Description of the derived categories of tubular algebras in terms of dimension vectors

Hongbo Lv, Zhongmei Wang
School of Mathematical Science, University of Jinan, Jinan 250022, P.R.China
School of Control Science and Engineering, Shandong University, Jinan 250061, P.R.China
Email: lvhongbo356@163.com ; wangzhongmei211@sohu.com

Abstract

In this paper, we give a description of the derived category of a tubular algebra by calculating the dimension vectors of the objects in it.

Keywords:derived categories; tubular algebra; dimension vectors

1. Introduction

Let Λ be a basic connected algebra over an algebraically closed field k. We denote by $\bmod \Lambda$ the category of all finitely generated right Λ-modules and by ind Λ a full subcategory of $\bmod \quad \Lambda$ containing exactly one representative of each isomorphism class of indecomposable $\boldsymbol{\Lambda}$-modules. For a $\boldsymbol{\Lambda}$-module \boldsymbol{M}, we denote the dimension vector by $\operatorname{dim} \boldsymbol{M}$. The bounded derived category of $\bmod \boldsymbol{\Lambda}$ is denoted by $\boldsymbol{D}^{b}(\boldsymbol{\Lambda})$. We denote the Grothendieck group of Λ by $\boldsymbol{K}_{0}(\boldsymbol{\Lambda})$, AuslanderReiten translation by $\boldsymbol{\tau}$, the Cartan matrix by C_{Λ}. Let $\hat{\boldsymbol{\Lambda}}$ be the repetitive algebra of $\boldsymbol{\Lambda}, \bmod \hat{\boldsymbol{\Lambda}}$ the stable module category. When the global dimension of Λ is finite, C_{Λ} is invertible by [1], and $\boldsymbol{D}^{b}(\boldsymbol{\Lambda})$ is equivalent to $\bmod \hat{\boldsymbol{\Lambda}}$ as triangulated categories by [2].

By [1], a tubular extension A of a tame-concealed algebra
of extension type $\mathrm{T}=(2,2,2,2),(3,3,3),(4,4,2)$ or $(6,3$, 2)
is called a tubular algebra. For example, the canonical tubular algebras of $\mathrm{T}(2,2,2,2)$ is determined by the following quiver with relations.

$\alpha_{11} \alpha_{12}+\alpha_{21} \alpha_{22}+\alpha_{31} \alpha_{32}=0$,
$\alpha_{11} \alpha_{12}+\lambda \alpha_{21} \alpha_{22}+\alpha_{41} \alpha_{42}=0$,
$\lambda \notin\{0,1\}$
By [1], global dimension of a tubular algebra A is 2, then $D^{b}(A)$ is equivalent to mod \widehat{A}. And tubular algebras of the same extension type are tilt-cotilt equivalent, see [3]. Then we only consider the derived categories of canonical tubular algebras, whose structures are given in [4].

$$
D^{b}(A)=\underset{r \in Q}{\vee} T_{r}
$$

where (1) for any $r \in Q, T_{r}$ is the standard stable $\mathrm{P}_{1}(k)-$ tubular family of type T ;
(2) for any $r \in Q, T_{r}$ is separating $\underset{s<r}{\vee} T_{s}$ from $\underset{r<u}{\vee} T_{u}$.

Based on the results above, we give a description of the derived category of a canonical tubular algebra by calculating the dimension vectors of the objects in it.

2. Description of The Derived Categories of Tubular Algebras In Terms Of Dimension Vectors

In this section, let A be a canonical tubular algebra of type T .
Definition 1.1. ([1]) Let n be the rank of Grothendieck group $K_{0}(A), C_{A}$ the Cartan matrix of A. Then
(1) The Coxeter matrix Φ_{A} is defined by $-C_{A}{ }^{-T} C_{A}$;
(2) The quadratic form χ_{A} in \mathbb{Z}_{n} is defined by

$$
\chi_{A}(\alpha)=\frac{1}{2} \alpha\left(-C_{A}^{-T}+C_{A}^{-1}\right) \alpha^{T}
$$

for any α in \mathbb{Z}_{n}.
(3) Let h_{0}, h_{∞} be the positive generators of rad χ_{A}. For an A-module M, define

$$
\operatorname{index}(M)=-\frac{l_{0}(\underline{\operatorname{dim}} M)}{l_{\infty}(\underline{\operatorname{dim}} M)}
$$

where

$$
\begin{aligned}
& l_{0}(\underline{\operatorname{dim}} M)=h_{0} C_{A}^{-T}(\underline{\operatorname{dim}} M)^{T} \\
& l_{\infty}(\underline{\operatorname{dim}} M)=h_{\infty} C_{A}^{-T}(\underline{\operatorname{dim}} M)^{T}
\end{aligned}
$$

