWT, the gain parameter is described as Equation (2) [7]. By combining Equation (1) used in a linear TWT and Equation (2) used in a gyro-TWT (by setting $C_{st} = C_g$), the start oscillation current for lossy gyro-TWT can be expressed by Equation (3).

$$C_{st} = 0.0112 \frac{L_{dB}}{N} \left(1 + \frac{1013}{L_{dB}^2} \right)$$
(1)

$$C_g = \left(\frac{k_c^4}{2k_b^4} I_b F_{mn} \varepsilon_v\right)^{\frac{1}{3}}$$
(2)

$$I_{s} = \frac{2k_{b}^{4}}{F_{mn}\varepsilon_{v}k_{c}^{4}} \left(0.0112\frac{L_{dB}}{N}\right)^{3} \left(1 + \frac{1013}{L_{dB}^{2}}\right)^{3}$$
(3)

Here L_{dB} is the total loss of the circuit in dB, N is the circuit length in wavelength, k_c is the cutoff wavenumber (ω_c/c) , k_b is the beam wavenumber $((\omega - \Omega)/v_z)$, I_b is

the beam current, F_{mn} is defined in Equation (4), and ε_v is defined in Equation (5).

$$F_{mn} = \frac{J_{1-m}^2 \left(k_{mn} R_g / a \right)}{k_{mn}^2 J_m^2 \left(k_{mn} \right) \left(1 - m^2 / k_{mn}^2 \right)} \tag{4}$$

$$\varepsilon_{\nu} = \frac{2.348 \times 10^{-4}}{\gamma \beta_z} \left(\frac{\beta_{\perp}}{\beta_z}\right)^2 \left(J_1' \left(\frac{\beta_{\perp} \omega_c}{\Omega_c}\right)\right)^2 \tag{5}$$

Here J_m is the Bessel function of order m, k_{mn} is the m^{th} Bessel root defined by $J'_m(k_{mn}) = 0$, n is the radial mode number, m is the azimuthal mode number, R_a is the guiding center radius, a is the waveguide radius, β_z is the axial velocity normalized by the speed of light, β_{\perp} is the transverse velocity normalized by the speed of light, ω_c is the cutoff frequency of the waveguide, and Ω_c is the relativistic cyclotron frequency. The comparison between critical parameters of linear and gyro-TWT is shown in **Table 1**.

3. Calculated Results and Discussion

In order to validate the I_s calculation method proposed above, a V-band (60 GHz) TE_{11} gyro-TWT was chosen to evaluate the I_s values. Figure 1 shows the dispersion diagram of the V-band TE₁₁ gyro-TWT for $\alpha = 0.85$, $V_b =$ 100 kV, and $B_o/B_g = 1.0$. The waveguide mode expressed as $\omega^2 = \omega_c^2 + k_z^2 c^2$ is shown in parabolas and the beam mode which can be described as $\omega = s\Omega_c + k_z v_z$ is shown in straight lines up to fourth harmonic. Here, ω is the frequency, k_z is the axial wavenumber, c is the speed of light, s is the harmonic number, and v_z is the axial velocity of the beam. The operating point is where the TE₁₁ waveguide mode grazes with the s = 1 beam mode. The possible competing mode interactions occur when the waveguide mode intersects with the beam mode. These include TE_{11} and TE_{21} with s = 2, TE_{01} with s = 3, and TE₀₂ with s = 4 beam modes. The specification

Table 1. Conversion of linear TWT parameters to gyro-
TWT [7-8].

Parameter	Linear TWT	Gyro-TWT
Gain	$C = \left(\frac{Z_0 I_0}{4V_b}\right)^{\frac{1}{3}}$	$C_{g} = \left(\frac{k_{c}^{4}}{2k_{b}^{4}}I_{b}F_{mn}\varepsilon_{v}\right)^{\frac{1}{3}}$
Synchronism	$b = \frac{1}{C} \left(\frac{u_0}{v_p} - 1 \right)$	$g = \frac{k_g - k_b}{k_b C_g}$
Loss	$d = 0.0184 \frac{L}{C}$	$d = 0.0184 \frac{L}{C_g}$

 Z_0 : Circuit impedance; v_p : Phase velocity; V_b : Beam voltage; L: Loss per wavelength; u_0 : Beam velocity; k_a : Waveguide wavenumber.

