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Abstract—In this paper, a hybrid method (hybrid PMM-MoM method) is presented for the effective and accurate 
analysis of finite periodic structures. This method divides a finite periodic structure into two parts. The inner part of an 
approximate infinite periodic structure is analyzed by periodic method of moment (PMM); the outer part is then analyzed 
by method of moments (MoM). For the finite periodic structures, the accuracy of the new method is much better than that 
of the pure PMM, and is almost the same as that of pure MoM. Because pure PMM uses the periodic boundary conditions, 
it takes much less memory resources and computation time. For hybrid PMM-MoM method, because the inner part is 
calculated by PMM, the calculation work concentrates on the outer part. Consequently, compared with the exact MoM, the 
new method saves much more memory resources and computation time, which provides a drastic reduction of unknowns. 
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1. Introduction 
A hybrid PMM-MoM (periodic MoM and exact MoM) 

method is proposed for the analysis of arbitrary finite 
periodic structures. Surface waves are unique for finite 
periodic structures, which will not appear in the infinite 
one, and the surface waves and Floquet currents in this 
case will interfere with each other, resulting in strong 
variations of the current amplitudes [1]. Therefore, if 
modeling finite periodic structures by PMM [2], it will 
cause significant errors or even lead to wrong results 
sometimes. The exact full-wave model is employed in the 
analysis of finite periodic structures, including both planar 
and curved structures. However, the strict model takes up a 
great deal of memory, and computing time is also 
unacceptable, especially for large finite periodic structures. 
Therefore, a new method to save memory and to obtain 
sufficient accuracy is presented for the analysis of finite 
periodic structures. The new method divides the finite 
periodic structures into two parts. The inner part of an 
approximate infinite periodic structure is analyzed by pure 
PMM, and the outer part polluted by edge effect is 
analyzed by the exact full-wave model, i.e, MoM. The new 
method can obtain sufficient accuracy and save significant 
memory and computation time.  

2. Formulation
A. Structural Analysis

Consider a finite periodic structure under the 
illumination of the plane wave with polarization direction 
along the x-axis showed in Fig. 1. The structure can be 
divided into two parts, the inner part and the outer part. 
Suppose that the inner array elements are unaffected by the 
edge effects, then the periodic boundary conditions hold 

true for the inner part so that PMM can be used. When the 
division is made properly, this will introduces relatively 
very small errors. On the other hand, for the outer part, the 
edge effects can not be ignored, and it must be analyzed by 
the exact full-wave methods such as MoM, etc. Due to the 
high efficiency of PMM, the hybrid PMM-MoM method 
can save much more memory and computation time 
compared with exact MoM. 

 

Figure 1. A finite periodic structure divided into two parts 

B. Solution Scheme
Analysis steps of hybrid PMM-MoM method for the 

finite periodic structure shown in Fig.1 can be described as 
follows.  

1) Solution of Infinite-periodic Integral Equation for 
Inner Part

Since the inner part is little influenced by the edge 
effects, it can be treated as an infinite periodic structure. 
Periodic boundary conditions allow the reduction of 
computational complexity of the inner part almost to a 
single elementary cell. Regardless of the element shape, 
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vector spectral-domain method [3] is used to solve the 
infinite periodic integral equation. For a free-standing 2-D 
planar infinite periodic structure illuminated by a plane 
wave, the incident filed and the induced currents on the 
conducting surfaces are related by the equation [3,4]: 
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where incE


 represents the incident filed, 

( , )mn mnJ � �

 and ( , )mn mnG � �



 represent the induced 

current and the green’s function in the spectral domain 
with (m, n) Floquet harmonic, respectively. In addition, 

2 inc
mn x

x

m k
T
-� 	 � , 2 inc

mn y
y

n k
T
-� 	 � , where xT  and yT  are 

the periods in the x , y directions, respectively, inc
xk and 

inc
yk  are given by 0 sin cosinc

x i ik k � C	  

and 0 sin sininc
y i ik k � C	 , ( , )i i� C  are the incident angles 

of the plane wave, 0k  is the free-space wavenumber, and  
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where I


 is identity tensor. 
Compute the induced current of inner part by PMM, 

under the illumination of the plane wave.In PMM, proper 
choice of basis functions is very important [5,6], in the 
following analysis, the induced surface currents are 
expressed in terms of RWG basis functions. 

2) Solution of (Electric) Field Integral Equation for 
Outer Part

Compute the induced current ( 1JCurrent  ) of outer 
part by traditional MoM. In this case, there are two 
excitation sources show in Fig. 2, i.e., the plane wave and 

2JCurrent . 