In particular, for

$$
\alpha \in \operatorname{rad} \chi_{A}, \alpha=r_{0} h_{0}+r_{\infty} h_{\infty}
$$

where

$$
r_{0}, r_{\infty} \in \mathbb{Z} . \text { Then, index }(\alpha)=\frac{r_{\infty}}{r_{0}}
$$

(4) $\alpha \in \operatorname{rad} \chi_{A}$ is called a real (respectively, imaginary) root,
if $\chi_{A}(\alpha)=\frac{1}{2} \alpha\left(-C_{A}^{-T}+C_{A}^{-1}\right) \alpha^{T}=1$ (respectively, $=0$).
It is well known that there exists a "minimal "imaginary root δ such that rad $\chi_{A}=\mathbb{Z} \delta$.

Now we recall some results in [4]. Let Λ be a finite dimensional k-algebra and $\widehat{\Lambda}$ the repetitive algebra. Denote by $P(\widehat{\Lambda})$ the subgroup of $K_{0}(\widehat{\Lambda})$ generated by the dimension vectors of indecomposable projective $\widehat{\Lambda}$ modules.

Lemma 1.2. $K_{0}(\widehat{\Lambda})=K_{0}(\Lambda)+P(\widehat{\Lambda})$.
Definition 1.3. Let $\pi_{\Lambda}: K_{0}(\widehat{\Lambda}) \rightarrow K_{0}(\Lambda)$ be the projective morphism. Define $\underline{\operatorname{dim}^{\Lambda}}: \bmod \widehat{\Lambda} \rightarrow K_{0}(\Lambda)$ where for any $\widehat{\Lambda}$-module $X, \underline{\operatorname{dim}^{\Lambda}} X=\pi_{\Lambda}(\underline{\operatorname{dim}} X)$.

Lemma 1.4. Let Φ_{Λ} be the Coxeter matrix of $\Lambda, \hat{\tau}$ the Auslander-Reiten translation of $\widehat{\Lambda}$. Then

$$
\underline{\operatorname{dim}}^{\Lambda} \hat{\tau} X=(\underline{\operatorname{dim}} X) \Phi_{\Lambda}
$$

Note that if Λ has finite global dimension, we have a triangulated equivalence: $\eta: D^{b}(\Lambda) \rightarrow \underline{\bmod } \widehat{\Lambda}$. For an object $X^{\bullet} \in D^{b}(\Lambda)$, define $\underline{\operatorname{dim}} X^{\bullet}=\sum_{i}(-1)^{i} \underline{\operatorname{dim}} X^{i}$. Then we have

Lemma 1.5. $\underline{\operatorname{dim}} X^{\bullet}=\underline{\operatorname{dim}^{\Lambda}} \eta\left(X^{\bullet}\right)$.
By representation theory of Auslander-Reiten quivers in [5]
and the results above, we have a method to describing the derived category of a canonical tubular algebra in terms of dimension vectors.

Theorem 1.6. Let A be a canonical tubular algebra of type
T, the rank of $K_{0}(A)$ be n. Then
(1) Let $\hat{\delta}$ be the minimal imaginary root in $K_{0}(\hat{A})$ corresponding the $\mathrm{P}_{\mathrm{i}}(k)$ - tubular family T_{r}, and let $\delta=\underline{\operatorname{dim}}^{A}(\hat{\delta})$. Then δ is determined by $\chi_{A}(\delta)=0$.
(2) Let X be an object in the bottom of a tube of rank r in T_{r}. Then $\underline{\operatorname{dim}}^{A} X$ is determined by the following:
$(*)\left\{\begin{array}{l}\chi_{A}\left(\underline{\operatorname{dim}^{A}} X\right)=\frac{1}{2} \underline{\operatorname{dim}^{A}} X\left(-C_{A}^{-T}+C_{A}^{-1}\right)\left(\underline{\operatorname{dim}}^{A} X\right)^{T}=1 \\ \left.\underline{\operatorname{dim}}^{A} X+\underline{\left(\operatorname{dim}^{A}\right.} X\right) \Phi_{A}+\cdots+\left(\underline{\operatorname{dim}}^{A} X\right) \Phi_{A}{ }^{r-1}=\delta . \quad \text { case } 1 . \text { We have four different tubes of rank } 2 .\end{array}\right.$
$\underline{\mathrm{dm}}^{A} X=\left(\dot{\eta_{b}}, \frac{r_{0}+r_{\infty}-1}{2}, \frac{r_{0}+r_{\infty}-1}{2}\right.$,

$$
\left.\frac{r_{0}+r_{\infty}+1}{2}, \frac{r_{0}+r_{\infty}+1}{2}, r_{\infty}\right)
$$

$$
\underline{\mathrm{dm}}^{A} \hat{\tau} X=\left(\mathrm{ir}_{0}, \frac{r_{0}+r_{\infty}+1}{2}, \frac{r_{0}+r_{\infty}+1}{2},\right.
$$

$$
\left.\frac{r_{0}+r_{\infty}-1}{2}, \frac{r_{0}+r_{\infty}-1}{2}, r_{\infty}\right)
$$

