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ABSTRACT 
We construct a new time consistent dynamic convex cash-subadditive risk measure in this paper. Different from exist-
ing measures, both potential loss and volatility of risky objects are considered. Based on a one-period measure that dis-
torts financial values, punishes downside risk yet rewards upside potential, a dynamic time consistent version is con-
structed recursively through a modified translation property. We then establish a portfolio selection model and give its 
optimal condition. 
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1. Introduction 
Financial activity is teemed with risk, therefore it is 
crucial to construct reasonable risk measures and utilize 
them on the optimal portfolio selection. One popular 
definition of risk is volatility of random return of 
portfolio, originated from Markowitz’s prominent 
mean-variance model. Following him, hundreds of 
moment-based risk measures were proposed, such as 
Mean Absolute Deviation [1] and Lower Partial Moment 
[2]. Another common notion of risk is potential downside 
loss below a certain target. Correspondingly, a number of 
downside risk measures has been suggested in the 
literature, such widely used measures as Value-at-Risk 
(VaR) and Conditional Value-at-Risk (CVaR). In all the 
above financial risk measures, the attention is put on 
either the volatility of random return or the potential loss. 
Nevertheless, this is insufficient. Both these two aspects 
should be considered simultaneously. Only concentrating 
on the volatility of return ignores the information on the 
degree of potential loss; while merely emphasizing 
potential loss not only neglects the dispersion of future 
return but also throws away upside data. What’s more, 
when considering the volatility of random return, many 
researchers punish both downside risk and upside 
potential. However, the volatility of random return above 
certain target implies the potential of gaining much more 
than expected. A higher upside variability generally 
indicates a higher possibility to acquire good upside 
performance, which is desirable for each rational investor. 
Hence, upside potential should be rewarded. Based on 
the analysis above, we believe that when defining risk 

and its measure, we should consider both the potential 
loss and volatility into consideration and distinguish 
between downside risk and upside potential. 

Generally speaking, an ideal risk measure should 
satisfy some properties. In their seminal paper [3], 
Artzner, Delbaen, Eber, Heath established an axiomatic 
notion of coherent risk measures. They proposed that an 
ideal risk measure should satisfy four properties: 
monotonicity, subadditivity, positive homogeneity and 
translation-invariance. Though it has been accepted by 
many scholars, it is not perfect. For example, positive 
homogeneity sometimes does not hold because a 
financial position’s risk increases in a nonlinear way with 
its volume due to liquidity risk. Hence, Follmer and 
Schied [4] replaced subadditivity and positive 
homogeneity by convexity and established a more 
general concept of convex risk measures. In addition, 
translation-invariance is questioned in [5] since the 
ambiguity on interest rates and is suggested to be 
replaced with cash-subadditivity, which implies that 
additional loss of some amount of money is covered by 
an additional reserve of the same amount. Hence, we 
believe that for one-period risk measures it is reasonable 
to assume monotonicity, convexity and 
cash-subadditivity. From the perspective of economics 
and finance, an ideal risk measure should reflect 
investor’s risk-averse attitude because risk is always a 
subjective notion [6]. 

During the recent decade, dynamic risk measure has 
attracted many researchers and practitioners, of which 
the most important feature is time consistency describing 
how risk assessments at different times are interrelated. 



R. GAO, Z. CHEN 

Copyright © 2013 SciRes.                                                                                   TI 

By certain translation property, which corresponds to 
translation-invariance in one-period setting, time 
consistent risk measures can be completely defined by 
conditional risk measures recursively [7]. Thus, an usual 
way to construct time-consistent risk measures is 
establishing a static risk measure first and extending it to 
dynamic setting by translation property. As illustrated 
later, existed translation property cannot reflect risk 
aversion and we will modified it into another version. 

Bearing in mind the above limitation in existed risk 
measures, a new class of time consistent dynamic 
cash-subadditive convex risk measure is constructed. 
Comparing with existing measures, our new risk measure 
has the following advantages: we take into account the 
potential loss and volatility of both downside risk and 
upside potential, and thus the whole domain distribution 
is utilized, which makes the new measure superior for 
finding robust and stable investment decisions; by 
suitably selecting the parameters in the model, our risk 
measure can explicitly reflect the investor’s risk attitude; 
when the risk measure is applied to portfolio selection 
model, we give its optimality condition, which is useful 
in determining the stochastic dual dynamic programming 
method to solve the risk-averse multistage problem. 

