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ABSTRACT 

In this work, optical scattering using Raman spec- 
troscopy has been analyzed for various cancer tissues. 
The Raman shifts obtained at the Indiana University 
Bloomington (IUB) and Indiana University-Purdue 
University Indianapolis (IUPUI) laboratories have 
been processed for diagnosing various types of cancer 
tissues. The objective of this research is to distinguish 
between cancerous and non-cancerous tissues. Small 
size tissue samples have been processed, seeking the 
minimum size tissue that can be diagnosed via Raman 
spectroscopy. The tests have been conducted on nearly 
20 human tissues. A Matlab program has been writ- 
ten following Parzen-Window classifier to recognize 
the Raman shift pattern for various types of cancer 
tissues, including breast cancer, kidney, and Gyn-Ute- 
rus. A software visual model has been used for data 
processing. Unique signals for breast and kidney tu- 
mors have been obtained. The approach followed in 
this paper shows promise for early cancer detection 
in humans.  
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1. INTRODUCTION 

Cancer is a serious disease that threatens human life due 
to the nonpathogenic existence of the illness, and this 
makes it difficult to control its progress if it reaches late 
stages. Early diagnosis however may lead to effective 
treatment and better survival chance. Non-invasive 
technique is advantageous for patient safety. The vibra- 
tion/scattering spectrum has promising potential as an 
analytical tool for diagnosis. This could be attributed to 
the detection of the chemical composition and molecular 
structure of matters. Raman spectroscopy is a tool that is 
used in determining the molecular characteristics of 
various matters, including chemical bonds, and molecu-  

lar and physiochemical structure. This is based on light 
scattering characteristics with matters. The structure of 
molecules can be determined via their rotations, vibra- 
tions, and transmissions when an incident laser power is 
applied. The frequency difference between the incident 
and scattered radiation is employed in the diagnosis. This 
technique is well established for non-invasive medical 
diagnosis of cancer tissues [1-5]. Current technique of 
Raman Spectroscopy is able to detect microparticles at a 
maximum depth of 5 mm [6]. This still falls short by far 
as compared to tissue depth of 20 to 50 mm that mam- 
mography screening protocol can detect [7]. However, 
the current Raman is an external vivo diagnosis, while 
mammography is vivo, future laser diodes may produce 
Raman shifts for in vivo applications which could be 
competitive with mammography. In diagnosing breast 
cancer tissues, near 80% of the tumors detected by mam- 
mography prove to be benign upon biopsy, an invasive 
diagnostic procedure which may add to the unnecessary 
cost of the diagnosis. Raman spectroscopy could be 
advantageous in providing reliable results by distinguish- 
ing between benign and malignant tumors. Researchers 
have investigated reliable means for non-invasive diag- 
nostic tools, debating between mammography and Ra- 
man spectroscopy. Near infrared wavelengths, Raman 
spectroscopy has the potential to perform real-time diag- 
nosis of a tissue [8]. Developing computer models that 
emulate real tissues are challenging due to non-homo- 
geneity that make it hard to develop a reliable computer 
model for research study purposes. Throughout research 
studies, issues related to minimum size tissues, maxi- 
mum depth, and safety are of general concern.  

The goal of the proposed method is to decide whether 
a tissue sample is cancerous or not. This is achieved by 
initially identifying and extracting peaks from the Raman 
Spectrum of the training data, both cancerous and normal 
tissue, as well as from the tissue sample under investi- 
gation. The locations of the peaks as well as the average 
of the spectral density within a window centered at each  
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peak are used as feature vectors that are analyzed by a 
classifier. The classifier, which is based on the Parzen 
windowing method, identifies whether a tissue sample is 
cancerous or not by determining the number of feature 
vectors from each class of tissue, normal or cancerous, 
that fall within a window centered at the feature vector 
corresponding to the tissue sample under investigation. 
The number of vectors belonging to each class are used 
as an estimate of the likelihood that the tissue sample 
under investigation belongs to a particular class. 

