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Abstract  
The noise source identification is an important issue in noise reduction and condition monitoring(CM) for machines in- 
site using microphone arrays. In this paper, we propose a new approach to optimize array configuration based on par-
ticles swarm optimization algorithm in order to improve noise source identification and condition monitoring perfor-
mance. Two distinct optimized array configurations are designed under the certain conditions. Furthermore, an acoustic 
imaging equipment is developed to carry out experiments on transformer substation equipment and wind turbine gene-
rator, which demonstrate that the acoustic imaging system allows a high resolution in identifying main noise sources for 
noise reduction and abnormal noise sources for condition monitoring. 
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1. Introduction 
As noise reduction and condition monitoring has gained 
in importance to modern industries, noise source identi-
fication has become the focus of a wide variety of re-
search approaches in recent years. In the application of 
noise reduction on transformer substation or electric 
equipments, noise source identification is a prerequisite, 
which facilitates to find out main noise sources from 
mixed noise field. In addition, the desired noise source 
can be extracted among mixed sources and acoustic cha-
racteristics can be analyzed to find solutions to noise 
control. In comparison with the mainstream technique of 
vibration based monitoring, acoustic CMhas the potential 
to become a generic approach because it has a number of 
unique features such as generality of acoustic signals in 
the majority of machines, the richness of information 
included in acoustic signals and simplicity in sensor 
placement and hence in CM practice.  
  Although there has been considerable progress in sin-
gle-channel acoustic CM in recent years[1,2], acoustic 
signals are, however, often adversely influenced by their 
measurement environment and by the range of different 
acoustic sources within a typical monitoring location. 
This can make it very difficult to extract useful informa-
tion for condition monitoring purposes. Recent advances 
in microphone array technology offer great potential to 
overcome this problem. Utilizing microphone array 
technology, an acoustic camera has been invented to vi-

sualize sound field which allows to identify main emit-
ting sources. The performance of visualization or locali-
zation is significantly affected by the microphone array 
configuration[3]. The microphone array configuration 
design is the most crucial parameter to affect localization 
performance characterized by the array beampattern. It is 
reasonable to optimize array configuration to form the 
desirable beampattern with narrow mainlobe width 
(MLW) and low sidelobe level (SLL) [4] which is in 
agreement with high spatial resolution and strong capa-
bility of interference rejection, respectively.  
  In array configuration optimization, heuristic methods 
like genetic algorithm (GA) and particle swarm optimi-
zation (PSO)[5,6] are employed due to nonlinear objec-
tive functions and constraint conditions. Although GA 
method performs well in search of solutions in the global 
space, it is inferior to PSO in finding precise optimal 
solutions. Particle swarm optimization was initially pro-
posed by Kenney and Eberhart in studying social beha-
vior of bird flocking and fish schooling in their search of 
food. Particle swarm optimization iteratively updates 
parameters to converge according to the best individual 
solution and the best swarm solution. Therefore, it is 
intuitive for array configuration optimization, and fur-
thermore PSO method is much easier to implement. In 
this paper, we propose a modified PSO method to op-
timize an array configuration, which alternatively inves-
tigates MLW and SLL.  
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  This paper is organize as follows. In Sect.2, we give 
the array configuration model. A modified PSO method 
is proposed to optimize two distinct array configuration 
in Sect.3. We develop an acoustic imaging system and 
carry out experiments in Sect.4 and the conclusion are 
drawn in Sect.5. 

2. Array Model 
As is known that the noise source identification is highly 
related to the array beampattern, the beampattern formu-
la is given for the designed array, and then an modified 
PSO method is proposed to optimize array configuration 
both according to MLW and SLL in this section. 