(ii)
$\underline{\operatorname{dim}}^{A} X=\left(r_{0}, \frac{r_{0}+r_{\infty}-1}{2}, \frac{r_{0}+r_{\infty}+1}{2}\right.$,

$$
\left.\frac{r_{0}+r_{\infty}-1}{2}, \frac{r_{0}+r_{\infty}+1}{2}, r_{\infty}\right)
$$

$\underline{\operatorname{dim}}^{A} \hat{\tau} X=\left(r_{0}, \frac{r_{0}+r_{\infty}+1}{2}, \frac{r_{0}+r_{\infty}-1}{2}\right.$,
$\left.\frac{r_{0}+r_{\infty}+1}{2}, \frac{r_{0}+r_{\infty}-1}{2}, r_{\infty}\right)$
(iii)
$\underline{\operatorname{dim}}^{A} X=\left(r_{0}, \frac{r_{0}+r_{\infty}-1}{2}, \frac{r_{0}+r_{\infty}+1}{2}\right.$,

$$
\left.\frac{r_{0}+r_{\infty}+1}{2}, \frac{r_{0}+r_{\infty}-1}{2}, r_{\infty}\right)
$$

${\underline{\operatorname{dim}^{A}}}^{A} \hat{\tau} X=\left(r_{0}, \frac{r_{0}+r_{\infty}+1}{2}, \frac{r_{0}+r_{\infty}-1}{2}\right.$,

$$
\left.\frac{r_{0}+r_{\infty}-1}{2}, \frac{r_{0}+r_{\infty}+1}{2}, r_{\infty}\right)
$$

(iv)

$$
\begin{aligned}
\underline{\mathrm{dm}}^{A} X= & \left(\dot{b}+1, \frac{r_{0}+r_{\infty}+1}{2}, \frac{r_{0}+r_{\infty}+1}{2},\right. \\
& \left.\frac{r_{0}+r_{\infty}+1}{2}, \frac{r_{0}+r_{\infty}+1}{2}, r_{\infty}+1\right)
\end{aligned}
$$

$$
\underline{\mathrm{dm}}^{A} \hat{\tau} X=\left(r_{0}-1, \frac{r_{0}+r_{\infty}-1}{2}, \frac{r_{0}+r_{\infty}-1}{2},\right.
$$

$$
\left.\frac{r_{0}+r_{\infty}-1}{2}, \frac{r_{0}+r_{\infty}-1}{2}, r_{\infty}-1\right)
$$

If $\delta=\delta_{2},\left({ }^{*}\right)$ in Theorem 1.6 should be as follows:

$$
\left\{\begin{array}{c}
\sum_{i=1}^{6} x_{i}^{2}-\sum_{i=2}^{5} x_{1} x_{i}-\sum_{i=2}^{5} x_{6} x_{i}+2 x_{1} x_{6}=1 \\
\sum_{i=2}^{5} x_{i}-2 x_{6}=r_{0} \\
\sum_{i=2}^{5} x_{i}-x_{1}-x_{6}=\frac{r_{0}+r_{\infty}}{2} \\
\sum_{i=2}^{5} x_{i}-2 x_{1}=r_{\infty}
\end{array}\right.
$$

Then, $\sum_{i=2}^{5}\left(x_{i}-\frac{r_{0}+r_{\infty}}{4}\right)^{2}=1$.
case 2. When $r_{0}+r_{1} \equiv 2(\bmod 4)$, we have four different tubes of rank 2 .
(i)

$$
\begin{aligned}
\underline{\operatorname{dim}}^{A} X= & \left(\frac{r_{0}-1}{2}, \frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{0}+r_{\infty}-2}{4},\right. \\
& \left.\frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{\infty}-1}{2}\right)
\end{aligned}
$$

$$
\underline{\operatorname{dim}}^{A} \hat{\tau} X=\left(\frac{r_{0}+1}{2}, \frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{0}+r_{\infty}+2}{4},\right.
$$

$$
\left.\frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{\infty}+1}{2}\right)
$$