Figure 1. Dispersion diagram of a TE₁₁ 60 GHz gyro-TWT for $\alpha = 0.85$, $V_b = 100$ kV, and $B_o/B_g = 1.0$. Waveguide modes (TE₁₁, TE₂₁, TE₀₁, TE₀₂) and beam modes (s = 1, 2, 3, 4) are shown.

of the V-band TE_{11} gyro-TWT is described in **Table 2**. The calculated I_s using Equation (3) is shown in **Figures** 2-5 under various conditions. Figure 2 shows dependence of I_s on circuit loss, L_{dB} , for several values of beam velocity ratio, α , for the operating TE₁₁ mode with $B_o/B_g = 1.5$ and $V_b = 100$ kV. The B_o/B_g indicates operating magnetic field, B_o , normalized by the grazing magnetic field, B_{g} . As L_{dB} increases, I_{s} increases which indicates that with higher value of L_{dB} , the device becomes more stable. For fixed value of L_{dB} , I_s increases as α decreases. This indicates that the loss stabilizes the device and the gyro-TWT becomes unstable for higher values of α . Figure 3 describes I_s change with B_{α}/B_{α} of the operating TE₁₁ mode for several values of beam voltage, V_b , for fixed values of $\alpha = 0.85$ and $L_{dB} = 100$ dB. For $B_o/B_{\sigma} < 1.1$, I_s decreases as B_o/B_{σ} increases. For fixed value of B_o/B_g , I_s is higher for higher V_b when $B_{o}/B_{\sigma} < 1.1$. For $B_{o}/B_{\sigma} > 1.1$, higher beam voltage makes the device unstable and as the operating magnetic field increases the device becomes more stable due to increasing $|k_z|$. Figure 4 shows I_s as a function B_o/B_g for several values of α and fixed values of $V_b = 100$ kV and $L_{dB} = 100$ dB. For $B_o/B_g < 1.1$, I_s decreases as B_o/B_g increases. For fixed value of B_o/B_g , I_s in

Parameter	Value
Beam voltage, V_b	100 kV
Beam current, I_b	3 A
Velocity pitch, α	0.85
Operating mode	TE_{11}
Cyclotron harmonic	s = 1
Magnetic field, B_o	21.4 kG
B_o/B_g	0.995
Circuit radius, r_w	0.16 cm
r_c/r_w	0.361
Circuit length	14 cm
Lamor radius, r_L	0.034 cm
Cutoff frequency	55 GHz
Efficiency	24.5%
Output power	78.2 W
Gain	41 dB
Bandwidth	5%

Table 2. Specifications of the V-band TE_{11} gyro-TWT.

*r*_c: Guiding center radius.

Figure 2. Start-oscillation-current, I_s , for the operating TE₁₁ mode as a function of loss, L_{dB} , for different values of beam velocity ratio, α , and the fixed value of the operating magnetic field normalized by the grazing magnetic field, $B_o/B_g = 1.5$, and beam voltage, $V_b = 100$ kV.

Figure 3. Start-oscillation-current, I_s , for the operating TE₁₁ mode as a function of B_a/B_g for different values of beam voltage, V_b , and fixed values of $\alpha = 0.85$ and $L_{dB} = 100$ dB.

Figure 4. Start-oscillation-current, I_s , for the operating TE₁₁ mode as a function of B_a/B_g for different values of α and fixed values of $V_b = 100$ kV and $L_{dB} = 100$ dB.

creases as α increases for $B_o/B_g < 1.1$. For $B_o/B_g > 1.1$, device is more stable for lower alpha be-

 $B_o/B_g > 1.1$, device is more stable for lower alpha because when the perpendicular component of the velocity decreases, the gyro-TWT beam-wave interaction becomes

Figure 5. Dispersion diagram of a TE₁₁ 60 GHz gyro-TWT for $\alpha = 0.85$, $V_b = 100$ kV, and $B_o/B_g = 1.5$. Waveguide modes (TE₁₁, TE₂₁, TE₀₁, TE₀₂) and beam modes (s = 1, 2, 3) are shown.

