

Fuzzy Time Series Forecasting Based On K-Means Clustering

Zhiqiang Zhang
Department of Statistics
School of Economics
Xiamen University,
Xiamen, PR. China
e-mail: jsxzx06@xmu.edu.cn

Qiong Zhu
School of Mathematical Science
Xiamen University,
Xiamen, PR. China
e-mail: 516191479@qq.com

Abstract—Many forecasting models based on the concepts of Fuzzy time series have been proposed in the past decades. These models have been widely applied to various problem domains, especially in dealing with forecasting problems in which historical data are linguistic values. In this paper, we present a new fuzzy time series forecasting model, which uses the historical data as the universe of discourse and uses the K-means clustering algorithm to cluster the universe of discourse, then adjust the clusters into intervals. The proposed method is applied for forecasting University enrollment of Alabama. It is shown that the proposed model achieves a significant improvement in forecasting accuracy as compared to other fuzzy time series forecasting models.

Keywords- fuzzy time series; fuzzy sets; K-means; enrollments

1. Introduction

A drawback of traditional forecasting methods is that they can not deal with forecasting problems in which the historical data are represented by linguistic values. Using fuzzy time series to deal with forecasting problems can overcome this drawback. Song and Chissom were the pioneers of studying fuzzy time series models. The historical enrollment data of the University of Alabama were first adopted by Song and Chissom [1][2]. Because of its better performance in some kinds of forecasting problems, many researchers have proposed different fuzzy time series models in order to improve the forecasting accuracy. Chen [3] presented a simplified method of fuzzy time series forecasting of enrollments using the arithmetic operations rather than complicated max-min composition operations. Wang, Chen, and Lee [4] considered to use high-order time variant fuzzy time series model to deal with enrollment forecasting. Huarng [5] presented a heuristic model for fuzzy time series using heuristic knowledge to improve the forecast of enrollments. Jilani, Burney, Ardil [6] used a triangular function to define the fuzzy sets. In this paper, we present a new method to forecast enrollments based on kmean clustering techniques. First, we select the historical data as the universe of discourse. Then we present the k-mean clustering algorithm for clustering the data into different lengths of intervals. Based on the new obtained intervals, we can propose a new method to forecast the enrollment of the university of Alabama. The proposed model is easy for implementation and the forecasting is more accurate than the other fuzzy time series methods.

The rest of this paper is organized as follows. In Section 2, we briefly review the basic definitions of fuzzy time series models. In Section 3, we present a new method for handing forecasting problems based on k-means clustering techniques through the experiments of forecasting of the university of

Alabama. In Section 4, we make a comparison of the proposed forecasting model with existing methods. Finally, summary and conclusions will be drawn in Section 5.

I. FUZZY TIME SERIES

In this section, we briefly review some basic concepts of fuzzy time series proposed by Song and Chissom [1][2], where the values of fuzzy time series are represented by fuzzy sets. Let U be the universe of discourse, where $U = \{u_1, u_2, \dots, u_n\}$. A fuzzy set A in the universe of discourse U can be represented by

$$A = \frac{f_A(u_1)}{u_1} + \frac{f_A(u_2)}{u_2} + \dots + \frac{f_A(u_n)}{u_n}$$
 (1)

Where f_A is the membership function of the fuzzy set A, $f_A:U\to[0,1]$, $f_A(u_i)$ denotes the grade of the membership of u_i in the fuzzy set A, and $1\le i\le n$. Let Y(t), $t=0,1,2,\cdots$, is a subset of R, be the universe of discourse on which fuzzy sets $f_i(t)$, i=1,2,3,... are defined and F(t) is the collection of $f_i(t)$, then F(t) is called fuzzy time series on Y(t). If there exists a fuzzy logical relationship R(t-1,t) such that $F(t)=F(t-1)\otimes R(t-1,t)$, where both F(t) and F(t-1) are fuzzy sets and the symbol " \otimes " is the max-min composition operator, then F(t) is called derived by F(t-1), denoted by a fuzzy logical relationship shown as follows: $F(t-1)\to F(t)$. If $F(t-1)=A_i$ and $F(t)=A_j$, where A_i and A_j are fuzzy sets, then the fuzzy logical relationship between F(t-1) and F(t) can be represented by

 $A_i \rightarrow A_j$, where A_i and A_j are called current state and the next state of the fuzzy logical relationship, respectively.

2. A New Method For Fuzzy Time Series Forecasting

In this section, we present the stepwise procedure of the proposed method for fuzzy time series forecasting based on historical time series data and apply the proposed method to forecast the enrollments of the University of Alabama. TABLE 1 shows the historical enrollments data of the University of Alabama.

TABLE 1. HISTORICAL ENROLLMENTS OF UNIVERSITY OF ALABAMA

Year	Actual enrollments	Year	Actual enrollments
1971	13055	1982	15433
1972	13563	1983	15497
1973	13867	1984	15145
1974	14696	1985	15163
1975	15460	1986	15984
1976	15311	1987	16859
1977	15603	1988	18150
1978	15861	1989	18970
1979	16807	1990	19328
1980	16919	1991	19337
1981	16388	1992	18876

The proposed method and the experiment results are now presented as follows:

Step 1: Apply the K-means clustering algorithm to partition the historical time series data into 14 clusters and sort the data in clusters in an ascending sequence, the results are as follows:

{13055},{13563},{13867},{14696},{15145,15163},{15311,15433,15460,15497},{15603},{15861},{15984},{16388},{16807,16859,16919},{18150},{18876,18970},{19328,19337}.