 
Figure 2.  Outer part is excited by plane wave and JCurrent2 at the same 

time 

For the outer part, the perfectly conducting boundary 
condition can be used to derive the following electric field 
integral equation (EFIE) [7]: 
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3) 
where, the time factor j te ��  is employed. In (3), the 
scattered filed is expressed in terms of the induced 
(unknown) surface current J


, r  and 'r  represent the 

observation point and the source point on the surface, 
respectively, t̂  is the unit tangential vector of the surface 
at the observation point, incE


 is the incident electric field, 

K  is the wave impedance of the medium space, 

2 /k �  � - �	 	  is the wavenumber, and 
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�

H H	    denotes the homogeneous-

space Green’s function. 

3) Solution of Truncate Edge Effects
By the physical optics approximation, the current density 

on the illuminated side of the scatter has the value 
2( )inc

SJ n H	 �
  . For the above-mentioned scattering array 

shown in Fig.1, the induced current flows mainly along x-
axis. As is well known, the wire current has much stronger 
radiation in the plane perpendicular to its flowing direction 
than that along the flowing direction, so that the coupling 
effects among the array elements in y-direction (vertical 
direction) are stronger than those in x-direction (horizontal 
direction). Therefore, the number of columns polluted by 
the edge effects on the left and right edges of the array is 
less than the number of rows polluted by the edge effects 
on the upper and lower edges of the array. Fig.3 shows 
current density distribution of 21x21 patch array. The area 
surrounded by red line is almost not affected by the edge 
effects. Thus, the inner part with the characteristics of 
infinite periodic structure can be analyzed by PMM. 
However, the area outside the red line is polluted seriously 
by edge effect. Outer part must be analyzed by exact full-
wave model. 
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Figure 3. Current density distribution of 21x21 patch array 

Through numerical tests, it is found that the size of the 
area affected by edge effects is mainly determined by the 
inter-element spacing, size and shape of the element, and is 
almost not related to the size of the array. The truncated 
row number can be fixed approximately as twice as the 
truncated column number. 

The size of truncated area can be evaluated roughly in 
advance. Generally, the truncated column and row numbers 
can be set to 2 and 4. If the scale of the scattering array is 
more than 31x31, the truncated column and row numbers 
can also be set to 3 and 5. The back-scattered RCS is 
calculated by the hybrid PMM-MoM method and noted as 

beforeRCS . Then, the truncated column and row numbers are 
increased by 1 and 2, respectively. The back-scattered RCS 
is calculated again by the hybrid PMM-MoM method and 
noted as 

afterRCS . If 
before afterRCS RCS� � & , the results can 

be considered as convergent. A small enough &  value 
should be chosen according to the accuracy requirement. If 

before afterRCS RCS� � & , the truncated column and row 
number should be increased in the further computation 
until the satisfactory results are obtained. 

3. Numerical Results
In this section, the scattering of finite periodic array is 

analyzed by the hybrid PMM-MoM method. To evaluate 
this new method, consider two arrays: a small planar array 
of dipoles and a large planar array of patches. 

A. 21 21� dipole array
The planar dipoles are used as the array elements. First, 

use ANSYS to mesh the array element at the lower left 
corner into Delaunay triangles shown in Fig.4. Then, the 
triangle mesh info of this array element is cloned by a short 
program to obtain the triangle mesh info of the whole 
periodic structure. In this way, all the array elements have 
the same triangle mesh. 

 
Figure 4. Discretized unite cell with period 01x yp p �	 	  

In the first calculation, the truncated column and row 
number are set to 2 and 4. The back-scattered RCS 
calculated by the hybrid PMM-MoM method is 40.0138dB. 
In the next calculation, the truncated column and row 
number are increased by 1 and 2 to 3 and 6, respectively. 
The calculation result of the hybrid PMM-MoM method is 
40.9721dB. Since RCS RCS 0.9583 1dB� 	 � , the 
numerical results are considered as convergent. The 
numerical results are shown in Fig.5. 

 

Figure 5. RCS of a 21x21 dipole array under the illumination of a plane 
wave(Two columns and four rows are truncated on the array 

boundary) 

From Fig.5, where two columns and four rows are 
truncated for the outer part, it can be seen that, PMM 
results have 20~60 dB difference from those of the exact 
MoM while the results obtained by the hybrid PMM-MoM 
method show very good agreement. Comparison of the 
memory and computing time for MoM and hybrid PMM-
MoM method is shown in Table ». 

