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ABSTRACT 

In the paper, we study the global existence of weak solution of the fully nonlinear parabolic problem (1.1)-(1.3) with 
nonlinear boundary conditions for the situation without strong absorption terms. Also, we consider the blow up of 
global solution of the problem (1.1)-(1.3) by using the convexity method. 
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1. Introduction 

In this paper, we consider the following fully nonlinear 
parabolic problem: 

         , ,tu u x t f u x t x t   

  

, , 0, ,T  (1.1) 

    
,

, , ,
u x t

 0, ,g u x t x t


T


 

 


 

 (1.2) 

0 , ,u x x 



,0u x            (1.3) 

where  is a bounded open domain with smooth 
boundary , 


   is differentiation in the direction 

of the outward unit normal to  0,  


 and  
.   0u x  L 
  ,u x tDenote ,   ,f u x t  and   ,g u x t  by 

,  u  f u , respectively. Also, we need the following 
conditions: 

(D1)  f s  and  g s  are local Lipschiz continuous 
with respect to s ; 

(D2)  f s  and  g s
 1s C 

 are positive for all s; 
(D3)  and with     0s   0 0.    
The problem (1.1)-(1.3) appears in mathematical mod-

els of a number of areas of science such as gas dynamics, 
fluid flow, porous media and biological populations, one 
can see [1-9]. As for the case of semi-linear or degener-
ate equations with a nonlinear boundary condition which 
can be taken as the special case of the problem (1.1)- 
(1.3), the behavior properties of the above mentioned 
such as existence and uniqueness, blow up of some spe-
cial problems, have been established by [2,10-17] and so 
on. 

In this paper, we study the conditions for global exis-

tence and blow up of the problem (1.1)-(1.3). The re-
maining parts of the paper are organized as follows. In 
Section 2, we give the global solvability condition for the 
situations with and without strong absorption terms. Fi-
nally, we obtain the condition of blowing up of global 
solution by the convexity method in [18,19]. 

2. Global Existence  

Firstly, we give the definition of weak solution as fol- 
lows: 

Definition 2.1. Given , if     0u x L 

      1, 0, ; 0,u x t C T L L T    

satisfies 

      

      
0,

00,

d d

d d ,0 d

tT

xT

u u f u x t

g u S t u x x x

    

 



 

   

 



 
   (2.1) 

for any test function  

     2 1 1,1 10, ; 0, ;L T H W T L     

  0T with  , then ,u x t



 is called by a weak solu-
tion of the problem (1.1), (1.2). 

The local existence and uniqueness of weak solution 
of the problem (1.1)-(1.3), one can see [20]. For the 
global existence of weak solution, we have the following 
result: 

Theorem 2.1. Assume that there exist strictly non-de- 
creasing positive functions   HH s  and s  such 
that  
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     s H s g s     
 

0for 0s s  ,      (2.2) 

        
   

    2
2

,

H s s l s H s

f s H s

 



     



s H s M
 (2.3) 

where 

 

 
1

2

max ,

max

M h x

M h x




 

 



 h x

            (2.4) 

and  satisfies 

  in ,
h x

h x l



  


1 on .       (2.5) 

Then the solution of the problem (1.1)-(1.3) is global. 
Proof. Let       , ,t h xu x t    where   is 

the solution of 

0 0 0

with

0 ,
L

s H s

u s

 

  

 

  
            (2.6) 

 t

   
 satisfies and 

  
 

1 with

0 0.

t H t M  



  


      (2.7) 

From (2.2), (2.3) and (2.6), (2.7), it follows that  
    t h x    and  t

0.t 
 are well posed, positive and 

increasing for all  
Thus, there holds 

   
  0 0

, 0, and

, .

u x t C

u x t s

  

 
         (2.8) 

Using (2.5)-(2.7) and (2.3), we have 
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H
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  (2.9) 

Using (2.2), (2.5) and (2.6), we obtain 

                

                 
0 0

0 0.

g u u g u u t h x g u

u H u h g u u H u h g u u H u g u

   

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
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n n

n

u
     (2.10) 

 
From (2.9) and (2.10), we see that  ,u x t

0t 
 is a sup- 

solution to the problem (1.1)-(1.3) defined for all  
with    0  By using the sup- and sub-solu- 
tion argument (c.f. [7]), we know that the solution o the 
problem (1.1)-(1.3) is global. 

,0 .u x u x

 

Remark 2.1. If the conditions (2.2) and (2.3) hold, the 
problem (1.1)-(1.3) is called by the problem without  

strong absorption terms. 

3. Blow Up 

In the section, we use the convexity method (see [18,19]) 
to show that the global solution blows up in finite time 
under some suitable condition. To this end, we define 

 

         2

0 0

1 1
d d d

2 2

u u

xE t u x s sg u S s f s s x   
  

          d d
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              (3.1) 

 
and 

   
0

d d .F t z z x


  

,

          (3.2) 

Suppose that following conditions hold: 
(D4) If g   and f satisfy the following inequalities 

       
0 0

d 2 d
s s

g s z z z g z z   

    d .

     (3.3) 
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0 0

2 d
s s

s z z z

0

z    z ff     (3.4) 

(D5) There exist a constant I  and a convexity func-
tion   0s 

 

 such that 

0

d
I

s

s


                (3.5) 

and 

        0 0

2 0
d d 0

2

s sE
z f z z z z

     
     (3.6) 

with 
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Proof. Multiplying (1.1) by  and integrating by 
parts over  , we have 
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Using (3.8), we have 
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Using (3.9) and (3.1), we have d d 0.E t t 

   0 .E t E

 

 So, we 
obtain  

Theorem 3.1. Suppose that the conditions (D4) and 

(D5) hold, then the solution of the problem (1.1)-(1.3) 
blows up in finite time. 

Proof. Using (3.2), we have 
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Since  so we have  d ,s s
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 
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 
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Using (3.12) and Lemma 3.1, we obtain 
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From the condition (D5), we see    

F 

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Using the Jensen’s inequality, we get 
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
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Hence, we have 
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t
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Integrating (3.16) from 0 to , we have 
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0

d .
t

F t   F        (3.17) 

 Let ,y F t 

 

 then (3.17) becomes 
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d
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F

y
t

y

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By the condition (D5), we have 
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 0F



  
d

.
y

y
 

0T

 d d .z z x  

          (3.19) 

Therefore, there exists  such that 

  
0 0

0
lim lim

u

t T t T
F t 

   
    (3.20) 

From (3.20), we know that the solution of the problem 
(1.1)-(1.3) must blow up in finite time. 
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