
A Journal of Software Engineering and Applications, 2012, 5, 88-93
doi:10.4236/jsea.2012.512b018 Published Online December 2012 (http://www.scirp.org/journal/jsea)

Copyright © 2012 SciRes. JSEA

Evaluating Relational Ranking Queries Involving Both
Text Attributes and Numeric Attributes

Liang Zhu1, Zhaoliang Xie1, Qin Ma2

1Key Laboratory of Machine Learning and Computational Intelligence, School of Mathematics and Computer Science, Hebei
University, Baoding, Hebei 071002, China; 2Department of Foreign Language Teaching and Research, Hebei University, Baoding,
Hebei 071002, China
Email: zhu@hbu.edu.cn, xiezhaoliang533@163.com, maqin@hbu.edu.cn

Received October 12, 2012

ABSTRACT
In many database applications, ranking queries may reference both text and numeric attributes, where the ranking func-
tions are based on both semantic distances/similarities for text attributes and numeric distances for numeric attributes. In
this paper, we propose a new method for evaluating such type of ranking queries over a relational database. By statistics
and training, this method builds a mechanism that combines the semantic and numeric distances, and the mechanism
can be used to balance the effects of text attributes and numeric attributes on matching a given query and tuples in da-
tabase search. The basic idea of the method is to create an index based on WordNet to expand the tuple words semanti-
cally for text attributes and on the information of numeric attributes. The candidate results for a query are retrieved by
the index and a simple SQL selection statement, and then top-N answers are obtained. The results of extensive experi-
ments indicate that the performance of this new strategy is efficient and effective.

Keywords: Relational Database; Ranking Query; Semantic Distance; Numeric Distance; WordNet

1. Introduction
A relational ranking query (or top-N query) is to find the
N tuples that satisfy the query condition the best but not
necessarily completely, and the results are sorted ac-
cording to a given ranking function. Researches on
top-N queries have intensified since late 1990s [1-3],
and most of the researches involve numeric attributes
and use a numeric distance function (say, Lp-norm dis-
tances, p =1, 2, and ∞) to reduce a massive result set of a
conventional query to a few of the most relevant an-
swers. However, there are many applications where
ranking queries involving both text attributes and nu-
meric attributes are available for processing.

Example 1. Consider a database of used books with
schema: Books(id#, title, price, year,…). Suppose a
customer wants to buy a used book with title on “film”,
price around “$50” and year about “2000”, where title is
a text attribute with semantics, and price and year are
two numeric attributes. Obviously, a book on “algebra”
with price = “$50” and year = “2000” is not the desired
result for the customer though the values for price and
year exactly match that of the query respectively.
Another book on “movie”, however, with price = “$53”
and year = “2001” maybe satisfy the need of the cus-

tomer.
Ipum99 Occ50

idx A29 A40 A50 num occ50

87197 42 2 20000 2 Airplane pilots and
navigators

6505 28 3 25000 3 Architects

80789 51 930 33000 930
Gardeners, except

farm, and
groundskeepers

10860 9 999 999999 999 N/A (blank)

Figure 1. Parts of IPUMS Census Database.

Example 2. As shown in Figure 1, database IPUMS

has two relations Ipum99 and Occ50, which come from
[4]. In relation Occ50(num, occ50), its primary key num
is the value label of occupation1950. Relation Ipum99
has 61 numeric attributes where A29 is age, A50 means
income, and A40 is the foreign key referencing
Occ50.num. Furthermore, Ipum99 is added an attribute
idx by us as identifier. A user is looking for the informa-
tion of “a horticulturist with age about 50” from
IPUMS. Since there is no such word “horticulturist” in
Occ50.occ50, the answer will be nothing by using the

Evaluating Relational Ranking Queries Involving both Text Attributes and Numeric Attributes

Copyright © 2012 SciRes. JSEA

89

traditional SQL selection statement. In fact, there is a
tuple (“Gardeners, except farm, and groundskeepers”,
age = 51, …) (with gray color) in IPUMS may be an
answer for the user.