TABLE I. COMPARISON OF MEMORY AND COMPUTING TIME FOR MOM 
AND HYBRID PMM-MOM METHOD 

 MOM Hybrid PMM-MOM Method
Memory/Mb 935 234 
CPU/Second 375 143 

 

In Table », the whole dipole array has 441 dipole 
elements and is discretized into 10584 Delaunay triangles. 
The RWG basis function number is 11025. Two columns 
and four rows are truncated for the outer part. The outer 
part and inner part have 220 and 221 dipole elements, 
respectively. It should be noticed that the hybrid PMM-
MoM method implies the solution of a 220 220�  linear 
system, while the exact MoM approach solves a 441 441�  
linear system. 

B. 51 51�  patch array
Unite cell is discretized into Delaunay triangles show in 

Fig.6, consider the planar array composed of the square 
patches with side length 00.5� . The period is 

01x yp p �	 	 . Because the electric size of the array is 
quite large, the hybrid PMM-MoM method and the exact 
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MoM approach are both accelerated by MLFMA 
(Multilevel Fast Multipole Algorithm) [8]. 

 

Figure 6. unite cell is discretized into Delaunay triangles 

Similarly, in the first calculation, the truncated column 
and row number are set to 2 and 4. The back-scattered RCS 
calculated by the hybrid PMM-MoM method is 
64.01141dB. In the next calculation, then, the truncated 
column and row number are increased by 1 and 2 to 3 and 
6, respectively. The result of the hybrid PMM-MoM 
method is now 64.8018dB. Since 
RCS RCS 0.79039 1dB� 	 � , the results can be 

considered as convergent. The numerical results are shown 
in Fig.7. 

 
Figure 7. RCS of a 51x51 patch array under the illumination of a plane 

wave(Two columns and four rows are truncated on the array 
boundary) 

In Fig.7, two columns and four rows are truncated for 
the outer part, in which 580 elements are included. 
Excellent agreement between the results of the hybrid 
PMM-MoM method and the exact MoM is observed. On 
the other hand, PMM results have 10~60 dB difference 

from those of the exact MoM. We emphasize again that the 
hybrid PMM-MoM method implies the solution of a 
580 580�  linear system, while the exact MoM approach 
solves a 2601 2601�  linear system. 

4. Conclusion
Conventionally, a finite periodic structure such as an 

FSS or antenna array [9] is considered as an infinite one 
and analyzed by PMM. In this paper, a hybrid PMM-MoM 
method is proposed to calculate the RCS of two finite 
planar arrays under the illumination of a plane wave. 
Significant errors are shown in this case when using the 
pure PMM. The results obtained by the hybrid PMM-MoM 
method agree very well with those of the exact MoM. 
Meanwhile, compared with the exact MoM, the new hybrid 
method drastically reduces the scale of solving linear 
system. So, hybrid method shows much higher efficiency 
and saves much more memory resources and calculation 
time. 
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Abstract In this paper, we give a description of the derived category of a tubular algebra by calculating the dimension 
vectors of the objects in it. 
Keywords:derived categories; tubular algebra; dimension vectors 
 

1. Introduction
Let 

  be a basic connected algebra over an algebraically 
closed field k. We denote by mod 

  the category of all 
finitely generated right 

 -modules and by ind 

  a full 
subcategory of mod 

 containing exactly one 
representative of each isomorphism class of 
indecomposable 

 -modules. For a 

 -module M,  we 
denote the dimension vector by dim M. The bounded 
derived category of mod 

  is denoted by Db( 

 ). We 
denote the Grothendieck group of 

 by  K0( 

 ), Auslander-
Reiten translation by �� , the Cartan matrix by C



. Let �

  

be the repetitive algebra of 

 , mod �

  the stable module 
category. When the global dimension of  

  is finite, C



 is 

invertible by [1], and Db( 

 ) is equivalent to mod �

  as 
triangulated categories  by [2]. 
     By [1], a tubular extension A of a tame-concealed 
algebra 
of extension type T = (2, 2, 2, 2), (3, 3, 3), (4, 4, 2) or (6, 3, 
2) 
is called a tubular algebra. For example, the canonical 
tubular algebras of T  (2, 2, 2, 2) is  determined by the 
following quiver with relations. 
   
 
 
 
 
 
 
 
 

 
By [1], global dimension of a tubular algebra A is 2, then 

Db(A) is equivalent to mod �A . And tubular algebras of the 
same extension type are tilt-cotilt equivalent, see [3]. Then 
we only consider the derived categories of canonical tubular 
algebras, whose structures are given in [4]. 

( )  b
rr Q

D A T
�

	 m  

where (1) for any r Q, r is the standard stable P1(k)- 
tubular family of type T; 
(2) for any r Q, r is separating  ss r

T
�
m  from  ur u

T
�
m . 