Step 2: Calculate the cluster center $cluster_center_m$ shown in TABLE 2 of each cluster $cluster_m$ as follows:

$$cluster_center_m = \frac{\sum_{j=1}^{r} d_j}{r}$$
 (2)

Step 3: Adjust the clusters into intervals according to the follow rules. Assume that $cluster_center_m$ and

 $cluster_center_{m+1}$ are adjacent cluster centers, then the upper bound $cluster_uBound_m$ of $cluster_m$ and the lower bound $cluster_lBound_{m+1}$ of $cluster_{m+1}$ shown in TABLE 2 can be calculated as follows:

$$cluster_uBound_m = \frac{cluster_center_m + cluster_center_{m+1}}{2}$$
 (3)

$$cluster_lBound_{m+1} = cluster_uBound_{m}$$
 (4)

where $m = 1, 2, \dots k - 1$. Because there is no previous cluster before the first cluster and there is no next cluster after the last cluster, the lower bound $cluster_lBound_1$ of the first cluster and the upper bound $cluster_uBound_k$ of the last cluster can be calculated as follows:

$$cluster_lBound_1 = cluster_center_1$$

- $(cluster_uBound_1 - cluster_center_1)$

After applying the procedure, we can get the following intervals and calculate the middle value of the interval in TABLE 2,

$$\begin{array}{lll} u_1 = & [12801,\!13309) & u_2 = & [13309,\!13715) \\ u_3 = & [13715,\!14282) & u_4 = & [14282,\!14925) \\ u_5 = & [14925,\!15290) & u_6 = & [15290,\!15514) \\ u_7 = & [15514,\!15732) & u_8 = & [15732,\!15923) \\ u_9 = & [15923,\!16186) & u_{10} = & [16186,\!16625) \\ u_{11} = & [16625,\!17506) & u_{12} = & [17506,\!18537) \\ u_{13} = & [18537,\!19128) & u_{14} = & [19128,\!19537] \\ \end{array}$$

Step 4: Define each fuzzy set X_i based on the intervals and the historical enrollments shown in TABLE 1, where fuzzy set X_i denotes a linguistic value of the enrollments represented by a fuzzy set. As in [6], we use a triangular function to define the fuzzy sets X_i .

Step 5: Defuzzify the fuzzy data using the forecasting formula

Copyright © 2012 SciRes.

The support of National Social Science Fund Project (11BTJ001), MOE Key Laboratory of Econometrics and Fujian Key Laboratory of Statistical Sciences are gratefully acknowledged.

$$t_{j} = \begin{cases} \frac{1.5}{\frac{1}{a_{1}} + \frac{0.5}{a_{2}}}, & \text{if }, j = 1\\ \frac{2}{\frac{0.5}{a_{j-1}} + \frac{1}{a_{j}} + \frac{0.5}{a_{j+1}}}, & \text{if }, 2 \le j \le n-1\\ \frac{1.5}{\frac{0.5}{a_{n-1}} + \frac{1}{a_{n}}}, & \text{if }, j = n \end{cases}$$

$$(5)$$

TABLE 2. THE INTERVALS GENERATION PROCESS FROM THE CLUSTERS OF THE HISTORICAL ENROLLMENTS OF UNIVERSITY OF ALABAMA

cluster	data	cluster center	lower bound	upper bound	middle value
1	{13055}	13055	12801	13309	13055
2	{13563}	13563	13309	13715	13512
3	{13867}	13867	13715	14281.5	13998
4	{14696}	14696	14281.5	14925	14603.25
5	{15145, 15163}	15154	14925	15289.6	15107.3
6	{15311, 15433, 15460, 15497}	15425.25	15289.6	15514.1	15401.9
7	{15603}	15603	15514.1	15732	15623.1
8	{15861}	15861	15732	15922.5	15827.25
9	{15984}	15984	15922.5	16186	16054.3
10	{16388}	16388	16186	16624.85	16405.4
11	{16807, 16859, 16919}	16861.7	16624.85	17505.85	17065.4
12	{18150}	18150	17505.85	18536.5	18021.2
13	{18876, 18970}	18923	18536.5	19127.8	18832.2
14	{19328, 19337}	19332.5	19127.8	19537.3	19332.6

Where a_{j-1}, a_j, a_{j+1} are the midpoints of the fuzzy intervals X_{j-1}, X_j, X_{j+1} respectively. t_j yields the predicted enrollment.

The forecasted enrollment is provided in TABLE3.