WordNet::Similarity [5] is an open source Perl mod-
ule for measuring the semantic distance/similarity be-
tween two words; however, it is not easy for us to use
the source directly to evaluate ranking queries [6].

Researches on semantic search in IR and SW (seman-
tic web) have gained attention since 1990s. Taking the-
saurus ontology navigation as a step in query expansion,
many query expansion techniques are employed in key-
word search, say, query terms are expanded to WordNet
synonyms and meronyms, using the Boolean OR opera-
tions available in most web search engines [7]. Different
from the above query expansion techniques in IR and
SW, we discuss semantic match between query words
and tuple words in relational databases via tuple expan-
sion.

In recent years, ontologies have been used to build
applications in database community [8, 9]; however, it is
a challenging job to construct efficient ontologies [9, 6].
Our method is different from the ontology-based tech-
niques. Firstly, instead of dealing with the challenge of
constructing ontology, we create a simple table main-
tained by RDBMS, and store information of index and
ranking function into the table. Secondly, our strategy is
more general since it is based on WordNet. Finally, our
techniques are more efficient than the above ontolo-
gy-based methods due to the efficiency of RDBMS.

Another different yet related research topic is key-
word search in relational databases [10-12], which sup-
ports free-form keyword search in relational databases
without necessarily requiring the users to know the da-
tabase schema. Keyword search may be suitable for any
text attribute, but it is exact search without dealing with
semantic match. For instance, it cannot return the books
on “movie” for the query keyword “film”. If query words
match exactly tuple words, the results of semantic search
will contain those of keyword search, and improve the
effectiveness of keyword search by using our method.

There are two challenging problems for evaluating the
type of relational ranking queries in this paper. The first
is how to design a good semantic distance function that
measure the semantic similarity between the query
words and the tuple words, [6] presented a solution for
this problem. The second is how to combine the seman-
tic and numeric distances. We employ statistics and
training to solve the problem, and create an index to
process ranking queries in terms of semantic and nu-
meric matching in database search. Moreover, this work
is a continuation of the work in [6], which studied the
processing of relational ranking queries only with text

attributes, without numeric attributes.

2. Problem Definition and Ranking
Function

Assume that R0(idx, A, B1, B2, …, Bm, …) is a relation
with identifier idx, where A is a text attribute with natu-
ral language semantics and B1, B2, …, Bm are m numeric
attributes. Using the project operation πA(R0) (duplicate
tuples are eliminated), we get a new relation R(tid, A)
with identifier tid. Furthermore, R0 is added by an
attribute FKid that is the foreign key referencing R.tid,
and then the schema of R0 becomes R0(idx, A, B1, B2, …,
Bm, …, FKid). Or, let R(tid, A) and S(idx, B1, B2, …,
Bm, …, FKid) be two relations and S.FKid be the foreign
key referencing R.tid, then R0 = R S with S.FKid =
R.tid.

Let t be a tuple in R0, then t[A] = (tw1, tw2, …, twn) is
the word-string with n words on the text attribute A, and
t[Bj] = bj is the numeric value on the attribute Bj (1 ≤ j ≤
m). For simplicity, we denote t = (tA, b1, b2, …, bm)
where tA = (tw1, tw2, …, twn), and call twi a tuple word
and bj a tuple value (1 ≤ i ≤ n, 1 ≤ j ≤ m).

As defined in [6], given a tuple word w, its kinship
words include the five kinds of words in WordNet: (1)
word w itself, (2) morph, (3) synonyms, (4) the imme-
diate hyponyms (subordinates), and (5) the immediate
hypernyms (superordinates). The set of all kinship words
of w is denoted by K(w). For instance, the kinship word
set of “computers” is K(computers) ={computers, com-
puter, data processor, machine, internet site, calcula-
tor, …}.

Consider a ranking query q = (qA, q1, q2, …, qm),
where qA = (qw1, qw2, …, qwk) is a word-string with k
query words, and qj is a numeric value (1 ≤ j ≤ m). For
tuple t = (tA, b1, b2, …, bm) in R0, denote pj = |qj − bj| (1 ≤
j ≤ m), and dA = d(qA, tA) that is the semantic distance
between qA and tA defined by Definition 1 to 3 in [6].
Moreover, dA belongs to the interval (0, 1].