Based on the results above, we give a description of the 
derived category of a canonical tubular algebra by 
calculating the dimension vectors of the objects in it. 
 

2. Description of The Derived 
Categories of Tubular Algebras In 
Terms Of Dimension Vectors

 
In this section, let A be a canonical tubular algebra of 

type T. 
Definition 1.1. ([1]) Let n be the rank of Grothendieck 

group K0(A), 
AC  the Cartan matrix of A. Then 

(1) The Coxeter matrix 
AY  is defined by T

A AC C��  

(2) The quadratic form AU  in n�  is defined by 

11( ) ( )
2

T T
A A AC CU � � �� �	 �   

for any �  in n� . 

(3) Let 0 ,h h� be the positive generators of rad AU . For an 

A module M, define 

0 (dim )( )
(dim )

l Mindex M
l M�

	 �  

where  

0 0(dim ) (dim ) ,

(dim ) (dim ) .

T T
A

T T
A

l M h C M
l M h C M

�

�
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In particular, for any 

0 0rad ,  ,A r h r h� U � � �� 	  where 

0
0

, .  Then, index( ) .rr r
r

� �
� � 	�  
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(4) rad A� U�  is called a real (respectively, imaginary) 
root, 

if 11( ) ( ) 1
2

T T
A A AC CU � � �� �	 �  	  (respectively, = 0). 

It is well known that there exists a ”minimal ” imaginary 
root �  such that rad .AU �	 �   

Now we recall some results in [4]. Let 
  be a finite 

dimensional k algebra and �
  the repetitive algebra. 
Denote 
by �( )P 
  the subgroup of  �

0 ( )K 
  generated by the 

dimension vectors of indecomposable projective �

modules. 

Lemma 1.2. � �
0 0( ) ( ) ( ).K K P
 	 
  


Definition 1.3. Let �
0 0: ( ) ( )K K-
 
 � 
 be the 

projective morphism. Define �
0dim : mod ( )K
 
 � 
  

where for any �
 -module X, dim (dim ).X X-


	

Lemma 1.4. Let 
Y be the Coxeter matrix of 
 ,  �� the 

Auslander-Reiten translation of �
 . Then  

                     dim (dim ) .X X�


	 Y�  

Note that if 
  has finite global dimension, we have a 

triangulated equivalence: �: ( ) modbDK 
 � 
 . For an 

object ( ),  define dim ( 1) dim .b i i

i
X D X X� 
 	 �!� �  

Then we have 

Lemma 1.5. dim dim ( ).X XK
	� �   
By representation theory of Auslander-Reiten quivers in 

[5] 
and the results above, we have a method to describing the 
derived category of a canonical tubular algebra in terms of 
dimension vectors. 

Theorem 1.6. Let A be a canonical tubular algebra of 
type 
T, the rank of 0 ( )K A be n. Then  

(1) Let ��  be the minimal imaginary root in �
0 ( )K A  

corresponding  the P1(k)- tubular family rT , and let 

�dim ( ).A� �	  Then  � is determined by ( ) 0.AU � 	  
(2) Let X be an object in the bottom of a tube of rank r in 

rT . Then dimA X is determined by the following: 

1

1

1(dim ) dim ( )(dim ) 1
2( )

dim (dim ) (dim ) .

A A AT T
A A A

A A A r
A A

X X C C X

X X X

U
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Proof. (1) By [4], 0 0 rad ,Ar h r h� U� �	  � and thus 

( ) 0.AU � 	  Since 
0

index( ) ,r
r

� �	 ��  where 

0 , ,r r� ��  and  0( , ) 1,r r� 	 it suffices to calculating 

0  and .r r�  
(2) Directly from Lemma 1.4 and 1.5.  
 

Example 1.7. Now let A be a canonical tubular algebra of 
type T(2, 2, 2, 2). The Cartan matrix and Coxeter matrix are 
as following:  

1 1 1 1 1 2 1 1 1 1 1 2
0 1 0 0 0 1 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1

, .
0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1

A AC

� � � � � �5 2 5 2
3 0 3 0�3 0 3 0
3 0 3 0�

	 Y 	3 0 3 0
�3 0 3 0

3 0 3 0�
3 0 3 03 0 3 0
4 1 4 1

 

For each object �mod ,X A�  denote 
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(2) Description of dimA X where X is an object in the 
bottom of a tube of rank 2.  

  If 1 0, that is 1(mod 2),r r� � �	  I  ( ) in Theorem 
1.6 should be as follows: 
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case 1. We have four different tubes of rank 2. 
(i)
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case 2. When r0+r1 2 (mod 4), we have four different 
tubes of rank 2. 
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