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ABSTRACT 
In this paper the conception of theoretical determine the relations between material experimental characteristics is presented. On the 
base of stress-strain relations for nonlinear elastic anisotropic material and geometrical interpretation of deformation state, the gener-
al form of strain energy density function was introduced. Using this function and variational methods the relations between material 
characteristics were achieved. All considerations are illustrated by a short theoretical example. 
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1. Introduction 
One of the most important nature laws is the minimum energy 
principle. Thought of this principle each physical match tends 
at minimization of its energetic state. So in the case of material 
the configuration of deformation state must satisfy the principle 
of minimum of energy. Because the discussed law introduces 
relations between deformation state components, the material 
characteristics must be mutually coherent. On important rule of 
energy, as a tool to description of material mechanical proper-
ties, call attention Ogden [1], Perzyna [2,3], Petryk [4-6], 
Schroder [7], Wagner [8], Wegner [9] and other. The main aim 
of this paper is construction mathematical relations between 
material mechanical characteristics due to minimum of energy 
principle. For affirmation of generality of considerations the 
nonlinear elastic orthotropic material will be used. 

2. Geometrical Interpretation of Deformation 
State and Strain Energy Density Function 

The deformation of material requires the work of external load. 
Direct answer of material for application of external load pro-
gram is the stress. Its value is dependent on load magnitude, 
deformation state and individual properties of material. So the 
relations between stress and strain (there be measure of defor-
mation) are different for different materials. Connecting factors 
of strain and stress components are material characteristics. 
These relations for nonlinear elastic orthotropic material can be 
written as 
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where 1 2 3, ,σ σ σ  and 1 2 3, ,ε ε ε  are respectively principal 

stress and strain components. 
.
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ij j i jv ε ε ε=  for , 1, 2, 3i j =  and i j≠  are experimental 
material characteristics obtained in uniaxial tension tests. As we 
can see the full description of material requires an experimental 
assignment of nine characteristics. There is oppressive for reali-
zation. Hence it is proper to search for dependences among them. 

2.1. Geometrical Interpretation of Deformation State 

Let’s assume that the external load program is such, that the 
orthotropy directions and principal deformation directions are 
the same. Next separate the material piece in shape a cube, that 
edges are parallel to principal orthotropy directions. The defor-
mation process of this elementary cube was illustrated below. 

Every deformation state response a point on deformation 
path C. On the end of this path we have a desired deformation 
state 1 2 3, ,K K Kε ε ε . The motion along path C is initiated by 
changeable stress components. So every displacement along 
path C needs work. 
 

 
Figure 1. Interpretation of deformation state. 
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2.2. Strain Energy Density Function 

The deformation work L can be expressed by the use of line 
integral in the form 

3
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=

               (2) 

Because the space of deformation components is potential 
the deformation work is independent from the shape of defor-
mation path C. So we can write 
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and hence by the use of (2) 
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where 1 2 3( , , )iσ ε ε ε  is the solution of system of Equations (1). 
The strain energy W is a function of deformation state compo-
nents. 

3. The Principle of Minimum Energy 
Because the solution of system of Equations (1) can be write in 
the form 

12 32( ) ( ,..., )i i i iE F v vσ ε= ⋅                (5) 

for 1, 2, 3,i =  then the equation (4) can be written as 
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The right side of equation (6) is a functional due to functions 
( )i iE ε  and ( )ij jv ε . Hence the detection of minimum of ener-

gy is equivalent the determination of minimum of functional (6). 
Let’s put that 
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If (6) has a minimum, then the following assumptions must 
be satisfied 
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The Equations (8) and (9) introduce (on the base of minimum 
of energy), the relations between material mechanical characte-
ristics. So if single or twice indexed material characteristics are 
known then the determination of the next characteristics is 
possible. 

4. An Example 
Let’s assume, that we have nonlinear elastic isotropic material 
under flat state of stress (in plane 1O2). In such case the ma-

terial physical properties are the same in all directions. It means 
that there are two material characteristics. Because the compo-
nent of stress state in third direction is equal zero ( 3 0σ = ), the 
deformation path C can be given as 
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and the system of Equation (1) reduces to 
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The relation (6) simplifies to 
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Let’s take the function ( )E ε  as known. The perturbation of 
functional (12) is possible due to functions 1( )Kv tε  and 

2( )Kv tε . So on the base of assumptions (8) and (9) we have 
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Because 
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the conditions (13) and (14) can be written as 
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For nonlinear materials the relations (15) are the definition of 
transversal strain coefficient, analogous to classical Poisson 
ratio definition in linear theory. The condition (17) between 
transversal strain and changeable stiffness coefficients is a co-
herence condition for material characteristics of nonlinear iso-
tropic materials, as a consequence of the minimum energy prin-
ciple. 

5. Conclusions 
Relations between material characteristics results from mini-
mum energy principle. The strain energy density function can 
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be treated as functional of materials characteristics. The solu-
tion of system of equations (8), (9) is not trivial in case if we 
know at least one characteristic. 
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