We need to find a mechanism combining the semantic
and numeric distances dA and pjs, which can be used to
evaluate the query q over the relation R0, i.e., to define a
ranking function d(q, t) = ψ (dA, p1, p2, …, pm).

Intuitively, the ranking function d(q, t) should satisfy
the following: First, a smaller d(q, t) indicates closer the
pair (q, t). Second, d(q, t) needs to balance the effects of
dA and pjs in matching q with t. Finally, it should be easy
to implement.

To obtain d(q, t), we use the statistics of the domains
of B1, B2, …, Bm and training.

Since the semantic distance dA ∈ (0, 1], we normalize
it by scientific notation, dA = α ×10−h, where 1.0 ≤ α
<10.0, and h is a nonnegative number (i.e., h≥ 0, if h = 0,

Evaluating Relational Ranking Queries Involving both Text Attributes and Numeric Attributes

Copyright © 2012 SciRes. JSEA

90

we define −0 = 0), say, dA = 0.001041 = 1.041×10−3. We
will see that h (the absolute value of the exponent) plays
an important role in the ranking function d(q, t).

In collecting statistics, there is a step of cleaning data
and removing outlier, and then we get Min(Bj) and
Max(Bj) of numeric attribute Bj (1 ≤ j ≤ m). Based on the
semantics of attribute Bj, we obtain its reasonable unit
Zj >0, say, Zyear= 1 for attribute year and Zprice = 0.01 for
price respectively in database BOOK.

Let Mj = Max(Bj) − Min(Bj) = βj × 10 jc , where 1.0 ≤
βj <10.0 (Mj ≥ 0, obviously. If Mj = 0, let Mj := Zj then
Mj > 0). If Mj ≥ 1, we have cj ≥ 0, else if 0<Mj <1, let
Mj := Mj /Zj, and pj:= pj /Zj, then Mj ≥ 1 and cj ≥ 0.

Let ej := cj + 1 ≥ 1, for 1 ≤ j ≤ m. By using the statis-
tics and training in our experiments, we obtain the rank-
ing function d(q, t) =ψ (dA, p1, p2, …, pm) below.

d(q, t) = dA + Σ m
j 1= (pj/Mj) jeh /

For example, in our experiments for relation Books
(title, price, year,…) with 56180 tuples. price is in (0,
1000] (except 633 tuples with price > 1000), and year
belongs to [1958, 2008] (except 651 tuples with year <
1958). Let attribute A, B1 and B2 be title, price and year
respectively, then M1 = 1000 − 0 = 1000 = 1.0 ×103, M2
= 2008 − 1958 = 50 =5.0×101, and then c1 = 3, c2 = 1, e1
= c1+1 = 4 and e2 = c2+1=2. Thus, d(q, t) = dA +
(p1/1000)h/4 + (p2/50) h/2.

For query q, we will return dis-N tuples defined in [6]
to replace top-N ones. Let T be a set of tuples, a tuple
t∈T is called a dis-N tuple of q, if d(q, t) ≤ minN {d(q, ti)
| ti ∈T}, which means the Nth minimum value in the set
{d(q, ti) | ti ∈T }.

3. Creation of sn-Index
We extend w-index in [6] to sn-index (stands for seman-
tic and numeric index) in this section.

3.1. Information Stored in sn-Index
A relation is employed to store the information in
sn-index, which is called IndexTable with schema In-
dexTable(id#, Word, Size, dbNSize, DBValue, BValue,
bSize), say, (2490, nights, 2, 2, '47898,0,3,1;2413,0,…',
'47898,8185,10.80,1997;…', 3) is a tuple in IndexTable
for database BOOK.