2.1. Planar Array Model 

 
Figure 1. Planar array model 

  Spiral arrays are widely used due to the merit of low 
sidelobe. We optimize an array configuration based on 
spiral structure. Assume that a source signal propagates 
from the direction ( , )θ ϕ and the coordinate of micro-
phone mp is [ cos , sin ]m m m mr rφ φ . The time delay of 
m th microphone is represented as: 
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2.2. 3D Array Model 
  Considering practical applications in imaging large  

machine acoustically in a reverberant industrial plant, we 
design a 3D microphone array with 8 arms at which 8 
microphones are installed. An eight-arm 3D microphone 
array is illustrated in Figure 2. The angle between the lth 
arm and z axis is denoted as ( ), 1,2, ,l l Lϑ =  and the 
angle between the projection of the lth arm on the xoy 
plane and x axis is ( ), 1,2, ,l l Lφ =  . The time delay of 

lm th microphone at lth arm is represented by Eqation 

(3), where ( ), 1,2, , ; 1,2, ,
ll m l lr l L m M= =  is de-

fined as the distance from the ml th microphone to the 
coordinate origin. Ml is the number of microphone at lth 
arm and c is sound velocity. Using Eqation (3) , one 
may obtain the beampattern by Euqation (4), where ω  
is the signal frequency and 

ll mw is the weight. Without 
loss of generality, all weights are set to one.  
  The MLW is defined as Θ which is the angular inter-
val of the first pair nulls of ( )| , |B θ ϕ for a given ϕ  
and the sidelobe level is represented as: 
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where ∉Θ means sidelobe which is the angular interval 
outside the mainlobe. Based on the narrow MLW and 
low SLL criterion, an array configuration can be opti-
mized by 
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where 1 minllr r= and maxll Mr r= , with [ minr , maxr ] 
being the distance interval within which microphones are 
deployed. We also constrain the distance between two 
adjacent microphones is larger than 0r . In this paper, we 
employ PSO method to implement the optimization. 
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Figure 2. 3D array model 

3. Modified Particle Swarm Optimization 
The aim of employing PSO method to implement equa-
tion (6) is to exploit possible microphone positions in 
order to find a set of optimal position which obtains both 
narrow MLW and low SLL. Consider a swarm  with 
N particles, each of which represents an array configu-
ration. 
 

[ ]T1 2, , n N=X  x x x x         (7)                                              
 

where each particle can be denoted as  
 

1 2[ , , , ]n n n nd nDx x x x=  x       (8)                                                  
 

where D is the dimension of optimization. We represent 
the best individual solution for each particle in the itera-
tion process as: 

[ ]T1 2, , n N=P  p p p p       (9)                                                  

where 1 2[ , , , ]n n n nd nDp p p p=p    is the best indi-
vidual solution for the nth particle, and the best swarm 
solution is represented as: 
 

1 2[ , , , ]d Dg g g g=  g        (10)                                                    
 

   With Equation(7)through (10), the particles are up-
dated according to the following equations: 
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where 1c and 2c  are two positive constants (typically 

1 2 2c c= = ), 1r and 2r are two random variables, and 
w is inertia weight. The t  and 1t − represent newly 

updated variable and previous one, respectively. From 
Equation(11), we can see that the new velocity is deter-
mined by three terms. The first term represents how 
much the previous velocity is kept. The second term re-
lated to the distance between the best individual solution 
and its current one allows each particle to approach 
closely to best individual solution. Last term related to 
the distance between the best global swarm solution and 
its current one allows each particle to approach closely to 
best swarm solution. A large inertia weight w tends to 
explore global area while a small one tends to search 
local area. Shi[7]suggested a way to determine the inertia 
weight written in Equation(12) to make a balance in ex-
ploring global and local area .  
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w w
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where maxw and minw are maximum and minimum 
weight respectively, and T is the total iteration number, 
t is current iteration index. 
  We propose a modified PSO method to optimize array 
configuration based on MLW and SLL in an alternate 
way. By establishing a upper limit ( , )ζ θ ϕ for SLL and 
minimizing mainlobe width, Equation(4) can be rewrit-
ten as 
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In order to implement optimization, a fitness value is 
designed to evaluate the updated particles. 

