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ABSTRACT 
In many database applications, ranking queries may reference both text and numeric attributes, where the ranking func-
tions are based on both semantic distances/similarities for text attributes and numeric distances for numeric attributes. In 
this paper, we propose a new method for evaluating such type of ranking queries over a relational database. By statistics 
and training, this method builds a mechanism that combines the semantic and numeric distances, and the mechanism 
can be used to balance the effects of text attributes and numeric attributes on matching a given query and tuples in da-
tabase search. The basic idea of the method is to create an index based on WordNet to expand the tuple words semanti-
cally for text attributes and on the information of numeric attributes. The candidate results for a query are retrieved by 
the index and a simple SQL selection statement, and then top-N answers are obtained. The results of extensive experi-
ments indicate that the performance of this new strategy is efficient and effective. 
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1. Introduction  
A relational ranking query (or top-N query) is to find the 
N tuples that satisfy the query condition the best but not 
necessarily completely, and the results are sorted ac-
cording to a given ranking function. Researches on 
top-N queries have intensified since late 1990s [1-3], 
and most of the researches involve numeric attributes 
and use a numeric distance function (say, Lp-norm dis-
tances, p =1, 2, and ∞) to reduce a massive result set of a 
conventional query to a few of the most relevant an-
swers. However, there are many applications where 
ranking queries involving both text attributes and nu-
meric attributes are available for processing.  

Example 1. Consider a database of used books with 
schema: Books(id#, title, price, year,…). Suppose a 
customer wants to buy a used book with title on “film”, 
price around “$50” and year about “2000”, where title is 
a text attribute with semantics, and price and year are 
two numeric attributes. Obviously, a book on “algebra” 
with price = “$50” and year = “2000” is not the desired 
result for the customer though the values for price and 
year exactly match that of the query respectively. 
Another book on “movie”, however, with price = “$53” 
and year = “2001” maybe satisfy the need of the cus-

tomer. 
Ipum99                   Occ50  

idx A29 A40 A50  num occ50 

87197 42 2 20000  2 Airplane pilots and 
navigators 

6505 28 3 25000  3 Architects 

80789 51 930 33000  930 
Gardeners, except 

farm, and 
groundskeepers 

10860 9 999 999999  999 N/A (blank) 

Figure 1. Parts of IPUMS Census Database. 
 
Example 2. As shown in Figure 1, database IPUMS 

has two relations Ipum99 and Occ50, which come from 
[4]. In relation Occ50(num, occ50), its primary key num 
is the value label of occupation1950. Relation Ipum99 
has 61 numeric attributes where A29 is age, A50 means 
income, and A40 is the foreign key referencing 
Occ50.num. Furthermore, Ipum99 is added an attribute 
idx by us as identifier. A user is looking for the informa-
tion of “a horticulturist with age about 50” from 
IPUMS. Since there is no such word “horticulturist” in 
Occ50.occ50, the answer will be nothing by using the 
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traditional SQL selection statement. In fact, there is a 
tuple (“Gardeners, except farm, and groundskeepers”, 
age = 51, …) (with gray color) in IPUMS may be an 
answer for the user. 

WordNet::Similarity [5] is an open source Perl mod-
ule for measuring the semantic distance/similarity be-
tween two words; however, it is not easy for us to use 
the source directly to evaluate ranking queries [6]. 

Researches on semantic search in IR and SW (seman-
tic web) have gained attention since 1990s. Taking the-
saurus ontology navigation as a step in query expansion, 
many query expansion techniques are employed in key-
word search, say, query terms are expanded to WordNet 
synonyms and meronyms, using the Boolean OR opera-
tions available in most web search engines [7]. Different 
from the above query expansion techniques in IR and 
SW, we discuss semantic match between query words 
and tuple words in relational databases via tuple expan-
sion.  

In recent years, ontologies have been used to build 
applications in database community [8, 9]; however, it is 
a challenging job to construct efficient ontologies [9, 6]. 
Our method is different from the ontology-based tech-
niques. Firstly, instead of dealing with the challenge of 
constructing ontology, we create a simple table main-
tained by RDBMS, and store information of index and 
ranking function into the table. Secondly, our strategy is 
more general since it is based on WordNet. Finally, our 
techniques are more efficient than the above ontolo-
gy-based methods due to the efficiency of RDBMS.  