The attribute Word indicates the kinship word of tuple
words, and the relevant information will be stored in the
attribute DBValue. The value of DBValue is a string
with form “tid,d,n,f ;tid,d,n,f;…;” where “tid,d,n, f ;” is a
node, d = 0, 1, . . . , 5, “d = i” is the subscript i of seman-
tic distance di defined by Definition 1 in [6] , n is the
number of tuple words in the tuple with tid, and f is the
frequency in the set of kinship words of the tuple. The

attribute Size is the number of tids associated with kw,
and the duplicate tids are counted repeatedly. The
attribute dbNSize means the number of nodes in DBVa-
lue.

Attribute BValue is a string as “tid,idx,b1,b2,…,bm;
tid,idx,b1,b2,…,bm;…;”, where “ tid,idx,b1,b2,…,bm;” is a
node, tid is the identifier of a tuple in the relation R(tid,
A), and idx is that in R0(idx, …). The attribute bSize
means the number of nodes in BValue.

3.2. Procedure of Creating sn-Index
Reconstructing w-index in [6], we obtain sn-index as

shown in Figure 2. Sn-index consists of four parts: (1) a
hash table with a hash function h(), its each bucket con-
tains a pointer pWnPointer which points to a node in
wn-list; (2) one wn-list, its node has structure {iRow, kw,
size, dbNSize, bSize, pDBList, pBList}; (3) s db-lists, the
structure of the node is {tid, d, n, f}; (4) s b-lists, node
structure {tid, idx, b1, b2, …, bm}. The main difference
between sn-index and w-index in [6] is that b-lists (i.e.,
Bij’s in Figure 2) are added. The algorithm of creating
sn-index is shown as follows:

D11^

B11^

D21^

B21^

Ds1^

Bs1^

D12

D22

Ds2

B12

B22

Bs2

^

^

^

^

^

^
W1
^

W2

Ws

^

.

.

.
… … … …

…

…

…

hash table wn-list db-list and b-list

D1p1

D2p2

B1v1

B2v2

Bsvs

Dsps

Figure 2. Structure of sn-index.

Step 1. For the special character string tA = (tw1, …,

twn), calculate its hash value h=h(tA); check the pointer
pWnPointer in the bucket of the hash table, and wn-list,

(1) If pWnPointer is NULL, or (tw1, …, twn) is not in
wn-list,

(a) Create a new db-list, and a dbNode as tid =
tA.tid, d := −1 (means the special case), n := 1
and f :=1. Insert the dbNode into the db-list.

(b) Using tid above, search (idx, b1, b2, …, bm)
from R0 (or from S) by the following the SQL
selection statement

Select idx, B1, B2, …, Bm from R0 where
FKid = tid

Evaluating Relational Ranking Queries Involving both Text Attributes and Numeric Attributes

Copyright © 2012 SciRes. JSEA

91

Let z be the size of the result set {(idx, b1,
b2, …, bm)}, Create a new b-list, and z
bNode(s), insert the bNode(s) into the b-list.

(c) Create a wnNode for wn-list, kw:= (tw1, …,
twn), and dbNSize:=1 and bSize:= z. Insert the
wnNode into wn-list according to the alphabet
order of kw.

(d) Get the pointers pDBList, pBList and
pWnPointer.

(2) Else if the string t is found out in wn-list, then in-
crease dbNSize by 1 in the wnNode with t, create
a dbNode as above, and let it be the first node of
the db-list. Additionally, by the SQL selection
statement as (b) above, get a result set {(idx, b1,
b2, …, bm)} with size z ≥ 1. Create z bNode(s), in-
sert the node(s) into the b-list, and increase bSize
by z.

Step 2. For each tuple word twi ∈ t, and each kinship
word kw of twi, get h=h(kw), check pWnPointer in the
bucket of the hash table, and wn-list,

(1) If pWnPointer is NULL, or kw is not in wn-list,
do the same jobs as the above (1) in Step1 ex-
cept for replacing tA by kw and defining d = k, k
∈ {0, 1, …, 5} such that dk is d(kw, twi) in De-
finition 1 in [6].

(2) Else if kw has been in wn-list, then get its db-list
and b-list. There are two cases.
Case 1, in the db-list, there is a dbNode with

dbNode.tid = t.tid, replacing d by the
smaller if the two distances are different,
and increasing f by 1, that is OK.