Figure 6. Start-oscillation-current, I_s , as a function of loss, L_{dB} , for different modes. Fixed values of $\alpha = 0.85$, $V_b = 100$ kV, and $B_o/B_g = 1.5$ were assumed.

weaker. Figure 5 shows the dispersion diagram of the device for $\alpha = 0.85$, $V_b = 100$ kV, and $B_o/B_g = 1.5$. Figure 6 describes I_s as a function of L_{dB} for four different modes: TE₁₁, TE₂₁, TE₀₁, and TE₀₂. Fixed values of α = 0.85, $V_b = 100$ kV, and $B_o/B_g = 1.5$ were assumed. The lowest I_s occurs for the TE₂₁ and the TE₀₁ mode exhibits the highest I_s value. As can be seen in **Figure 5**, this is due to TE₂₁ mode having the lowest $|k_z|$ value and the TE₀₁ mode having the highest $|k_z|$ value at the intersection of the beam-wave dispersion diagram. The I_s of the TE₀₁ mode is the most sensitive to L_{dB} variation.

4. Summary and Conclusion

In this paper, an expression for I_s for lossy gyro-TWT was derived using linear TWT parameter conversions. For V-band TE₁₁ gyro-TWT, I_s was calculated for various parameters including loss, beam voltage, magnetic field, and beam velocity ratio. The method introduced in this paper can be used to quickly estimate the I_s values of a lossy gyro-TWT.

REFERENCES

- H. H. Song, D. B. McDermott, Y. Hirata, L. R. Barnett, C. W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu and N. C. Luhmann Jr., "Theory and Experiment of a 94 GHz Gyrotron Traveling-Wave Amplifier," *Physics of Plasmas*, Vol. 11, No. 5, 2004, pp. 2935-2941. doi:10.1063/1.1690764
- [2] Q. S. Wang, D. B. McDermott and N. C. Luhmann Jr., "Demonstration of Marginal Stability Theory by a 200kW Second-Harmonic Gyro-TWT Amplifier," *Physical Review Letters*, Vol. 75, No. 23, 1995, pp. 4322-4355. doi:10.1103/PhysRevLett.75.4322
- [3] C. S. Kou, Q. S. Wang, D. B. McDermott, A. T. Lin, K. R. Chu and N. C. Luhmann Jr., "High-Power Harmonic Gyro-TWT's—Part I: Linear Theory and Oscillation Study," *IEEE Transactions on Plasma Science*, Vol. 20, No. 3, 1992, pp. 155-162. doi:10.1109/27.142815
- [4] Y. Y. Lau, K. R. Chu, L. R. Barnett and V. L. Granatstein, "Gyrotron Traveling Wave Amplifier: I. Analysis of Oscillations," *International Journal of Infrared and Millimeter Waves*, Vol. 2, No. 3, 1981, pp. 373-393. doi:10.1007/BF01007408
- [5] W. C. Tsai, T. H. Chang, N. C. Chen, K. R. Chu, H. H. Song and N. C. Luhmann Jr., "Absolute Instabilities in a High-Order-Mode Gyrotron Traveling-Wave-Amplifier," *Physical Review E*, Vol. 70, No. 5, 2004, Article ID: 056402. doi:10.1103/PhysRevE.70.056402
- [6] R. W. Grow and D. R. Gunderson, "Starting Conditions for Backward-Wave Oscillators with Large Loss and Large Space Charge," *IEEE Transactions on Electron Devices*, Vol. 17, No. 12, 1970, pp. 1032-1039. doi:10.1109/T-ED.1970.17123
- [7] M. Caplan, "The Gyrotron: An Application of the Relativistic Bunching of Electrons to the Generation of Intense Millimeter Microwave Radiation," Ph.D. Thesis, University of California, Los Angeles, 1986.
- [8] A. S. Gilmour, "Principles of Traveling Wave Tubes," Artech House Inc., Norwood, 1994, pp. 273-305.