This paper is organized as follows. Section 2.1 gives 
the definition and property of the new one-period risk 
measure, which is then extended to dynamic setting in 
Section 2.2. We apply the risk measure to portfolio 
selection model in Section 3 and presents our conclusion 
in Section 4. 

2. The New Risk Measure and its Properties 
2.1. One-Period Setting 
We first consider a one-period framework. Given a 
probability space ( , , )Ω PF , denote the random cost, 
discounted by certain numéraire, of at time T by essen-
tially bounded random variable X in ( )L∞ F . A 
one-period risk measure is a mapping : ( )Lρ ∞ → F . A 
larger value of ρ implies a riskier cost X . For a∈ , 
we denote [ ]a + by max{0, }a . The notation “ := ” means 
“equal by definition”. For a random variable X , [ ]XE  
denotes its expectation; xα is the α quantile of X . We 
denote the indicator function of set A by A1 . 

For reasons demonstrated in the introduction, we pro-
pose here a new type of risk measure that takes into ac-
count the potential loss, downside risk, upside potential 
and risk aversion. In order to illustrate the derivation of 
our new risk measure, we look back on the notable 
downside risk measure VaR, which is defined 
as 1VaR ( ) :X xα α−= . When the random cost X is reduced 
by 1x α− amount of money, it becomes acceptable in the 
sense that the random cost X xα− is less than zero up to a 
loss with probabilityα . However, as pointed out before, 
the volatility of such random cost should also be meas-

ured. We use absolute deviation to measure the upside 
potential and downside risk separately. The average 
downside deviation is 1 1[ | ]X x X xα α− −≥−E , which 
equals to 1

1[ ]X x αα − +
−−E . Similarly, the upside potential 

is 1
1[(1 ]) Xx αα − +
−− −E . Since we punish downside risk 

and reward upside potential, the volatility of 1X x α−−  
is 1 1

1 1[ ] (1 )(1 ) [ ]XX x xα αλα λ α− + − +
− −− − − −−E E , where 

λ  reflects the asymmetry between downside and upside. 
To combine the potential loss and volatility together, a 
simple way is by linear weight. It is not difficult to show 
that to make the weighted sum be monotone, they have to 
have equal weight. Moreover, taking into risk aversion 
into consideration, all the financial values aforemen-
tioned, including X and 1X x α−− , should be distorted by a 
monotonically decreasing convex function ( )·w . Such 
property of w indicates that risk-averse investors em-
phasize more on undesirable situation. For normalization 
condition, we require (0) 0w = . Finally, we define our 
new risk measure as follows. 

Definition 1. Given [0,1]λ ∈ , (0,1)α ∈ , the new 
one-period risk measure , : ( )Lλ αρ ∞ → F  is defined 
as 

1
, 1 1

1           

( ) ( ) [ ( ) ( )]

(1 )(1 ) [ ( ) ( )   ]

X w x w X w x

w x w X
λ α α α

α

ρ λα

λ α

− +
− −

− +

= + −

− − − −

E

E
  (1) 

where inf{ : [ ] }x P X xxα α= ∈ ≤ ≥ and ( )·w  is a 
monotonically increasing convex continuous function 
satisfying normalized condition (0) 0w = .  

Rewriting the expectation in Equation (1) in integral 
form, the measure has an equivalent form which facili-
tates us to study its property, demonstrating by the fol-
lowing proposition: 

Proposition 1. For any 0 1α λ< ≤ ≤ , the risk measure 
,λ αρ  defined by (1) can be equivalently written as 

1

1,
1( ) [ ( )] ( )
1 (1 ) uX w X w x duλ α α

λ α λρ
α α α −

− −
= +

− − ∫E   (2) 

Obviously, if 1λ = , 
11,

1
( () )uwX x duα α

ρ
−

= ∫ is α time 

of TNT ( )Xα defined in [8]; if ( )w x x=  , 

, ( ) (1 ) [ ] CVaR ( )X X Xλ α αρ β β= − +E , where 
1(1 )(1 )β λ α −= − − , is appeared in [9]; further if 1/ 2α = , 

,1/2 1/2 1/2[ ] 2 [ ] 2 (1 ) [ ]X X x x Xλρ λ λ+ += + − − − −E E E  is 
the deviation measure suggested in [10]. Therefore, our 
new risk measure can be regarded as extensions to all 
these risk measures. 

The choice of depends on the investor's attitude toward 
risk controls the heavy tails of loss distribution. Typical 
decreasing convex functions are 1 2[ ] [ ]X Xβ β+ +− −  
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( 1 2 0β β> > ), exp( ) 1xβ − ( 0β > ), xβ ( 1)β ≥ . As for 
concrete selection of and corresponding parameters, one 
can refer to [8] for a detailed discussion. 