Case 2, if no dbNode in the db-list satisfies
dbNode.tid = t.tid, increase dbNSize by 1
in the wnNode with kw, create and insert a
new dbNode into the db-list according to
the increasing order of distance d. In addi-
tion, by the SQL selection statement as (b)
above, get a result set {(idx, b1, b2, …, bm)}
with size z ≥ 1. Create z bNode(s), insert
the node(s) into the b-list, and bSize:= z.

Step 3. Storing sn-index.
To evaluate query q, we use two storing strategies.

Strategy-1, the entire sn-index is in main memory.
Strategy-2 will store db-lists and b-lists in fixed disk and
only load the hash table and wn-list into main memory.

4. Evaluation of Ranking Query
For query q = (qA, q1, q2, …, qm), firstly, matching the
query words with kinship words of R(tid, A) via
sn-index, we obtain the set T (= {tid}) of identifiers of
candidate tuples, and compute the semantic distances
between q and its candidate tuples, and then get the set L
of information of numeric attributes by each identifier
tid in T; secondly, compute d(q, t) = ψ(dA, p1, p2, …, pm)

between q and each of its candidate tuples, and then ob-
tain {idx}, which is the sorted set of identifiers of dis-N
results according to d(q, t); finally, we retrieve the dis-N
tupels from underlying database and display the ranked
answers.

To get the set T is an important step for query
processing. The intermediate results are stored in a tem-
porary list, denoted by T-List. Its node has the structure
{tid, d[K], dA} where K is the maximum number of
query words for qA = (qw1,…, qwk). If k > K, let qA =
(qw1, …, qwK) (K = 30 in our implementations). The
intermediate results for obtaining set L are saved in a
temporary list L-List, and the structure of its node is {dA,
p1, p2, …, pm, d, tid, idx}

We discuss Strategy-2 of storage first (i.e., we only
load the hash table and wn-list in main memory).

(1) Normalization of qA. We remove some symbols,
character strings or stop words, and replace some of
them by normal strings for qA. Denoted again by qA =
(qw1, …, qwk).

(2) For each qwi ∈ qA (i= 1, …, k), calculate hash
value h=h(qwi), and check qwi in wn-list. If qwi is found
out, we get the wnNode in wn-list, and then use the SQL
selection statement

select ∗ from IndexTable where id# = wnNode.iRow
to obtain dbNode(s). For each dbNode, we save the val-
ues into T-List, and compute dA= d(qA, tA), then obtain T.

(3) If above T≠∅, for each tid∈T, we get its corres-
ponding bNode(s) by using select statements from In-
dextable, store them into L-List, compute d := ψ(dA,
p1, …, pm), and then obtain the set L (={idx}) of candi-
date dis-N tuple identifiers.

(4) Given a positive integer N, we get the set of dis-N
tuple identifiers LN ⊆ L; then, we obtain the dis-N tuples
of the query q by using the SQL selection statement as
the following format:

Select R0.*, R.A from R0, R where (R0.FKid = R.tid)
and (R.idx in LN) and …

(5) Display the dis-N tuples sorted by d(q, t).

Next, we discuss Strategy-1 of storage, i.e., the entire
w-index is saved into main memory. The query
processing is similar to the above situations, except for
steps (2) and (3), we can get dbNode(s) and bNode(s)
from sn-index directly, without using select statements.
Thus, the response time of Strategy-1 will be smaller
than that of Strategy-2.

Example 2 (cont.). For the dis-5 query “a horticul-
turist with age=50 and income=30000” against IPUMS,
the answers with form (idx, tA, age, income, d(q, t)) are

t1: (80789, tA, 51, 33000, 0.609496),
t2: (07296, tA, 48, 25000, 0.729997),
t3: (77380, tA, 37, 30600, 0.747815),

Evaluating Relational Ranking Queries Involving both Text Attributes and Numeric Attributes

Copyright © 2012 SciRes. JSEA

92

t4: (43851, tA, 51, 21894, 0.763280), and
t5: (73792, tA, 47, 25000, 0.766698),

where tA = t[occ50] = “Gardeners，except farm, and
groundskeepers”.

