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Abstract—This paper is concerned with statistical theory of turbulence by the late lamented Dr. Shunichi Tsugé.  The theory has been 

applied to the primary flow through a grid fixed vertically with respect to the horizontal axis of the wind tunnel.   The first analytical 

solution has been obtained and explained the well-known “the inverse-linear decay law” of the turbulent intensity.  It is believed that 

the present result is the first exact solution in the theory of turbulence.    
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1. Introduction 
Contrary to the firm kinetic theoretical basis of the Navier-

Stokes equation for laminar flows, which verification dates 
back to Chapman[1], Enskog[2] and Grad[3], the history of its 
turbulent counterpart starts in late 1960s: It is known that two 
pioneering workers attempt to two-particle version of the Euler 
equation(Zhigulev[4]) and of the Navier-Stokes 

equation(Tsugé[5]), which are governing turbulent 

correlations for inviscid and viscid gases, respectively.   It is 
notable that these two papers have proposed a rather striking 
thesis, completely contradicting to the conventional belief that 
“the kinetic theory is useless for turbulence, because it is 
merely concerned with molecular fluctuations having order of 
n(the mean number density), and thus are negligibly small 
compared with macroscopic turbulent fluctuations of order of 
n

2
”.   In fact, human sensors are unable to perceive molecular 

fluctuations, consisting of thermal agitation such as molecular 
stress and heat-flux fluctuations, as discussed by Landau & 
Lifshitz[6], together with fluctuations due to real-gas effects.    

An independent innovative hypothesis is proposed by 

Tsugé[7] and Grad[8] has made us possible to incorporate 

macroscopic turbulent fluctuations into the regime of the 
kinetic theory.   That is, the two-particle molecular chaos due 
to Boltzman is replaced with a less stringent tertiary molecular 
chaos.  This milder hypothesis leads us to a new finding that in 
a shear flow, turbulent correlations are survived over thousand 
mean free paths, or a macroscopic fluid-dynamic length, being 
detectable with any flow device used currently. 

    In 1974, it is shown by Tsugé [7]that the equations 

governing two-point correlations in an incompressible shear 
flow are separable into two Orr-Sommerfeld type  equations at 
the respective points.    It is, however, realized that physical 
meaning s of the variables in the equations are much different  
from those in the Orr-Sommerfeld equation.   In the same paper, 

Tsugé[7] has proved  that the fluid moments obtained from the 

one-particle kinetic equation are equivalent with the  Navier-
Stokes equation(Nakagawa [9]), and the two-particle version, 
the equations governing two-point correlations, reduces to the 

Kārman-Howarth equation. 

The main purpose of the present paper is to obtain an exact 
solution for the flow through a grid in the wind tunnel based on 

the statistical theory of turbulence by Tsugé[7]. 

2. Equations Governing Boltzmann 
Function f and Double 
Correlation function g  

In order for Boltzmann function f and double correlation 
function g  to be identified by using variables in the BBGKY-
hierarchy theory, after Bogoliubov, Born, Green, Kirkwood 
and Yvon,  the following condition is required, for the 

averaging time τ  must be longer than the time τ g for 

satisfying the ergodicity; 

τ ≻  τg                                  (1) 
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   With the assumption (1), the dependent variables (f,g) may 
be described by the general framework of  the hierarchy 
equations(Grad [10]): 

(∂/ ∂t+u∙∂/∂y)e=J(a∣ā)[e ē+g(a, ā)],                          (2) 

(∂/∂t +u∙∂/∂y +  ū∙∂/∂ӯ)g(a, ā)= 

J(a∣â)[eg(â,ā)+êg(a, ā)]+J(ā∣â)[ ēg(ê, e)+êg(ē,e)],                                      
(3)    

where tertiary molecular chaos, 

h(e, ē, ê)≡≺▵e▵ē▵ê≻=0,                                                      (4) 

has been adopted to truncate the hierarchy system.    It  may be 

worth noting here that if one put g(a, ā)=≺▵e▵ē≻=0, binary 

molecular chaos, the above hierarchy system reduces to the 
Boltzman equation: 

(∂/ ∂t+u∙∂/∂y)e=J(a∣ā)[e ē].  

 

3. Flow Through a Grid in Wind 
Tunnel   

 It  may be evident that in the flow through a grid fixed 
normal to the main flow direction , turbulence is generated and 
then it decays with increasing the distance from the grid, by 
experiencing the diffusion as well as viscous dissipation mainly.  
This turbulence is the topic to obtain the exact analytical  
solution.  