2. PATTERN RECOGNITION  
APPROACH 

Pattern recognition in medical diagnosis has been used 
extensively [9-11] for detecting pattern classification of 
X-ray computed tomography (CT) images CAT, MRI, 
Ultrasound, heart models, and brain models, where CAD 
tools were utilized to detect image features of various 
modalities. In recent years, many solutions to medical 
diagnostic image fusion have been proposed; however, 
the difficulty of simulating the surgical ability of image 
fusion, when algorithms of image processing are com- 
plex and slow, has been a source of challenge. Efforts of 
using wavelet neural network to simulate the processes 
of image recognition, and understanding its implemen- 
tation in the human vision system were proposed [12]. 
Results of the effectiveness of the proposed model are 
subject to image fusion methods that are used for diag- 
nosis. In some cases, multiple cancer tissues are to be de- 
tected in the same area. Several examples may include 
combination of calcification, benign tissues, and cancer- 
ous tissues. Researchers have applied various image pro- 
cessing techniques to investigate the type of cancers be- 
fore surgical operations. Algorithms have shown high 
level of sensitivity for the validation of data. A reliable 
approach that distinguishes between various types of 
tissues located at the vicinity of millimeters is a chal- 
lenge. A novel approach is developed in this work to 
distinguish the Raman pattern of various tissues. Figures 
1 and 2 give an approach for the software used for diag- 
nosis, using various Raman patterns for the various tissue 
samples. The approach proposed here is a reverse engi- 
neering approach, where data pattern for various cancer 
types can be recognized and displayed. 

3. MATHEMATICAL MODELING 

When laser beam hits a sample, it interacts with the 
molecular vibration and rotation, causing a shift in the 
reflected beam energy. Therefore the Raman shifts is the 
difference between the frequency of the excitation and 
the scattered radiation beams. Raman shift is usually 
reported as a wave number (cm−1), given by Eq.1. 

Study the Raman 
Spectroscopy Signal of  

Each Cancer Type 

Find the Unique Peaks 
for Each Tumor Type

Apply Pattern Recognition 
Techniques to Classify the  

Unknown Tumor  

Raw Data of an 
unknown Tumor

 

Figure 1. Diagram showing the reverse engineering concept 
for optical diagnosis. 
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Figure 2. Diagram showing the software approach for pat- 
tern recognition. 
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where   is the Raman shift, 0  is the excitation 
wavelength of the scattered signal, and 1  is the Ra- 
man spectrum wavelength. Since Raman Spectroscopy 
uses low energy beam, it could be considered as a safe 
instrument for medical applications.  

The objective of this research is to find an approach 
for diagnosis of cancerous tissues based on their Raman 
Spectrum signal. To achieve this goal, we first need to 
introduce a suitable mathematical classifier. Mathemati- 
cal model classifiers will help classify some unknown 
data in one of the known categories. A simple repre- 
sentation of classifier’s operation as a block box is 
shown in Figure 3. A classifier operation relates to the 
objects and the classes using a determined function 
called classifier operation function. Primary, the inputs 
are random variables which are not fully classified and 
therefore, a value of uncertainty is defined for input vec- 
tors. The best classifier is defined as the classifier which 
will produce the smallest amount of non-classifications 
in practice.  

The three main types of classification modeling 
approaches are considered as Fixed Modeling, Para- 
metric Modeling, and Non-parametric Modeling. Non- 
parametric Modeling assumes that the space is infinite 
and is typically considered when the relationship 
between the input and output is not completely recog-  
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Classifier Operation 
Function  Input (Objects) Output (Classes)

 

Figure 3. General view of the classifier operation. 
 
nized. The Parzen Windows classification is a non-para- 
metric modeling approach that was developed for esti- 
mating the nonparametric probability density function 
(PDF) of random variables. It has a wide range of ap- 
plications including image processing, image restoration, 
and pattern recognition. By using the kernel functions at 
each observation, Parzen Window estimates the PDF of 
the group from which the sample was derived. In this 
research, the Parzen Windows classification is selected 
as the main method of classification based on the nature 
of the non-parametric data from the results. The opera- 
tion of Parzen-Window method is based on making a 
window with a specific edge length around the testing 
data point and watching how many data points of the 
training data would fall into this window, or how much 
each point in a specific class contributes to the PDF esti- 
mation. Adding these contributions for each class results 
in the PDF of the testing data associated with that spe- 
cific class. The PDF estimated from Parzen-Window [13] 
can be calculated from Eq.2.  
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where h is the length of hypercube’s width and K is the 
kernel function in the d-dimensional space such that 
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The Parzen Window PDF estimate P(x) with the Gau- 
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In this case, h would be the standard deviation of the 
Gaussian PDF along each dimension.  

There are other approaches such as K Nearest Neigh- 
bors (KNN) which could be used for a Non-parametric 
modeling. The main advantages of the Non-parametric 
approach are that in the case of having enough number of 
samples, the wanted target density can be approached. 
Also for different types of modals, this approach can be 
used and there is no need to have an initial distribution. 
In this study, PW was chosen due to its larger rate of the 
classification accuracy and less sensitivity to the band- 
width as compared to KNN.  