5. Experimental results
Our experiments are carried out using Microsoft’s SQL
Server 2000 and VC++6.0 on a PC with Windows XP,
Intel(R) Core(TM) i5-2400/3.10GHz 3.09GHz CPU, and
2.98GB memory. In addition, WordNet 2.1 and its API
functions, ODBC, and ODBC API functions are used.

Datasets: We use two real datasets. The first one is
IPUMS with two relations that is a fragment of US
Census Bureau data [4]. The relation Occ50(num, occ50)
contains 286 tuples with 2 attributes. The relation
Ipum99(idx, FKnum, age, income, ...) has 61 attributes
and 88443 tuples, where age is A29, income is A50, and
FKnum is A40 that is the foreign key referencing
Occ50.num. R0 = Ipum99 Occ50 with FKnum= num.
Part of IPUMS is shown in Example 2 in Section 1.

The second dataset BOOK comes from the Library at
Beijing University of Technology, which is the record
set of English books in the Library, and produces two
relations. One is Books(id#, isbn, title, author, publisher,
price, year, FKid) having 56180 tuples. The other rela-
tion Titles(tid, title) has 48107 tuples (duplicate titles are
removed). In addition, Books and Titles act as R0 and R
respectively. Books.id# corresponds to R0.idx, and
Books.FKid is the foreign key referencing Titles.tid.

Attributes tid, A, B1, and B2 described in Section 2
correspond num, occ50, age and income for IPUMS,
and tid, title, price and year for BOOK, respectively.

Space cost of sn-index: Strategy-1 and Strategy-2 are
used for IPUMS and BOOK respectively. The main
memory space costs are: index-space-IPUMS is about
3.6MB, and index-space-BOOK about 3MB.

Workloads: We build a program to create a workload
that is a set of 100 queries for each database. First, we
choose 100 tuples from R randomly, and then for each
tuple t, select 1~10 kinship word(s) from K(t) randomly,
where the numbers of simple queries with 1~3 words
and complex queries with 4~10 words are both 50. We
classify them into 10 groups Gi (i =1, 2, …, 10), and the
query in Gi has i search word(s). The size of Gi is ran-
dom.

For the legends in the following figures, the suffixes
“1”, “2”, …, and “100” indicate the dis-1, dis-2, …, and
dis-100 queries, respectively.

5.1. Elapsed Time
Figure 3 illustrates the average elapsed time for execut-
ing all queries in each Gi for IPUMS by fourteen curves
itN’s and dtN’s, which stand for index-time’s and

DB-time’s respectively. The seven curves it1 to it100 are
(almost) the same, and are related to queries, but not to
N (N = 1, 2, …, 100), which are from 11 to 230 millise-
conds. The other seven curves dt1 to dt100 are the costs
of retrieving tuples from DB by using SQL selection
statements for the natural join of Ipum99 and Occ50,
which are smaller than 600 milliseconds.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

the number of query words (ipums)

e
l
a
p
s
e
d

t
i
m
e

(
m
s
)

dt1 dt2 dt3 dt10 dt20 dt40 dt100

it1 it2 it3 it10 it20 it40 it100

 Figure 3. The elapsed times for IPUMS

Figure 4 shows the elapsed time with fourteen curves

for BOOK. The seven curves it1 to it100 are (almost)
the same, and are related to queries, but not to N (N = 1,
2, …, 100), which are between 34ms and 346ms. Curves
dt1 to dt100 show the average elapsed times for access-
ing database to retrieve tuples. The result sets are dif-
ferent for various dis-N queries. The larger N means the
longer the elapsed time. The DB-times are less than
20ms for 1≤ N ≤ 3. If 10≤ N ≤ 100, the DB-times are
between 50 and 300ms.