Another different yet related research topic is key-
word search in relational databases [10-12], which sup-
ports free-form keyword search in relational databases 
without necessarily requiring the users to know the da-
tabase schema. Keyword search may be suitable for any 
text attribute, but it is exact search without dealing with 
semantic match. For instance, it cannot return the books 
on “movie” for the query keyword “film”. If query words 
match exactly tuple words, the results of semantic search 
will contain those of keyword search, and improve the 
effectiveness of keyword search by using our method.  

There are two challenging problems for evaluating the 
type of relational ranking queries in this paper. The first 
is how to design a good semantic distance function that 
measure the semantic similarity between the query 
words and the tuple words, [6] presented a solution for 
this problem. The second is how to combine the seman-
tic and numeric distances. We employ statistics and 
training to solve the problem, and create an index to 
process ranking queries in terms of semantic and nu-
meric matching in database search. Moreover, this work 
is a continuation of the work in [6], which studied the 
processing of relational ranking queries only with text 

attributes, without numeric attributes.  

2. Problem Definition and Ranking 
Function   

Assume that R0(idx, A, B1, B2, …, Bm, …) is a relation 
with identifier idx, where A is a text attribute with natu-
ral language semantics and B1, B2, …, Bm are m numeric 
attributes. Using the project operation πA(R0) (duplicate 
tuples are eliminated), we get a new relation R(tid, A) 
with identifier tid. Furthermore, R0 is added by an 
attribute FKid that is the foreign key referencing R.tid, 
and then the schema of R0 becomes R0(idx, A, B1, B2, …, 
Bm, …, FKid). Or, let R(tid, A) and S(idx, B1, B2, …, 
Bm, …, FKid) be two relations and S.FKid be the foreign 
key referencing R.tid, then R0 = R S with S.FKid = 
R.tid. 

Let t be a tuple in R0, then t[A] = (tw1, tw2, …, twn) is 
the word-string with n words on the text attribute A, and 
t[Bj] = bj is the numeric value on the attribute Bj (1 ≤ j ≤ 
m). For simplicity, we denote t = (tA, b1, b2, …, bm) 
where tA = (tw1, tw2, …, twn), and call twi a tuple word 
and bj a tuple value (1 ≤ i ≤ n, 1 ≤ j ≤ m). 

As defined in [6], given a tuple word w, its kinship 
words include the five kinds of words in WordNet: (1) 
word w itself, (2) morph, (3) synonyms, (4) the imme-
diate hyponyms (subordinates), and (5) the immediate 
hypernyms (superordinates). The set of all kinship words 
of w is denoted by K(w). For instance, the kinship word 
set of “computers” is K(computers) ={computers, com-
puter, data processor, machine, internet site, calcula-
tor, …}.  

Consider a ranking query q = (qA, q1, q2, …, qm), 
where qA = (qw1, qw2, …, qwk) is a word-string with k 
query words, and qj is a numeric value (1 ≤ j ≤ m). For 
tuple t = (tA, b1, b2, …, bm) in R0, denote pj = |qj − bj| (1 ≤ 
j ≤ m), and dA = d(qA, tA) that is the semantic distance 
between qA and tA defined by Definition 1 to 3 in [6]. 
Moreover, dA belongs to the interval (0, 1]. 

We need to find a mechanism combining the semantic 
and numeric distances dA and pjs, which can be used to 
evaluate the query q over the relation R0, i.e., to define a 
ranking function d(q, t ) = ψ (dA, p1, p2, …, pm). 

Intuitively, the ranking function d(q, t) should satisfy 
the following: First, a smaller d(q, t) indicates closer the 
pair (q, t). Second, d(q, t) needs to balance the effects of 
dA and pjs in matching q with t. Finally, it should be easy 
to implement.  

To obtain d(q, t), we use the statistics of the domains 
of B1, B2, …, Bm and training. 