   The grid-produced turbulence is neither homogeneous nor 
isotropic, but an isotropic, for there exists a specific vector of 
the main flow direction(Fig.1). 

 

Fig.1   Cross section of two-dimensional plane waves in  

(x2,x3)-plane.    x1: primary flow direction. 

 

   Let us assume the two-point correlation is separable in the 
form, 

Rαβ(y,ӯ,t)=Ř[∫o α(y,t:ω)ōŘ(ӯ,t:ω)dω],        (5) 

with  

ō=o*(*;conjugate complex),                     (6) 

where ωis the constant separating the variables, 
Ř[ ]denotes taking real part. 

   Then, equations governing o α reduces to a set 
of integro-differential equations in the separated 
3-dimensional space as 

∂or/∂yr=0,                                   (7) 

(-iω+∂/∂t+ur∙∂/∂yr-ν∙∂ 2/∂yr
2)oj+∂uj/∂yr∙

or+1/ρ∙∂ o4/∂ yj+∂ /∂ yr∫
∞

-∞or(Q)oj(Ω -Q)dQ=0, 
(j,r=1,2,3).                                  (8) 

   These (7) and (8) have been solved for the 
grid-produced turbulence in the wind tunnel flow 
u=(U,0,0) with initial fluctuations given at the 
plane;x1=0. 

   Instead of solving the complete boundary value 
problem, the first analytical solution associated 
with the present theory is sought to explain the 
existing experimental finding, viz., “ the 
inverse-linear decay law ”  of the turbulent 
intensity. 

 

A. Formulation of the Problem 

Let the grid-produced turbulence be composed of a plane  

non-dispersive wave in the form, 

oα=Qα(x1,Ω)exp〔iΩ(β2x2+β3x3)〕,(α=1,2,3,4) 

                                          (9) 
with 

 

β2=k∙cosθ, β3=k∙sinθ, 

 

where  θ is the azimuth angle of the oblique wave 

plane normal to the mean flow direction(Fig.2). 

 
Fig.2 Definition sketch of angles θandφ 



 

 

 

  Let, then, Qαmake a Fourier transform into Fα 

in order to eliminate the nonlinear convolution 

integral of (8),  

 

Qα(x1,Ω)=1/(2π) ∫∞
-∞Fα(x1,s)exp(-iΩs))ds. (10) 

 

Note inverse Fourier transform  Fα(x1,s) is defined as 

 

Fα(x1,s)= ∫
∞
-∞Qα(x1,Ω)exp(isΩ))dΩ, 

 

where Q α (x1,Ω ) is an infinitely differentiable 

function of bounded support. 

   Substituting (9), together with (10) into (7) 

and (8), we have  

 

∂F1/∂x1+ ∙∂F2/∂s+β3∙∂F3/∂s=0,            (11) 

 

L(F1)+1/ρ∙∂F4/∂x1+NL(F1)=0,                 (12) 

 

L(F2)+1/ρ∙β2∂F4/∂s+NL(F2)=0,               (13) 

 

L(F3)+1/ρ∙β3∂F4/∂s+NL(F3)=0,               (14) 

 

with 

 

L=U∂/∂x1 - ν∆,                             (15) 

 

∆=∂2/∂x1
2+(β2

2+β3
2)∙ ∂2/∂s2,               (16) 

 

NL= F1∙∂/∂x1+(β2F2+β3F3)∙ ∂/∂s.           (17) 

 

Then, the following non-dimensional expressions 

are introduced into (11)-14), 

 

ξ= x1/M, η=s/M, f1= F1/U, f2= F2/U, f3= F3/U, f4= 

F4/(ρU2), Re=UM/ν,                          (18) 

 

we obtain 

 

∂f1/∂ξ+∂f/∂η=0,                        (19) 

Ј(f1)+ ∂f4/∂ξ+Н(f1)=0,                    (20) 

 

Ј(f)+ ∂f4/∂η+Н(f)=0,                     (21) 

 

J(g)+H(g)=0,                                 (22) 

 

f=β2f2+β3f3,                                (23) 

 

g=β3f2-β2f3,                                (24) 

 

or, inversely 

 

f2=(f∙cosθ+g∙sinθ)/k,                       (25) 