0

100

200

300

1 2 3 4 5 6 7 8 9 10

the number of query words (book)

e
l
a
p
s
e
d

t
i
m
e

(
m
s
)

dt1 dt2 dt3 dt10 dt20 dt40 dt100

it1 it2 it3 it10 it20 it40 it100

Figure 4. The elapsed times for BOOK

5.2. Precision
It is difficult to confirm whether one of tuples retrieved
matches a query semantically by a computer, and it is
too big a job to recognize semantic match manually for a
large dataset [6]. Therefore, the traditional recall for
evaluating IR systems is not suitable for measuring se-
mantic match when the dataset is large, and then we

Evaluating Relational Ranking Queries Involving both Text Attributes and Numeric Attributes

Copyright © 2012 SciRes. JSEA

93

report only precision. Figures 5 and 6 illustrate the av-
erage precision for IPUMS and BOOK respectively.

We can see that a smaller N has a larger precision;
therefore, a smaller N indicates more matching tuples
appear in its dis-N results. The precisions for IPUMS
are 1, 0.93, 0.90, 0.73, 0.62, 0.52, and 0.44 for N = 1, 2,
3, 10, 20, 40, and 100, respectively. The precisions for
BOOK are 0.93, 0.86, 0.78, 0.63, 0.55, 0.45, and 0.34
for N = 1, 2, 3, 10, 20, 40, and 100, respectively.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

the number of query words (ipums)

Pr
ec

is
io

ns

p1 p2 p3 p10
p20 p40 p100

Figure 5. Precisions for IPUMS

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

the number of query words (book)

Pr
ec

is
io

ns

p1 p2 p3 p10

p20 p40 p100

Figure 6. Precisions for BOOK

6. Conclusions
We proposed a new method to evaluate relational rank-
ing queries that reference both text attributes and nu-
meric attributes. The method builds a ranking function
combining the semantic and numeric distances, and
creates an index based on WordNet to expand the tuple
words semantically for a text attribute and on the infor-
mation of numeric attributes. Thus, the results for a
query are retrieved by the index and a simple SQL se-
lection statement for the natural join of relations, and
ranked according to the ranking function. We conducted
extensive experiments to measure the performance of
this new technique using two real datasets. The results of
experiments demonstrated that our strategy is efficient
and effective.

7. Acknowledgements
This work is supported in part by NSFC (61170039) and

the NSF of Hebei Province (F2012201006). The authors
would also like to express their gratitude to Professor
Weiyi Meng for providing many helpful suggestions.

REFERENCES
[1] M. Carey, and D. Kossmann, “On saying ‘enough al-

ready!’ in SQL,” SIGMOD 1997 Proceedings ACM in-
ternational conference on management of data, Vol. 26
No. 2, 1997, pp. 219-230.

[2] I. F Ilyas, G. Beskales, and M. A. Soliman, “A survey of
top-k query processing techniques in relational database
systems,” ACM Computing Surveys, Vol. 40, No. 4, 2008,
Article 11.

[3] L. Zhu, W. Meng, C. Liu, W. Yang, and D. Liu,
“Processing top-N relational queries by learning,” Jour-
nal of Intelligent Information Systems. Vol.34, No.1,
2010, pp.21-55, doi:10.1007/s10844-009-0078-7.

[4] IPUMS Census Database, “ipums.la.99.gz”, 1999,
http://kdd.ics.uci.edu/databases/ipums/ipums.html

[5] T. Pedersen, “WordNet::Similarity,” 2008,
http://www.d.umn.edu/~tpederse/similarity.html

[6] L. Zhu, Q. Ma, C. Liu, G. Mao and W. Yang. “Seman-
tic-distance based evaluation of ranking queries over re-
lational databases,” Journal of Intelligent Information
Systems, Vol. 35, No. 3, 2010, pp. 415-445.

[7] D. Buscaldi, P. Rosso, and A. E. Sanchis, “A word-
net-based query expansion method for geographical in-
formation retrieval,” Working Notes for the CLEF
Workshop, Vienna Austria, 2005.

[8] S. Das, E. Chong, G. I. Eadon, and J. Srinivasan, “Sup-
porting ontology-based semantic matching in RDBMS,”
Proceedings of the Thirtieth International Conference on
Very Large Data Bases (VLDB’04), Toronto, Canada,
2004, pp. 1054-1065.