Since the semantic distance dA ∈ (0, 1], we normalize 
it by scientific notation, dA = α ×10−h, where 1.0 ≤ α 
<10.0, and h is a nonnegative number (i.e., h≥ 0, if h = 0, 
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we define −0 = 0), say, dA = 0.001041 = 1.041×10−3. We 
will see that h (the absolute value of the exponent) plays 
an important role in the ranking function d(q, t). 

In collecting statistics, there is a step of cleaning data 
and removing outlier, and then we get Min(Bj) and 
Max(Bj) of numeric attribute Bj (1 ≤ j ≤ m). Based on the 
semantics of attribute Bj, we obtain its reasonable unit 
Zj >0, say, Zyear= 1 for attribute year and Zprice = 0.01 for 
price respectively in database BOOK. 

Let Mj = Max(Bj) − Min(Bj) = βj × 10 jc , where 1.0 ≤ 
βj <10.0 (Mj ≥ 0, obviously. If Mj = 0, let Mj := Zj then 
Mj > 0 ). If Mj ≥ 1, we have cj ≥ 0, else if 0<Mj <1, let 
Mj := Mj /Zj, and pj:= pj /Zj, then Mj ≥ 1 and cj ≥ 0. 

Let ej := cj + 1 ≥ 1, for 1 ≤ j ≤ m. By using the statis-
tics and training in our experiments, we obtain the rank-
ing function d(q, t) =ψ (dA, p1, p2, …, pm) below. 

d(q, t) =  dA + Σ m
j 1= (pj/Mj) jeh /  

For example, in our experiments for relation Books 
(title, price, year,…) with 56180 tuples. price is in (0, 
1000] (except 633 tuples with price > 1000), and year 
belongs to [1958, 2008] (except 651 tuples with year < 
1958). Let attribute A, B1 and B2 be title, price and year 
respectively, then M1 = 1000 − 0 = 1000 = 1.0 ×103, M2 
= 2008 − 1958 = 50 =5.0×101, and then c1 = 3, c2 = 1, e1 
= c1+1 = 4 and e2 = c2+1=2. Thus, d(q, t) = dA + 
( p1/1000)h/4 + (p2/50) h/2. 

For query q, we will return dis-N tuples defined in [6] 
to replace top-N ones. Let T be a set of tuples, a tuple 
t∈T is called a dis-N tuple of q, if d(q, t) ≤ minN {d(q, ti) 
| ti ∈T}, which means the Nth minimum value in the set 
{d(q, ti) | ti ∈T }. 

3. Creation of sn-Index 
We extend w-index in [6] to sn-index (stands for seman-
tic and numeric index) in this section. 

3.1. Information Stored in sn-Index 
A relation is employed to store the information in 
sn-index, which is called IndexTable with schema In-
dexTable(id#, Word, Size, dbNSize, DBValue, BValue, 
bSize), say, (2490, nights, 2, 2, '47898,0,3,1;2413,0,…',  
'47898,8185,10.80,1997;…', 3) is a tuple in IndexTable 
for database BOOK.  

The attribute Word indicates the kinship word of tuple 
words, and the relevant information will be stored in the 
attribute DBValue. The value of DBValue is a string 
with form “tid,d,n,f ;tid,d,n,f;…;” where “tid,d,n, f ;” is a 
node, d = 0, 1, . . . , 5, “d = i” is the subscript i of seman-
tic distance di defined by Definition 1 in [6] , n is the 
number of tuple words in the tuple with tid, and f is the 
frequency in the set of kinship words of the tuple. The 

attribute Size is the number of tids associated with kw, 
and the duplicate tids are counted repeatedly. The 
attribute dbNSize means the number of nodes in DBVa-
lue. 

Attribute BValue is a string as “tid,idx,b1,b2,…,bm; 
tid,idx,b1,b2,…,bm;…;”, where “ tid,idx,b1,b2,…,bm;” is a 
node, tid is the identifier of a tuple in the relation R(tid, 
A), and idx is that in R0(idx, …). The attribute bSize 
means the number of nodes in BValue. 