( ) ( )( ) ( )
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(14) 
where the integral lower limit 0θ is the first null of 

( ),B θ ϕ  outside the mainlobe and the integral upper 

limit 
lim

θ is the angle boundary limit. [ ]0 , limθ θ is angle 
volume where we pay more attention to sidelobe. In Eq-
uation(14), ( ),δ θ ϕ is defined as: 
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As a result, the modified PSO procedure can be summa-
rized as follows: 
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STEP1. Initialize PSO parameters including the number 
of particle N , the optimization dimension D , particles 
X , best individual solution P , and best global solution 
g , inertia weight minw , maxw . Set a preliminary SLL 

and MLW 0θ . 
STEP2. All particles are updated using Equation(9) 
through (10). 
STEP3. Calculate the fitness value using Equation (12) 
to evaluate new particles, and judge if P  and g are 
replaced by newly updated particles.  
STEP4. Judge if the fitness value is zero. If so, decrease 
the 0θ in a small amount and go to step2, and then re-
peat step2 through step 4. Otherwise, go to step5. 
STEP5. Judge if the iteration number reaches the maxi-
mum T . If not, repeat step2 through step4. Otherwise, 
go to step6. 
STEP6. Terminate and obtain the final result g . 
   
  In order to demonstrate the performance of optimized 
array, we calculate the beampattern of the optimized ar-
ray configuration. Figure 3 shows the beampattern of the 
optimized planar array configuration. It can be seen that 
the optimized array configuration has low sidelobe which 
means better performance of noise source identification.  
In Figure 4, we compare the beampattern of optimized 
eight-arm 3D array and uniform array which means that 
the microphones are distributed evenly at each arm.  
 

 
Figure 3. Beampattern comparison of optimized planar 

spiral array configuration 
Figure 3. Beampattern of optimized planar spiral  

array configuration 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Beampattern comparison of optimized 3D 
eight-arm array configuration 

 
As shown in Figure 4 inset, the beampattern of optimized 
array possesses narrower mainlobe and lower sidelobe, 
which means higher spatial resolution and better noise 
source identification within focused area.  

4. Experimental results 
  An acoustic imaging system is developed based on the 
two optimized array configuration illustrated in Figure 5. 
In this section, we employ the acoustic imaging system 
to identify noise sources and monitor electric power 
equipments.  
 

 
Figure 5. Acoustic imaging system 

   
  Figure 6 shows the experiment setup for wind turbine 
generator and the spectrum of noise sources is displayed 
in Figure 7. 
 

 
 

Figure 6. Experiment Setup for wind turbine generator 
 
  From Figure 7, it can be observed that there are distinct 
peaks within the frequency range from 87Hz to 119Hz 
and within the frequency range from 180Hz to 210Hz, 
respectively. The experimental results are illustrated in 
Figure 8 using the acoustic imaging system. Figure 8(a) 
shows the noise source emitted from the generator rotor 
which is known. However, an unexpected noise is finally 
identified in Figure 8(b), which pinpoint the location 
where noise comes.  
  Another example is shown for electric transformer 
substation equipments from Figure 9 to Figure10. In Fig-
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ure 9, the noise field of substation is visualized to find  
several main noise sources, which contributes to noise 
reduction. Figure 10 demonstrates the experimental re-
sults of monitoring the operation of a group of fans. Two 
of them make exceptional strong noise, which means un-
steady working state. It is verified by overhaul that the 
two fans are damaged to some extent. 
 

 
 

Figure 7. Experiment Setup for wind turbine generator 
 

  
(a)                      (b)             

Figure 8. Noise source identification for wind turbine gene-
rator, (a)noise source with frequency range  from 87Hz to 
119Hz, (b) noise source with frequency range from 180Hz 
to 210Hz 
 

 
 

Figure 9. Noise source identification of transformer  
substation for noise reduction 

 
Figure 10. Noise source identification of transformer  

substation equipment for condition monitoring 

5. Conclusions 
  The noise source identification is very important in 
noise reduction and gaining safe operation of machines. 
In this paper, array configuration design are discussed in 
order to improve noise source identification based on 
particle swarm optimization. Experimental results of 
wind turbine generator and transformer substation 
equipment demonstrate the acoustic imaging system can 
effectively identify main noise sources for noise control 
and find abnormal noise sources which signify the un-
steady state of running machines. 
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