The following proposition shows that under certain 
mild specification, the new risk measure satisfies several 
desirable mathematical properties. 
Proposition 2. For any 0 1α λ< ≤ ≤  and ( )·w  that is 
differentiable and satisfies 0 1'w≤ ≤ , then the risk 
measure defined in Equation (1) is a law-invariant, 
convex, cash-subadditive risk measure. 
Proof. The first two are direct corollaries of Theorem 1. 
To prove the cash-subadditivity, we show that 

, ,( ) ( )X m X mλ α λ αρ ρ+ ≤ + . Rewriting the new risk 

measure as 
1

, 0
( ) ( )uw x u duλ αρ φ= ∫ , where 

[0, ) [ ,1]( ) : / ( ) ( ) / (1 ) ( )u u uα αφ λ α λ α α= + − −1 1 , by 
( )u ux m x m+ = + , we have 

 

1

, 0
1

0
1

0
1

0

,

[ ( )

( ) (( ) ) ( )

( ) ( )

( ) ( )

( ) ( )

(

]

) ,

u

u

u u

u

X m w x m u du

w x m u

w

du

w m u du

w x u u m

X

x

d

m

λ α

λ α

ρ φ

φ

ξ φ

φ

ρ

+

= +

+ = +

=

′

≤ +

= +

∫
∫
∫
∫

  

where [ , ]u u ux m xξ ∈ −  is determined by the mean 
value theorem. 

Besides, Equation (1) contains two parameters λ  and 
α , which can be flexibly reflect investor's attitude 
toward risk. λ  is a factor linearly adjusting the balance 
between downside risk and upside potential; is the 
confidence level that the investors can accept. More 
specifically, we have the following theorem. 

Proposition 3. The coherent risk measure ,λ αρ is 
increasing with respect to λ , decreasing with respect to 
α , and continuous with respect to α  and λ . 

The monotonicity property of ,λ αρ  with respect to 
/λ α  can be used to reflect the investor’s attitude 

toward risk. Concretely, the increasing property of ,λ αρ  
with respect to λ  indicate that the greater the λ , the 
larger the ,λ αρ . Investors who adopt a larger λ  treat 
X  riskier than those who choose a smaller λ . They 

have a stronger tendency to risk aversion because the 
concentrate more on downside risk than on upside 
potential. When 1λ = , investors only consider downside 
risk. On the other hand, the decreasing property of ,λ αρ  
with respect to α  means that ,λ αρ  with large α  
should be connected with the less risk-averse investor. 

They are less conservative in the sense that they bear a 
larger probability of loss. 

Stochastic dominance rules are often utilized to 
judge a new risk measure. From the point of view of 
utility theory, it is desirable for a risk measure to 
preserve second order stochastic dominance (SSD). An 
equivalent definition of SSD in terms of quantile 
function is the following: SSDX Y if and only if 

0
( ) 0, 0 1,

p

u ux y du p− ≤ ∀ ≤ ≤∫  

and there is a strict inequality of at least one 0p . 

Proposition 4. The risk measure ,λ αρ preserves second 
order stochastic dominance. 

Proof. It suffices to prove the case when two random 
variables SSDX Y whose quantile functions satisfy 

u ux y≡/  in any interval ( [0,1], )a b ⊂ . Since the quantile 
function is right-continuous, there exists only countable 
intersection of ux  and uy . If there is no intersection, it 
follows that u ux y≤  and thus , ,( ) ( )X Yλ α λ αρ ρ≤  due 
to the monotonicity of ( )·w . Otherwise denote all the 
intersection point of ux  and uy  by 1{ }N

n nu = , 1 N≤ ≤ ∞ , 
and 0 : :0, 1, ( )N ku u k +

+= = ∈ . Then we have 

1

2 1

2

2 2

2 1

2 1

2

2 2

2 1

, ,
0

[ /2]

0

[ /2]

0

'( ) ( )

'( ) (

( ) ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( )

[ ( ) ( )] ( )

( )
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0,

n
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n

n

n
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n

N u

u uu
n

N u

u uu
n
u

u uu

N u

n u uu
n

u

n u uu

X Y w x w y u du

w x w y u du

w y w x u du

y u du

y x u d

w

u

x

w

λ α λ αρ ρ φ

φ

φ

ξ φ

η φ

+

+

+

+

+

+

+

=

=

=

=

=

−

− = −

−

− −

−

−

≤

∑∫

∑ ∫

∫

∑ ∫

∫

 

where 2 2 1[ , ]n n nu uξ +∈  and 2 1 2 2[ , ]n n nu uη + +∈  are 
determined by the mean value theorem. The last 
inequality is deduced by the convexity of ( )·w  and the 
monotonicity of ( )uφ . 