3.2. Procedure of Creating sn-Index 
Reconstructing w-index in [6], we obtain sn-index as 

shown in Figure 2. Sn-index consists of four parts: (1) a 
hash table with a hash function h(), its each bucket con-
tains a pointer pWnPointer which points to a node in 
wn-list; (2) one wn-list, its node has structure {iRow, kw, 
size, dbNSize, bSize, pDBList, pBList}; (3) s db-lists, the 
structure of the node is {tid, d, n, f}; (4) s b-lists, node 
structure {tid, idx, b1, b2, …, bm}. The main difference 
between sn-index and w-index in [6] is that b-lists (i.e., 
Bij’s in Figure 2) are added. The algorithm of creating 
sn-index is shown as follows:     
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Figure 2. Structure of sn-index. 

 
Step 1. For the special character string tA = (tw1, …, 

twn), calculate its hash value h=h(tA); check the pointer 
pWnPointer in the bucket of the hash table, and wn-list, 

(1) If pWnPointer is NULL, or (tw1, …, twn) is not in 
wn-list,  

(a) Create a new db-list, and a dbNode as tid = 
tA.tid, d := −1 (means the special case), n := 1 
and f :=1. Insert the dbNode into the db-list. 

(b) Using tid above, search (idx, b1, b2, …, bm) 
from R0 (or from S) by the following the SQL 
selection statement  

Select idx, B1, B2, …, Bm from R0 where 
FKid = tid 
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Let z be the size of the result set {(idx, b1, 
b2, …, bm)}, Create a new b-list, and z 
bNode(s), insert the bNode(s) into the b-list. 

(c) Create a wnNode for wn-list, kw:= (tw1, …, 
twn), and dbNSize:=1 and bSize:= z. Insert the 
wnNode into wn-list according to the alphabet 
order of kw. 

(d) Get the pointers pDBList, pBList and 
pWnPointer.  

(2) Else if the string t is found out in wn-list, then in-
crease dbNSize by 1 in the wnNode with t, create 
a dbNode as above, and let it be the first node of 
the db-list. Additionally, by the SQL selection 
statement as (b) above, get a result set {(idx, b1, 
b2, …, bm)} with size z ≥ 1. Create z bNode(s), in-
sert the node(s) into the b-list, and increase bSize 
by z.   

Step 2. For each tuple word twi ∈ t, and each kinship 
word kw of twi, get h=h(kw), check pWnPointer in the 
bucket of the hash table, and wn-list, 

(1) If pWnPointer is NULL, or kw is not in wn-list, 
do the same jobs as the above (1) in Step1 ex-
cept for replacing tA by kw and defining d = k, k 
∈ {0, 1, …, 5} such that dk is d(kw, twi) in De-
finition 1 in [6].  

(2) Else if kw has been in wn-list, then get its db-list 
and b-list. There are two cases.  
Case 1, in the db-list, there is a dbNode with 

dbNode.tid = t.tid, replacing d by the 
smaller if the two distances are different, 
and increasing f by 1, that is OK.  

Case 2, if no dbNode in the db-list satisfies 
dbNode.tid = t.tid, increase dbNSize by 1 
in the wnNode with kw, create and insert a 
new dbNode into the db-list according to 
the increasing order of distance d. In addi-
tion, by the SQL selection statement as (b) 
above, get a result set {(idx, b1, b2, …, bm)} 
with size z ≥ 1. Create z bNode(s), insert 
the node(s) into the b-list, and bSize:= z. 

Step 3. Storing sn-index. 
To evaluate query q, we use two storing strategies. 

Strategy-1, the entire sn-index is in main memory. 
Strategy-2 will store db-lists and b-lists in fixed disk and 
only load the hash table and wn-list into main memory. 

4. Evaluation of Ranking Query 
For query q = (qA, q1, q2, …, qm), firstly, matching the 
query words with kinship words of R(tid, A) via 
sn-index, we obtain the set T (= {tid}) of identifiers of 
candidate tuples, and compute the semantic distances 
between q and its candidate tuples, and then get the set L 
of information of numeric attributes by each identifier 
tid in T; secondly, compute d(q, t) = ψ(dA, p1, p2, …, pm) 

between q and each of its candidate tuples, and then ob-
tain {idx}, which is the sorted set of identifiers of dis-N 
results according to d(q, t); finally, we retrieve the dis-N 
tupels from underlying database and display the ranked 
answers. 