(ii)

$$
\begin{aligned}
\underline{\operatorname{dim}}^{A} X= & \left(\frac{r_{0}-1}{2}, \frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{0}+r_{\infty}+2}{4},\right. \\
& \left.\frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{\infty}-1}{2}\right)
\end{aligned}
$$

$$
\underline{\operatorname{dim}}^{A} \hat{\tau} X=\left(\frac{r_{0}+1}{2}, \frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{0}+r_{\infty}-2}{4}\right.
$$

$$
\left.\frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{\infty}+1}{2}\right)
$$

$$
\begin{align*}
\underline{\mathrm{dm}}^{A} X= & \left(\frac{r_{\mathrm{g}}-1}{2}, \frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{0}+r_{\infty}-2}{4},\right. \tag{iii}\\
& \left.\frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{\infty}-1}{2}\right) \\
\mathrm{dm}^{A} \hat{\tau} X= & \left(\frac{r_{0}+1}{2}, \frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{0}+r_{\infty}+2}{4},\right. \\
& \left.\frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{\infty}+1}{2}\right)
\end{align*}
$$

(iv)

$$
\begin{aligned}
\mathrm{dm}^{A} X= & \left(\frac{r_{0}-1}{2}, \frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{0}+r_{\infty}-2}{4}\right. \\
& \left.\frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{\infty}-1}{2}\right) \\
\underline{\mathrm{dm}}^{A} \hat{\tau} X= & \left(\frac{r_{0}+1}{2}, \frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{0}+r_{\infty}+2}{4}\right. \\
& \left.\frac{r_{0}+r_{\infty}+2}{4}, \frac{r_{0}+r_{\infty}-2}{4}, \frac{r_{\infty}+1}{2}\right)
\end{aligned}
$$

case 3. When $r_{o}+r_{1} \equiv 0(\bmod 4)$, we have four different tubes of rank 2.
(i)

$$
\begin{aligned}
& \underline{\mathrm{dm}^{A}} X \dot{\ddagger}\left(\frac{r_{0}+1}{2}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}}{4},\right. \\
&\left.\frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}+4}{4}, \frac{r_{\infty}+1}{2}\right) \\
& \frac{\mathrm{dm}^{A}}{} \hat{\tau} X \mathrm{i}=\left(\frac{r_{0}-1}{2}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}}{4},\right. \\
&\left.\frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}-4}{4}, \frac{r_{\infty}-1}{2}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \mathrm{dm}^{A} X \dot{\mp}\left(\frac{r_{0}+1}{2}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}}{4},\right. \\
&\left.\frac{r_{0}+r_{\infty}+4}{4}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{\infty}+1}{2}\right) \\
& \frac{\mathrm{dm}^{A}}{} \hat{\tau} X \mathrm{i}=\left(\frac{r_{0}-1}{2}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}}{4},\right. \\
&\left.\frac{r_{0}+r_{\infty}-4}{4}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{\infty}-1}{2}\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\underline{\operatorname{dim}}^{A} X= & \left(\frac{r_{0}+1}{2}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}+4}{4},\right. \\
& \left.\frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{\infty}+1}{2}\right) \\
\underline{\operatorname{dim}}^{A} \hat{\tau} X= & \left(\frac{r_{0}-1}{2}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}-4}{4},\right. \\
& \left.\frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{\infty}-1}{2}\right)
\end{aligned}
$$

(iv)
$\underline{\operatorname{dim}}^{A} X=\left(\frac{r_{0}+1}{2}, \frac{r_{0}+r_{\infty}+4}{4}, \frac{r_{0}+r_{\infty}}{4}\right.$,

$$
\left.\frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{\infty}+1}{2}\right)
$$

$$
\begin{aligned}
\underline{\operatorname{dim}}^{A} \hat{\tau} X= & \left(\frac{r_{0}-1}{2}, \frac{r_{0}+r_{\infty}-4}{4}, \frac{r_{0}+r_{\infty}}{4}\right. \\
& \left.\frac{r_{0}+r_{\infty}}{4}, \frac{r_{0}+r_{\infty}}{4}, \frac{r_{\infty}-1}{2}\right)
\end{aligned}
$$

3. Acknowledgment

The authors would like to thank the referee for his or her valuable suggestions and comments. The first-named author thanks NSF of China (Grant No. 11126300) and of Shandong Province (Grant No. ZR2011AL015) for support.

REFERENCES

[1] C.M.Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099. Springer Verlag, 1984.
[2] D.Happel, Triangulated categories in the representation theory of finite dimensional algebras, Lecture Notes series 119. Cambridge Univ. Press, 1988.
[3] D.Happel, On the derived category of a finitedimensional algebra. Comment. Math. Helv. 62(1987), 339_389.
[4] D.Happel, C.M.Ringel, The derived category of a tubular
algebra. LNM1273, Berlin-Heidelbelrg-NewYork: Springer-Verlag, 1986:156_180.
[5] W.Crawley-Boevey, Lectures on Representations of Quivers. Preprint.