[9] J. Zhang, Z. Peng, S. Wang and H. Niehang,
“Si-SEEKER: Ontology-based semantic search over da-
tabases,” Knowledge Science, Engineering and Man-
agement, Guilin, China, Vol. 4092, 2006, pp. 599-611.

[10] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Ef-
ficient IR-style keyword search over relational databas-
es,” In Proceedings of 29th International Conference on
Very Large Data Bases (VLDB’03), Berlin, Germany,
2003, pp. 850-861.

[11] F. Liu, C. Yu, W. Meng and A. Chowdhury, “Effective
Keyword Search in Relational Database,” 26th ACM
SIGMOD/PODS international Conference on Manage-
ment of Data/Principle of Database Systems, Chicago,
Illinois, USA, 2006, pp. 563-574.

[12] L. Zhu, Y. Zhu, and Q. Ma, “Chinese Keyword Search
over Relational Databases,” World Conference on
Science and Engineering (WCSE), Wuhan, China, Vol. 1,
2010, pp. 217 – 220.

http://kdd.ics.uci.edu/databases/ipums/ipums.html�
http://www.springerlink.com/content/?Author=Jun+Zhang�
http://www.springerlink.com/content/?Author=Zhaohui+Peng�
http://www.springerlink.com/content/?Author=Shan+Wang�
http://www.springerlink.com/content/?Author=Huijing+Nie�

	Figure 2. Structure of sn-index.
	Figure 3. The elapsed times for IPUMS
	Figure 4. The elapsed times for BOOK
	Figure 6. Precisions for BOOK
	M. Carey, and D. Kossmann, “On saying ‘enough already!’ in SQL,” SIGMOD 1997 Proceedings ACM international conference on management of data, Vol. 26 No. 2, 1997, pp. 219-230.
	I. F Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query processing techniques in relational database systems,” ACM Computing Surveys, Vol. 40, No. 4, 2008, Article 11.
	L. Zhu, W. Meng, C. Liu, W. Yang, and D. Liu, “Processing top-N relational queries by learning,” Journal of Intelligent Information Systems. Vol.34, No.1, 2010, pp.21-55, doi:10.1007/s10844-009-0078-7.
	IPUMS Census Database, “ipums.la.99.gz”, 1999, http://kdd.ics.uci.edu/databases/ipums/ipums.html
	T. Pedersen, “WordNet::Similarity,” 2008, http://www.d.umn.edu/~tpederse/similarity.html
	L. Zhu, Q. Ma, C. Liu, G. Mao and W. Yang. “Semantic-distance based evaluation of ranking queries over relational databases,” Journal of Intelligent Information Systems, Vol. 35, No. 3, 2010, pp. 415-445.
	D. Buscaldi, P. Rosso, and A. E. Sanchis, “A wordnet-based query expansion method for geographical information retrieval,” Working Notes for the CLEF Workshop, Vienna Austria, 2005.
	S. Das, E. Chong, G. I. Eadon, and J. Srinivasan, “Supporting ontology-based semantic matching in RDBMS,” Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB’04), Toronto, Canada, 2004, pp. 1054-1065.
	J. Zhang, Z. Peng, S. Wang and H. Niehang, “Si-SEEKER: Ontology-based semantic search over databases,” Knowledge Science, Engineering and Management, Guilin, China, Vol. 4092, 2006, pp. 599-611.
	V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient IR-style keyword search over relational databases,” In Proceedings of 29th International Conference on Very Large Data Bases (VLDB’03), Berlin, Germany, 2003, pp. 850-861.
	F. Liu, C. Yu, W. Meng and A. Chowdhury, “Effective Keyword Search in Relational Database,” 26th ACM SIGMOD/PODS international Conference on Management of Data/Principle of Database Systems, Chicago, Illinois, USA, 2006, pp. 563-574.
	L. Zhu, Y. Zhu, and Q. Ma, “Chinese Keyword Search over Relational Databases,” World Conference on Science and Engineering (WCSE), Wuhan, China, Vol. 1, 2010, pp. 217 – 220.