To get the set T is an important step for query 
processing. The intermediate results are stored in a tem-
porary list, denoted by T-List. Its node has the structure 
{tid, d[K], dA} where K is the maximum number of 
query words for qA = (qw1,…, qwk). If k > K, let qA = 
(qw1, …, qwK) (K = 30 in our implementations). The 
intermediate results for obtaining set L are saved in a 
temporary list L-List, and the structure of its node is {dA, 
p1, p2, …, pm, d, tid, idx} 

We discuss Strategy-2 of storage first (i.e., we only 
load the hash table and wn-list in main memory).  

(1) Normalization of qA. We remove some symbols, 
character strings or stop words, and replace some of 
them by normal strings for qA. Denoted again by qA = 
(qw1, …, qwk).  

(2) For each qwi ∈ qA (i= 1, …, k), calculate hash 
value h=h(qwi), and check qwi in wn-list. If qwi is found 
out, we get the wnNode in wn-list, and then use the SQL 
selection statement 

select ∗ from IndexTable where id# = wnNode.iRow 
to obtain dbNode(s). For each dbNode, we save the val-
ues into T-List, and compute dA= d(qA, tA), then obtain T. 

(3) If above T≠∅, for each tid∈T, we get its corres-
ponding bNode(s) by using select statements from In-
dextable, store them into L-List, compute d := ψ(dA, 
p1, …, pm), and then obtain the set L (={idx}) of candi-
date dis-N tuple identifiers.   

(4) Given a positive integer N, we get the set of dis-N 
tuple identifiers LN ⊆ L; then, we obtain the dis-N tuples 
of the query q by using the SQL selection statement as 
the following format: 

Select R0.*, R.A from R0, R where (R0.FKid = R.tid) 
and (R.idx in LN) and … 

(5) Display the dis-N tuples sorted by d(q, t).  

Next, we discuss Strategy-1 of storage, i.e., the entire 
w-index is saved into main memory. The query 
processing is similar to the above situations, except for 
steps (2) and (3), we can get dbNode(s) and bNode(s) 
from sn-index directly, without using select statements. 
Thus, the response time of Strategy-1 will be smaller 
than that of Strategy-2.  

Example 2 (cont.). For the dis-5 query “a horticul-
turist with age=50 and income=30000” against IPUMS, 
the answers with form (idx, tA, age, income, d(q, t)) are 

t1: (80789, tA, 51, 33000, 0.609496), 
t2: (07296, tA, 48, 25000, 0.729997), 
t3: (77380, tA, 37, 30600, 0.747815), 



Evaluating Relational Ranking Queries Involving both Text Attributes and Numeric Attributes 

Copyright © 2012 SciRes.                                                                                JSEA 

92 

t4: (43851, tA, 51, 21894, 0.763280), and  
t5: (73792, tA, 47, 25000, 0.766698),  

where tA = t[occ50] = “Gardeners，except farm, and 
groundskeepers”.       

5. Experimental results 
Our experiments are carried out using Microsoft’s SQL 
Server 2000 and VC++6.0 on a PC with Windows XP, 
Intel(R) Core(TM) i5-2400/3.10GHz 3.09GHz CPU, and 
2.98GB memory. In addition, WordNet 2.1 and its API 
functions, ODBC, and ODBC API functions are used.  

Datasets: We use two real datasets. The first one is 
IPUMS with two relations that is a fragment of US 
Census Bureau data [4]. The relation Occ50(num, occ50) 
contains 286 tuples with 2 attributes. The relation 
Ipum99(idx, FKnum, age, income, ...) has 61 attributes 
and 88443 tuples, where age is A29, income is A50, and 
FKnum is A40 that is the foreign key referencing 
Occ50.num. R0 = Ipum99  Occ50 with FKnum= num. 
Part of IPUMS is shown in Example 2 in Section 1.  