4. RESULTS AND DISCUSSIONS 

Near 20 cancer samples were provided from the Patholo-  

gy Department, IU School of Medicine to assist with this 
research. Appendix A presents a sample data with the 
information provided by the pathology department. Fig- 
ure 4 shows an overview of the processes that were done 
on the raw signal data to classify them in the right classes 
of Tumors and Quarts.  

In order to compare the Raman data between samples, 
classification approach was used. The raw data had to be 
normalized. Since the classification of the data would be 
based on the location of these peaks, normalization had 
to be in a way that would not alter any peaks or valleys. 
The normalization process that was used in this work 
was to keep peaks of each signal as maximum values and 
distinguish them from other signals. The first step of 
normalization was to deduce each signal’s DC amount. 
DC value of the raw data was in a wide range of 101 to 
105. This value was simply calculated by taking the 
average of the signal by the Eq.5. 
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where sigj is the jth signal, Avgj is its average, and mij is 
the ith frequency of the jth signal. By deducing this value 
from sigj, the magnitude of all signals will change around 
zero. Since the peaks were sharp and happen in a few 
range of frequencies, most of the negative parts of the 
new signal had absolute values less than the magnitude 
of the highest peak. In order to make the scales of the 
signals comparable to each other, the maximum value of 
the signal (maxj) was selected and the values received in 
the previous step were divided by that maximum value. 
This resulted in a signal that was changing between +1 to 
−1. Figure 5 shows Raman spectroscopy for various 
cancer tissue samples that were processed and analyzed 
by the pattern recognition software. The normal tissue 
data was reported elsewhere [14] and is used here for 
reference. As shown in Figure 6 shows an overview of 
this normalization process, and Figure 7 gives an exam- 
ple of some sample signals that were normalized by this 
method. 

Although this procedure made all the signals to change 
around zero and less than 1, only the highest peaks were 
still observable after normalization. Applying this 
process to the entire range of the signal’s frequency, one 
may find that some small unique peaks were still 
recognized as unique peaks within the class. Therefore, 
signals of each class were observed to detect all minor 
and major unique peak locations. The unique peak detec0 
tion was done by comparing the average data of classes 
with each other. A number of peaks that had the most 
value difference between the classes were selected. Then, 
for each peak frequency, a range of frequency that would 
include its locations was selected and the normalization  
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Figure 4. Flowchart of the software algorithm. 
 
process was applied to each range. This resulted in the 
study of k ranges of frequencies for each signal.  

Selection of each frequency range had to be in the way 
that could keep the goal of range division, which was to 
magnify the unique peaks. Therefore, a sharp change at 
the neighbor of a unique peak could affect the overall 
average and shift the peak down. This is more effective 
when there are some other peaks at the neighbor that 
have magnitude higher than the studying unique peak. 
Therefore, if there was a unique peak next to some high 
value, the range selection had to be modified in a way 
that it could skip the high value neighbor and set the 
peak as the maximum value in that range. On the other 
hand, the range had to have enough points to indicate 
that the peak was wide enough to rely on through the 
comparison with its neighbor. Figure 8 shows an exam- 
ple of such modification for a unique peak for tumor 
around the frequency of 1660 cm−1. Several steps were 
done to find the best intervals that include unique peaks; 
initially, the overall frequency range was divided to 
intervals of 500. This range helped to have a better 
selection of unique peaks. Later intervals of 200 were 
studied to accept or reject the selected peaks as unique. 
At the end, each peak was studied on a specific range 
independent from other ranges to magnify its contained 
peak in the most effective way. The upper left part of 
Figure 7 indicates the last step of interval selection for a 
unique peak around 1660 cm−1. 

Although the highest value of each peak usually 
occurs on a single frequency point, this single frequency 
of the data was not exactly the same among all the 
signals within a class. For example, one signal might 
have ten points between frequencies of 500 to 504 cm−1,  
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Figure 5. Raman Spectroscopy for different cancer 
tissue samples: (a) Breast; (b) Kidney; (c) Testis; and 
(d) Normal breast tissue. 
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Figure 6. Flow chart of the normalization process. 
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Figure 7. Raman Spectroscopy results (a) before and (b) 
after the normalization. 

 
while another had just four. Therefore a small interval 
was selected for identifying each unique peak, rather 
than choosing a single point. For example, if the fre- 
quency 1660 cm−1 was selected as a unique peak, the 
points between 1660 − δ and 1660 + δ had to be selected 
and studied. The study of each peak was based on the 
average of signal’s magnitude on a frequency range of 2δ 
(identified as PKAvgVal, centered at the preselected 
unique peak’s frequency. The selection of δ was also 
critical. On one hand, it had to be some value that could 
include more than two points to give more accuracy; on 
the other hand, it had to be not too large to make a range 
wider than the peak’s width, causing a decrease in the 
overall value of the peak. The value that was selected in  

this work was smaller or equal to the width of half mag- 
nitude of the smallest unique peak (2.5 frequency units).  