TABLE3. FORECASTING OF THE PROPOSED MODEL

Year	Enroll- ments	Fuzzy set	Fore— cast	Year	Enroll- ments	Fuzzy set	Fore- cast
1971	13055	X_1	13204	1982	15433	X_6	15381
1972	13563	X_2	13511	1983	15497	X_6	15381
1973	13867	X_3	14017	1984	15145	X_5	15049
1974	14696	X_4	14567	1985	15163	X_5	15049
1975	15460	X_6	15381	1986	15984	X_9	16082

1976	15311	X_6	15381	1987	16859	X_{11}	17120
1977	15603	X_7	15617	1988	18150	X_{12}	17963
1978	15861	X_8	15832	1989	18970	X_{13}	18743
1979	16807	X ₁₁	17120	1990	19328	X_{14}	19163
1980	16919	X ₁₁	17120	1991	19337	X ₁₄	19163
1981	16388	X ₁₀	16474	1992	18876	X ₁₃	18743

3. A Comparsion of Different Forecasting Methods

In this section, a comparison of accuracy in forecasted values of our proposed model with other models is made on the basis of mean square error (MSE) of forecasted values which are computed as:

$$MSE = \frac{\sum_{i=1}^{n} (actual _value_i - forecasted _value_i)^2}{n}$$
 (6)

where n is the number of years needed to forecast the enrollments. The comparison of MSE of the proposed method with different methods are shown in TABLE 4 and TABLE 5.

TABLE 4. A COMPARISON OF MES OF THE PROPOSED METHOD WITH THE EXISTING METHODS

	Enroll-	Song	Song	Chen	Wang
Year	ment	[1]	[2]	[3]	[4]
1971	13055	-	-	-	-
1972	13563	14000	-	14000	-
1973	13867	14000	-	14000	-
1974	14696	14000	-	14000	-
1975	15460	15500	14700	15500	-
1976	15311	16000	14800	16000	16260
1977	15603	16000	15400	16000	15511
1978	15861	16000	15500	16000	16003
1979	16807	16000	15500	16000	16261
1980	16919	16813	16800	16833	17407
1981	16388	16813	16200	16833	17119
1982	15433	16789	16400	16833	16188
1983	15497	16000	16800	16000	14833
1984	15145	16000	16400	16000	15497
1985	15163	16000	15500	16000	14745
1986	15984	16000	15500	16000	15163
1987	16859	16000	15500	16000	16384
1988	18150	16813	16800	16833	17659
1989	18970	19000	19300	19000	19150
1990	19328	19000	17800	19000	19770
1991	19337	19000	19300	19000	19928
1992	18876	-	19600	19000	15837

MSE	_	775687	407507	321418	226611

3. Conclution

The study proposed a new method for fuzzy time series forecasting with high accuracy. The K-means algorithm of the proposed method is simple and can be implemented easily by using mathematic software-Matlab. The method has been implemented on the historical time series data of enrollments of University of Alabama to have a comparative study with the existing methods. From Table 4 and Table 5 we can see that the proposed method has a higher forecasting accuracy rate than the methods presented before.

TABLE 5. A COMPARISON OF MES OF THE PROPOSED METHOD WITH THE EXISTING METHODS

Year	Enroll- ment	Huarng [5]	Jilani [6]	Our Method
1 ear	ment	[5]	[0]	Methou
1971	13055	-	13579	13204
1972	13563	14000	13798	13511
1973	13867	14000	13798	14017
1974	14696	14000	14452	14567
1975	15460	15500	15373	15381
1976	15311	15500	15373	15381
1977	15603	16000	15623	15617
1978	15861	16000	15883	15832
1979	16807	16000	17079	17120
1980	16919	17500	17079	17120
1981	16388	16000	16497	16474
1982	15433	16000	15737	15381
1983	15497	16000	15737	15381
1984	15145	15500	15024	15049
1985	15163	16000	15024	15949
1986	15984	16000	15883	16082
1987	16859	16000	17079	17120
1988	18150	17500	17991	17963
1989	18970	19000	18802	18743
1990	19328	19000	18994	19163
1991	19337	19500	18994	19163
1992	18876	19000	18916	18743
MSE	-	86694	41426	22717

REFERENCES

- [1] Q. Song, B.S. Chissom, "Forecasting enrollments with fuzzy time series—Part I", Fuzzy Sets and Systems, 54 (1993b) 1-10.
- [2] Q. Song, B.S. Chissom, "Forecasting enrollments with fuzzy time series—Part II", Fuzzy Sets and Systems, 62 (1994) 1-8.

- [3] S. M. Chen, "Forecasting enrollments based on fuzzy time series", Fuzzy Sets and Systems, 81 (1996) 311-319.
- [4] J. R. H Wang, S. M. Chen, C. H. Lee, ":Handing forecasting problems using fuzzy time series", Fuzzy Sets and Systems, 100 (1998) 217-228.
- [5] K. Huarng, "Heuristic models of fuzzy time series for forecasting", Fuzzy Sets and Systems, 123 (2001) 369-386.
- [6] T. A. Jilani, S. M. A. Burney, C. Ardil, "Fuzzy metric approach for fuzzy time series forecasting based on frequency density based partitioning", In: Proceedings of World Academy of Science, Engineering and Technology 23 (2009) 1307-6884.

Copyright © 2012 SciRes.