The second dataset BOOK comes from the Library at 
Beijing University of Technology, which is the record 
set of English books in the Library, and produces two 
relations. One is Books(id#, isbn, title, author, publisher, 
price, year, FKid) having 56180 tuples. The other rela-
tion Titles(tid, title) has 48107 tuples (duplicate titles are 
removed). In addition, Books and Titles act as R0 and R 
respectively. Books.id# corresponds to R0.idx, and 
Books.FKid is the foreign key referencing Titles.tid. 

Attributes tid, A, B1, and B2 described in Section 2 
correspond num, occ50, age and income for IPUMS, 
and tid, title, price and year for BOOK, respectively. 

Space cost of sn-index: Strategy-1 and Strategy-2 are 
used for IPUMS and BOOK respectively. The main 
memory space costs are: index-space-IPUMS is about 
3.6MB, and index-space-BOOK about 3MB.  

Workloads: We build a program to create a workload 
that is a set of 100 queries for each database. First, we 
choose 100 tuples from R randomly, and then for each 
tuple t, select 1~10 kinship word(s) from K(t) randomly, 
where the numbers of simple queries with 1~3 words 
and complex queries with 4~10 words are both 50. We 
classify them into 10 groups Gi (i =1, 2, …, 10), and the 
query in Gi has i search word(s). The size of Gi is ran-
dom.  

For the legends in the following figures, the suffixes 
“1”, “2”, …, and “100” indicate the dis-1, dis-2, …, and 
dis-100 queries, respectively.  

5.1. Elapsed Time 
Figure 3 illustrates the average elapsed time for execut-
ing all queries in each Gi for IPUMS by fourteen curves 
itN’s and dtN’s, which stand for index-time’s and 

DB-time’s respectively. The seven curves it1 to it100 are 
(almost) the same, and are related to queries, but not to 
N (N = 1, 2, …, 100), which are from 11 to 230 millise-
conds. The other seven curves dt1 to dt100 are the costs 
of retrieving tuples from DB by using SQL selection 
statements for the natural join of Ipum99 and Occ50, 
which are smaller than 600 milliseconds. 
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Figure 4 shows the elapsed time with fourteen curves 

for BOOK. The seven curves it1 to it100 are (almost) 
the same, and are related to queries, but not to N (N = 1, 
2, …, 100), which are between 34ms and 346ms. Curves 
dt1 to dt100 show the average elapsed times for access-
ing database to retrieve tuples. The result sets are dif-
ferent for various dis-N queries. The larger N means the 
longer the elapsed time. The DB-times are less than 
20ms for 1≤ N ≤ 3. If 10≤ N ≤ 100, the DB-times are 
between 50 and 300ms. 
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Figure 4. The elapsed times for BOOK  

5.2. Precision 
It is difficult to confirm whether one of tuples retrieved 
matches a query semantically by a computer, and it is 
too big a job to recognize semantic match manually for a 
large dataset [6]. Therefore, the traditional recall for 
evaluating IR systems is not suitable for measuring se-
mantic match when the dataset is large, and then we 
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report only precision. Figures 5 and 6 illustrate the av-
erage precision for IPUMS and BOOK respectively.  

We can see that a smaller N has a larger precision; 
therefore, a smaller N indicates more matching tuples 
appear in its dis-N results. The precisions for IPUMS 
are 1, 0.93, 0.90, 0.73, 0.62, 0.52, and 0.44 for N = 1, 2, 
3, 10, 20, 40, and 100, respectively. The precisions for 
BOOK are 0.93, 0.86, 0.78, 0.63, 0.55, 0.45, and 0.34 
for N = 1, 2, 3, 10, 20, 40, and 100, respectively.  
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Figure 5. Precisions for IPUMS  
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Figure 6. Precisions for BOOK 

 

6. Conclusions 
We proposed a new method to evaluate relational rank-
ing queries that reference both text attributes and nu-
meric attributes. The method builds a ranking function 
combining the semantic and numeric distances, and 
creates an index based on WordNet to expand the tuple 
words semantically for a text attribute and on the infor-
mation of numeric attributes. Thus, the results for a 
query are retrieved by the index and a simple SQL se-
lection statement for the natural join of relations, and 
ranked according to the ranking function. We conducted 
extensive experiments to measure the performance of 
this new technique using two real datasets. The results of 
experiments demonstrated that our strategy is efficient 
and effective. 
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