At the end of this section, we consider the computation 
and minimization of ,λ αρ . Let : ( , )X g x ω=  be the 
random cost associated with the decision vector x∈G, 
representing element of feasible set G , and the random 
vector ω , standing for the uncertainties in the market 
which affects the random cost, such as capital gains and 
dividends. Similar to the arguments in [11], we have the 
following proposition. 
Proposition 5. Introducing the following auxiliary 
function
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1
,

1
( , ) [ ( ( , ))] { [( ( ( , )) ) ]},

1 1
G x E w g x E w g xλ α

λ λ α
η ω η α ω η

α α
− +− −

= + + −
− −

then ,λ αρ  has an equivalent form 
 , ,( ) min ( , ).x G xλ α η λ αρ η∈=   
Minimization of ,λ αρ  with respect to X ∈X  is 
equivalent to 
 , ( , ) ,min ( ) min ( , )x xx G xλ α η λ αρ η∈ ∈ ×= G G . 
Moreover, we have 

( , )

, ,

( , ) arg min

arg min ( ), arg min ( , ).
x

x

x

x x G x
η

λ α λ α
η

ξ

ρ η η

∗ ∗

∈ ×

∗ ∗

∈ ∈

∈

∈ ∈

⇔




G

G

 

2.2. Multi-period setting 
In this section we extend our new one-period risk 
measure ,λ αρ  to the dynamic setting. Consider a 

filtered probability space 1, , ( )( ),T
t t=Ω F F P , where 

1 },{= ∅ ΩF  and T = ΩF , and an adapted stochastic 
process tX , , ,1t T= … , representing discounted random 
return process. Define the space ( , , )t t

∞= Ω PL L F  and 

,t T t T= ×L L L . The one-period risk measure naturally 
induces a sequence of one-period conditional risk 
measure 1

1{ } :T
t t tρ −

= → L : 

1

1
( ) [ ( ) | ]

1

         inf [( ( ) },){ | ]

t
t t

t

t t
t t

t

X w X

w X
η

λ
ρ

α
λ α

η α η
α

− +

∈

−
=

−
−

+ + −


E

E

F

F
  

A dynamic risk measure for stochastic process 
, ,t TX X…  is a sequence of conditional risk measures 

1
, 1{ }T

t T tρ −
=  , where , ,:t T t T tρ →L L assesses the risk of the 

sequence , ,t TX X… from the perspective of time t . Our 

aim is to construct the dynamic risk measure 1
, 1{ }T

t T tρ −
=  

based on the conditional risk measure 1
1{ }T

t tρ −
= . 

The key to constructing dynamic risk measures from 
one-period ones is the translation property, which arises 
from translation-invariance property of one-period risk 
measure. A static risk measure ρ  satisfies 
translation-invariance property if for all m∈ , 

( ) ( )X m X mρ ρ+ = + , which implies cash-invariance, 

i.e., ( )m mρ = . This suggests the risk of a riskless cost,  
in terms of potential loss, can be described as the its 
present value. Then the corresponding translation 
property in existed papers is for all 1,{ }t TX ∈L  and 

, 11, Tt … −= , 

 , 1 , 1( , , , ) (0, , , )t T t t T t t T t TX X X X X Xρ ρ+ +… = + …    (3) 

Condition (3) indicates that the risk of a stochastic 
process ),( ,t TX X… from the perspective of time t is the 
aggregation of its riskless component tX and its risky 
component 1,( ),t TX X+ … , and by translation-invariance 
property, the risk of the riskless component tX is its op-
posite of its value. Nevertheless, when taking into ac-
count the interest rate [5] and more importantly, the in-
vestor’s risk-averse behavior, it is better to measure risk-
less object’s risk by a distortion of its value instead of 
itself, i.e., the cash-invariance and corresponding transla-
tion-invariance should be replaced with 
 ( ) ( ), ( ) ( ) ( ),m w m X m X w m mρ ρ ρ= + = + ∈   (4) 
where ( )·w is a monotonically decreasing convex conti-
nuous function. The monotonicity of ( )·w  guarantees 
that the smaller the m , the riskier it is, and the convexity 
entails risk-aversion. Intuitively speaking, the dynamic 
risk measure 1