 

f3=(f∙sinθ-g∙cosθ)/k,                       (26) 

 

J=∂/∂ξ-1/Re∙∆,                             (27) 

 

∆=∂2/∂ξ2+k2∙ ∂2/∂η2,                      (28) 

 

H= f1∙∂/∂ξ+f∙∂/∂η.                      (29) 

 

   The turbulent correlations defined by (5) may 

be also expressed in terms of the Fourier 

transformed dependent variables as follows, 

 

Rαβ(y,ӯ,t)= 

U2/(2π)2∫0
2π〔∫-∞

∞fjfidη〕dθ,(j,I;1,2,3).  (30) 

 

   It may be justified that the grid-produced 

turbulence is axis-symmetric with respect to the 

mean flow direction, namely, homogeneous in any 

plane normal to its direction.   Such a turbulent 

flow is, therefore, described by superimposing the 

plane waves considered here, and by averaging over 

the angle θ within (x2,x3);  

 

Rαβ(y,ӯ,t)=U
2/(2π)2∫0

2π 

〖∫-∞
∞fj(ξ,η)fi〔ξ

^

, η+kr∙cos(θ-φ)〕dη〗dθ, 

 

with 

 

r=〔(x
^

 2-x2)
2+(x

^

 3-x3)
2〕1/2, 

 

where θ and φ are angles defined in Fig.2 

B. The Exact Solution of Grid-produced Turbulence 

It may be straight forward that  (19)-(22) are two-

dimensional, so that it may be possible to introduce a stream 

function Ψ in the form, 

 

f1=∂Ψ/∂η, f=-∂Ψ/∂ξ. 

 

Then, combining (20), and (21) in order to eliminate f4, we 

have  

 

(J+Ψη∙∂/∂ξ-Ψξ∙∂/∂η)∆Ψ=0.             (31) 

 

This suggests that any harmonic function for Ψ, 

namely, solution of the Laplace differential 

equation, ∆Ψ=0, turns out to be an exact solution 



 

 

of the above full-nonlinear equation (31).   A 

particular solution, which is no more than a 

version of the general solutions, the relevant 

integral constants being specified by the boundary 

conditions at η = ∓ ∞ , and ξ = ∞ , and whose 

components(Ψξ, Ψη) exhibiting the decay law, may 

be expressed by 

 

Ψ=Άarctan(η/kξ).                           (32) 

 

   It is easy to verify that by substituting (32) 

into the Laplace differential equation 

 

∆
^

Ψ=(∂2/∂ξ2+k2∙ ∂2/∂η2)Ψ=0,  

 

Ψ  is the solution.   Moreover, substitution of 

(32) into (31) results in the following relations, 

 

f1=Ψη=Ά/( kξ)〔1+(η/ kξ)2〕-1,             (33) 

 

and 

 

f=-Ψξ= Άη/( kξ2)〔1+(η/ kξ)2〕-1.         (34) 

 

   The turbulent intensity in the ξ -direction, 

which is the non-dimensional longitudinal 

coordinate of x1/M, can be calculated by 

substituting f1 in (33) into (30), and integrating 

it with respect to η and θ, and results in  

 

≺(∆u1)
2≻/U2=Ά2/(4kξ),                         (35),  

 

or 

  

U2/≺(∆u1)
2≻=4kξ/Ά2.                           (36) 

 

4. Conculsion  
 

   The present result (36) shows that the inverse 

of the mean squared fluctuation of the turbulent 

velocity component in the x1 mean flow direction 

is proportional to the normalized coordinate of ξ. 

In Fig.3 are compared the predicted inverse decay 

rate of the turbulent velocity in the mean flow 

direction with the classical data taken by 

Batchelor & Townsend[11], who have confirmed 

experimentally the turbulent energy decay 

maintains similarity irrespective of the 

difference in the Reynolds number Re=UM/ν.  

   It is believed that (36) is the first exact 

solution in statistical theory of turbulence, so 

it has a permanent value.  
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Fig.3 Similarity of energy decay at different  

Reynolds numbers  

(after Batchelor & Townsend[11]). 

 



 

 

X:M=0.635, ●:M=1.27cm, +:M=2.54cm, ◯:M=5.08cm 

− : present theory, 

U=longitudinal velocity=1286cm/s,  

u1= longitudinal velocity fluctuation,  

x=longitudinal coordinate, 

M=grid mesh size. 
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