In the next step, each signal was converted to an 
n-dimensional point, where n indicates the number of 
unique peaks. The frequency of each peak was selected 
as a dimension and the magnitude of each signal’s 
PKAvgVal was selected as the value of the according 
point with respect to that dimension. As an example, in 
the last part of Figure 8, if the frequency of 1660 cm−1 is 
selected as a unique peak, it represents one of the dimen- 
sions in n-dimensional space of peaks. It is clear from 
that figure that the PKAvgVal of the Quarts signal in this 
dimension would be around zero, while the PKAvgVal 
of Kidney Tumor would be around 1. The classification 
of the data was done by studying the location of training 
classes’ points on n-dimensional space. Figure 9 shows 
an example of such points when n equals 3.  

In this work, two sets of peaks were chosen, one for 
detecting tumors over quarts and the other for distin- 
guishing breast cancer tumor from other studied types. 
The first set included frequencies of 465, 853, 1003, and 
1657 cm−1 and the second set had the frequencies of 
420.3, 640.5, and 1778.5 cm−1. It should be noted that if 
the selected unique peak does not show enough dif- 
ference between classes including this peak might in- 
crease the classification error because including such a 
peak will make the points of the classes to get closer to 
each other in that dimension and reduce the overall 
distances compared to the Parzen Window length. 

Parzen Window Classifier was used to classify a test- 
ing data by converting it to an n-dimensional point (Fig- 
ure 10). In order to show the accuracy of this method, 
the Parzen Window was applied on each single signal of 
either Quarts or Tumor class. Three hypercube edge 
lengths (h) of 2, 1, and 0.5 were selected for Parzen 
window. Table 1 shows the average difference between 
the calculated PDF of the signals with respect to the right 
and wrong class for truly detected signals. Although this 
table shows that the smaller h the higher difference in the 
probabilities to be achieved, decreasing h however may 
not be desirable. Suppose there is a point that should be 
classified in class B. If this point is close to some points 
of class A, decreasing h will ensure more that this data 
should be classified in class A, which is not right.  

To show an example of how much adding a “unique 
peak” could affect the overall result, two cases of in- 
cluding a peak at frequency of 465 cm−1 and excluding it 
were studied (Table 2). The increase of the accuracy of 
tumor detection with including this peak indicates that 
the tumor signals have very close PkAvgVal and dif- 
ferent from quarts signal PkAvgVal at this dimension. 
Likewise, the decrease of the accuracy of Quarts detec- 
tion indicates that the Quarts signals are spread on this 
dimension and some are closer to the Tumor than the  
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Figure 8. An example of selecting and modifying a 
range to magnify a peak at 1660 cm−1 as a unique peak 
for tumor. (a) shows first selection of the range; (b) 
shows eliminating some parts of sharp change before 
frequency of 1700 cm−1; (c) shows eliminating the 
neighbor points with values higher than the unique peak. 
 

 
Figure 9. An example of converting the sig-
nals to n-dimen- tional points when n = 3. 
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(c) 

Figure 10. Detection of tumor by converting the data 
to three- and two-dimensional spaces made of unique 
peaks at (a) 465 cm−1; (b) 852 cm−1; and 1003 cm−1. 

 
Table 1. Effect of the value of hypercube edge length on the 
average difference of PDF of testing signal with respect to the 
right and wrong classes. 

Hypercube Edge 
Length 

Quarts Tumor 

2 0.003253 0.002322 

1 0.047872 0.029135 

0.5 0.382183 0.14075 
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Table 2. Comparison between the results received for spa- ces 
including and excluding the peak located at frequency of 465 
cm−1. 

Type 
Excluding 465 Peak 

Position 
Including 465 in Peak 

Positions 

Quarts %100 89% 

Tumor %75 100% 

 
Qurtz class.  

The above data presents the software results for the 
various types of cancer tissues. However, the objective 
of this work is to diagnose whether the tissue is cancer- 
ous or not, these graphs show the software capability in 
accurately detecting various cancerous tissues.  

The above algorithm was also used for three fre- 
quencies that distinguish between Quarts and Tumor 
classes, including breast cancer, and the data of each 
group. The testing data is given in Figures 10 and 11 
shows the effect of studying the patterns at various 
frequency shifts.  