, 1{ }T
t T tρ −

= induced by conditional risk meas-

ure sequence 1
1{ }T

t tρ −
=  should satisfies 

 , 1 1 1(0, ) ( ), 1, , 1,t t t t tX X t Tρ ρ+ + += = … −   (5) 
which identifies the conditional risk measure tρ  with 
the dynamic risk measure for two-period process , 1t tρ + . 
According to (4) and (5), translation property (3) is 
modified into for all 1,{ }t TX ∈L , 

, 1 1, 1( , , , ) ( ) ( ,( , )),t T t t T t t t t T t TX X X w X X Xρ ρ ρ+ + +… = + …   (6) 
where )·(tw is a monotonically decreasing convex conti-
nuous function. 

Based on the above analysis, we define our new 
dynamic risk measure as follows. 

Definition 3. Let 1{ }T
t tw = is a sequence of monotonically 

decreasing convex differentiable function satisfying for 
all1 t T≤ ≤ , (0) 0tw = and (1 ) 0w t− ′≤ ≤ . The new time 
consistent dynamic risk measure 1

, 1{ }T
t T tρ −

=  induced by 
one-period risk measure (1) through modified translation 
property (6) is recursively defined as 

 , 1, 1(( ) ( , , )) , , 11,t T t t t t T t Tw tX X TXρ ρ ρ + + == + … … −  (7) 

 As aforementioned, time consistency is the most 
important issue of dynamic risk measures. One of the 
most commonly used versions is introduced in [12]. 

Definition 2. A dynamic risk measure 1
, 1{ }T

t T tρ −
= is time 

consistent if for all1 Tτ θ≤ ≤ < and all sequences 1{ }T
t tX = , 

1 ,{ }T
t t t TY = ∈L , 

 
, ,

, , , 1 and
( , , ) ( , , )

k k

T T T T

Y k
X X Y

X
Yθ θ θ θ

τ θ
ρ ρ

= = … −
… ≤ …

  (8) 
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imply , ,( , , ) ( , , )tT T T TtX X Y Yτ τρ ρ… ≤ … . 

This definition is intuitive since it indicates that if 
the future subsequence of sequence tX is at least as good 
as the subsequence of another sequence tY and today’s 
value of tX is the same as that of tY , then tX is at least 
as good as tY from the perspective of today. We show that 
our new risk measure satisfies time consistency. 

Proposition 6. Suppose a dynamic risk measure 1
, 1{ }T

t T tρ −
=  

satisfies condition (6)-(7), then it is time consistent if and 
only if for all1 Tτ θ≤ ≤ <  and all 1,{ }t TX ∈L ,  

,

1
, 1 ,

( , , , , )

( , , , ( , , ),0, ,0 )
T T

T T T

X X X

X X w X X
τ τ θ

τ τ θ θ θ θ

ρ

ρ ρ−
−

… … =

… … …
  (9) 

where ·( )wτ satisfies properties stated in Proposition 2. 

Proof. Suppose sequences 1{ }T
t tX = , 1 ,{ }T

t t t TY = ∈L  satisfy 

the Equation (9), by the monotonicity of 1
, 1{ }T

t T tρ −
=  and 

wθ , it follows that 

, 1 ,

, 1 ,

( , , , ( , , ),0, ,0 )
( , , , ( , , ),0, ,0 )

T T T

T T T

X X X X
Y Y Y Y

τ τ θ θ θ

τ τ θ θ θ

ρ ρ

ρ ρ
−

−

… … …

≤ … … …
 . 

If identity (10) holds, then 

, ,( , , ) ( , , )T T T TX X Y Yτ τ τ τρ ρ… ≤ … . 

3. Portfolio Selection Model and Optimal 
Condition 

Based on the new dynamic risk measure, we establish a 
multistage portfolio selection model in this section. 
Suppose we have initial capital 1X  in n  assets at 
stage 1, each of which has respective net expected return 
rate 1( , , )t t ntr r r= … at stage , ,2t T= … , forming a 
random process with a known distribution (for example, 
can be determined by Vector Auto Regression model 

( )VAR p ). We assume this process is stagewise 
independent, i.e., tr  is independent of 1 1, , tr r −…  for 

, ,2t T= … . This assumption is not very realistic but in 
most cases, we can transform the across stage dependent 
process into stagewise independent by adding state 
variables to the model (cf. [13]). Suppose further a 
self-balance model, that is, we reallocate our portfolio at 
each stage , 11, Tt … −= , but without investing 
additional money during the time period. At each stage t , 
we decide the amount of the n  assets 1( , , )t t ntx xx …= , 
satisfying the balance of wealth constraints 

, 1
1 1

(1 )
n n

it it i t
i i

x r x −
= =

= +∑ ∑ , , 11, Tt … −= . The sequence of 

decisions tx satisfies nonanticipativity (implementable) 
constraints, i.e., tx is a function of information available 
at the current stage, say the process 1 ), ,( tr r… . We 
assume there are no short sales or borrowing: 0itx ≥ for 
all i and t . Our goal is minimizing the risk of the whole 
process over all the implementable and feasible policies, 
measured by our new dynamic risk 
measure 1, 1( , , )T TX Xρ … .  

We write the dynamic programming equations for 
the multistage problem. At the stage 1 1, ,t T= − … , a 
realization of [ ] 1: ( , , )tt rr r= …  is known. We solve the 
problem 

 
0

1 1
1

, , , 1
1 1

( ) : ( ) ( )

s.t.  (1

min

)

xt

n

t t it t tt
i

n n

i t i t i t
i i

x w x

x r x

V x
≥

− +
=

−
= =

= +

= +

∑

∑ ∑

V
   (10) 

where

1 1 1 1 1
1

[( ) : ( )], ( ) (1 )( )
n

t t t t t T T T iT T
i

x V x x r xρ ρ+ + − − −
=

= = +∑V V  

By conjugate duality theory (c.f. [9]), we can prove the 
following optimal condition of problem (11). 

Proposition 7. tx∗  is an optimal solution of (11) if and 
only if there exists 1( )t txπ ∗

−∈D  such that 
( , )0 t t tL x π∗ ∗∈∂ , where 1( )tx −D  is the set of optimal 

solutions of the dual problem 

1
1 11

max sup ((1 ) ) ,{ [ ( ) ]}
t t

n n n

t it it t it t i t
x

t t
i ii

xx w x xr
π

π π +
= ==

− − −+ ∑ ∑∑ V

and ( , )t t tL x π  is the Lagrangian 

1 , 1
1 1 1

( , ) ( ) (1 )( ) ( ),
n n n

t t t t it t t t it i t t
i i i

x w x x r x xL π π+ −
= = =

= + + + −∑ ∑ ∑V a

nd the subdifferential of f  at x  is denoted as ( )f x∂ .  
Further, the function tV  is differentiable at 1tx −  
and 1 1( ) ( )t t t tV x x− −∂ = 11D , where 11  is a n  
dimensional vector whose elements are 1. 
Proof. First, the function tV  is convex for , ,1t T= … . 
Indeed, since Tw  and Tρ  are convex and increasing, 
the convexity of TV  follows the fact that the 
composition of increasing convex function is still convex 
and that the minimum function preserves convexity. By 
induction and increasing and convex property of tρ , 
convexity of , ,, 1 1tV t T= − …  is obtained. Next, since 

tV  is finite and continuous with respect to 1tx − , by 
conjugate duality theory (c.f. Theorem 7.8 in [9]), we 
obtain the result. 

The optimal condition and the subdifferential of tV  is 
very useful practically. For example, it has been pointed 
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out in [13] that the complexity of Sample Average 
Approximation (SAA) method for solving multistage 
stochastic programming grows exponentially in the 
number of scenarios and stages. An tractable way to 
solve the SAA problem approximately is by stochastic 
dual dynamic programming (SDDP) method. The 
subdifferential of tV  is critical when deciding the SDDP 
algorithm. Indeed, we can modify the SDDP algorithm 
easily in [13] based on tV∂ . 

4. Conclusion 
By linearly combining the downside measure and 
dispersion measure which punishes downside risk and 
rewards upside potential together, meanwhile distorting 
the financial value, this paper proposes a new class of 
one-period risk measure. The new static measure satisfies 
convexity, cash-subadditivity, preserves second order 
stochastic dominance, and can reflect investor’s risk 
attitude. Based on this static measure, we then construct a 
dynamic time consistent risk measure using a modified 
translation property. Under this new dynamic measure, 
we establish a portfolio selection model whose goal is to 
minimize the risk of the whole process. By conjugate 
duality theory, we derive its optimal condition, which 
facilitates us implement the SDDP algorithm for solving 
the multistage stochastic program. We only consider 
several theoretical property of our new risk measure, 
nevertheless, whether such measure is practically ideal 
needs some empirical research using realistic data. This 
issue is left for future research. 
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