5. MINIMUM SAMPLE SIZE  
DETECTION 

A test was performed for a number of cancer tissues in 
order to find the minimum size cancer tissue that can be 
detected via the laser beam of the Raman spectroscopy. 
In this test, a few micron tissue size, which is smaller 
than the laser beam diameter has been tested. The tissue 
was placed on the quartz tube and the test was run for 
more than an hour since the beam power was low. As it 
can be seen from Figure 12, the results for three various 
samples are reported and clear distinctions for the Raman 
shifts are observed. The same tissue with smaller size 
diameters is reported in Figure 13. There were no clear 
shifts designated from the quartz tube. The extraction 
between the sample and the quart carrier is just noise. In 
conclusion, Raman shift is capable to detection minimum 
size samples higher than the laser beam diameters. 
Typical size beams range in the order of microns, which 
is advantageous over mammography in that aspect.  

6. CONCLUSIONS AND FUTURE WORK 

In this work, a procedure was developed to classify 
Raman Spectroscopy signal for the diagnosis of cancer 
tissue. As indicated in Figure 5 above, the cancerous 
tissues have different Raman spectroscopy from the 
normal human tissue, leading to proper approach of diag- 
nosis. The raw Raman Spectroscopy data was trans- 
formed to a 3-D visible form that has the ability to dis- 
tinguish various types of cancer tissues. This approach 
was realized by normalizing each signal, converting it to 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Detection of tumor by converting the 
data to three and two dimensional spaces made of 
unique peaks at (a) 420.3 cm−1; (b) 640.5 cm-1; and 
(c) 1778.5 cm−1. 
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Figure 12. Sample 134492: Cancer tissue samples of 
larger size than the laser beam. 
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Figure 13. Same samples as in Figure 11, but of smaller 
size than the laser beam. The red oval represents the ap-
proxi- mate shape and position of the laser over the sam-
ple. Sub- traction of the quartz background reveals no sig-
nificant signals. 

 
an n-dimensional point, and classifying it with the Par- 
zen-Window method. The peak point selection for each 
interval class affects the choice of study intervals and 
value of each point at each dimension. Therefore this 
procedure is very data dependent and like every other 
classifier could be improved by increasing the training 
data set. Since the available data sets were few, there is 
room for improvement in the selection of peaks. How- 
ever, the process could be used even for higher number 
of training data. Based on the available data, it was 
observed that each of kidney and breast tumors signals 
have their own unique peaks. The minimum size detected 
via Raman Spectroscopy has showed promises for early 
detection cancer diagnosis before spreading out in the 
human body. Additional investigation is needed for more 
sample tissues and verifications for various cancer tissues. 
The laser power is also important to be considered for 
further study. The work presented here would be valu- 
able to many cancer researchers including those who 
develop equipment for in vivo diagnosis.  

The team of researchers assembled here will next pur- 
sue an experimental model that assembles human body 
members. With that, a research scheme will be devel- 
oped to distinguish a single scattered data among others. 
For instance, in case of breast cancer detection, a model 
that combines cancer tissue, bone, fat cells, etc, should 
be investigated. The completion of this phase will be 
pursued by a servo mechanism system for the practical 
realization of the investigation. Such in vivo approach is 
reserved for future considerations. 
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Appendix 

Sample of tissue information provided by the the IU Med School. 

QUALITY CONTROL HISTOLOGY 

QC Comments QC Result 

95%T; 5%necrotic Same as Diagnosis 

40%T; 60%necrotic Same as Diagnosis 

 
SPECIMEN DIAGNOSIS (PRIMARY PATHOLOGY) 

Body Site Specific Site Pathology Status Histologic Type 

GYN-UTERUS ENDOMETRIUM cancer-primary ADENOCARCINOMA, NOS 

GU-KIDNEY KIDNEY, NOS cancer-primary 
CLEAR CELL ADENOCARCINOMA, 

NOS 

 
SPECIMEN COLLECTED (TISSUE) INFORMATION 

Other Body Site Other Specific Site 
Specimen  
Comments 

Specimen 
Source 

Specimen Storage Location 
Specimen 

Type 

GYN-UTERUS 
ENDOMY 

OMETRIUM 
Endo 

metrioid 
Surgery R3/Revco-70C/Tower 9/Box 4/Cell 73 Tissue 

GU-KIDNEY 
KIDNEY, 

NOS 
 Surgery R3/Revco-70C/Tower 9/Box 4/Cell 75 Tissue 

 
 
 


