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ABSTRACT 

We consider a discrete-time multi-server finite-capacity queueing system with correlated batch arrivals and determinis- 
tic service times (of single slot), which has a variety of potential applications in slotted digital telecommunication sys- 
tems and other related areas. For this queueing system, we present, based on Markov chain analysis, not only the 
steady-state distributions but also the transient distributions of the system length and of the system waiting time in a 
simple and unified manner. From these distributions, important performance measures of practical interest can be easily 
obtained. Numerical examples concerning the superposition of certain video traffics are presented at the end. 
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1. Introduction 

The discrete-time multi-server queue with deterministic 
service times has gained importance in view of a num-
ber of potential practical applications to slotted digital 
telecommunication systems and other related areas 
(Bruneel and Wuyts [1]). It has been observed that ar-
rival streams to these systems, in particular, tend to be 
correlated (see, e.g., Wittevrongel and Bruneel [2,3]). To 
model this correlated nature, a versatile point process 
called the discrete-time batch Markovian arrival process 
(D-BMAP) is introduced by Blondia and Casals [4] and 
widely used for analytical studies. This rich class of arri-
val processes contains a number of well-known arrival 
processes such as the Bernoulli process with independent 
identically distributed batch arrivals, the Markov modu-
lated Bernoulli process, and a superposition of D-BMAP 
themselves (for more details, see Blondia and Casals 
[4]). 

In this paper, we consider the D-BMAP/D/c/N queue, 
in which customers arrive according to D-BMAP and are 
served by one of c servers. The system capacity is 

 so that no more than N customers can be ac-
commodated in the system at the same time. Customers 
who arrive to find the system full are assumed to depart 
the system immediately on arrivals. Specifically, we as-
sume a partial acceptance model (Takagi [5], p. 367)  

N c

such that customers of an arriving batch are accepted 
until they fill all the available capacity, and the remain- 
ing customers, if any, are lost. Every accepted customer 
requires one slot for service that is assumed to start and 
end at slot boundaries. 

For this queueing model, we present, based on an ele- 
mentary Markov chain analysis, both steady-state and 
transient solutions to the system length (i.e., the number 
of customers in system) as well as to the system waiting 
time (i.e., the number of slots a customer spends in sys- 
tem) in a simple and unified manner. For similar dis- 
crete-time multi-server queueing models with infinite 
capacity, there have been some contributions by other 
authors: For a similar queue with infinite capacity (and 
correlated batch arrivals that belong to a subclass of 
B-DMAP arrivals), Sohraby and Zhang [6] analyze in 
transform domain the transient behavior of the system 
length and present an efficient numerical inversion me- 
thod to calculate a few performance measures of interest. 
(They briefly discuss the finite capacity case as well.) 
For the D-BMAP/D/c queue, Alfa [7] assumes constant 
service times of multiple slots and presents an efficient 
algorithm making clever use of the structural property of 
the system to obtain the steady-state distributions of the 
system length and the system waiting time. Gao et al. [8] 
(Gao et al. [9]) assume constant service times of multiple 
slots (geometric service times) with a two-state Mark- 
ovian arrival process to present a steady-state analysis of  *Corresponding author. 
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the system length and the system waiting time. 
In this paper, we assume the finite-capacity model for 

the following three practical reasons. First and foremost, 
as demonstrated in this paper, the finite-capacity model 
of this paper is much simpler to analyze than its corre- 
sponding infinite-capacity counterpart (see Remark 1 be- 
low; also, see Sohraby and Zhang [6] for sophisticated 
analysis of the infinite-capacity model). Second, queue- 
ing models with finite capacity can serve as excellent 
approximations (by taking the system capacity N suffi- 
ciently large) for their corresponding infinite-capacity 
counterparts (see Remark 2 at the end of this paper). 
Third, all the queueing systems in reality have finite ca- 
pacity. 

We organize the paper as follows: In Section 2, we 
first present the steady-state system-length distribution 
based on the elementary Markov chain analysis. From 
this, important performance measures of practical interest 
are obtained, including the steady-state system waiting- 
time distribution. In addition, the corresponding transient 
solutions are presented in a simple and unified manner. 
In Section 3, we present a set of numerical results with 
various system capacities and a few different numbers of 
servers. For this, we use D-BMAP arrivals that charac- 
terize the superposition of certain video traffics. We end 
the paper with a remark on the finite-capacity model. 

2. Analysis 

In discrete-time queueing models, the time axis is di- 
vided into fixed-length intervals, called slots. It is as- 
sumed that customer arrivals and departures take place 
only at slot boundaries; thus, nothing is assumed to hap- 
pen in the middle of a slot. 

In the D-BMAP/D/c/N queue, customers arrive ac- 
cording to a D-BMAP with representation , 
where 

 ,  0k k D

kD  is an  matrix with elements m m
m  ,k i j D ,1

ij
. This arrival process is governed by 

an m-state (or m-phase) underlying Markov chain (UMC). 
Specifically, let us suppose that the UMC is in some 
phase i in a certain slot. Then, with probabilities  kD

ij
, 

there are  arrivals during the slot with the phase of 
the UMC being  in the next slot. (See Blondia and 

Casals [4] for more details.) Note that the number of ar- 
rivals per slot (including those who are lost) is given by 

0k 
j

1 kk
k 


 π D e            (1) 

where  is the stationary probability vector of the 
UMC with the transition probability matrix (TPM) 

0 kk

π




 D D
π

 and e  is a column vector of 1’s (note 
that  is obtained by solving simultaneously the equa- 
tions π πD  and 1πe  for ). π

Now, we consider the discrete-time bivariate process 
  , ;0 ,1 , 1k k k kN S N N S m k    

S
, where k  and 

k denote, respectively, the system length and the phase 
of the UMC just after the beginning of the kth slot. Then 
we consider the number of customers that arrive during 
the kth slot (denoted by k

N

A ) and the number of custom-
ers that depart at the end of the same slot (which is given 
by  min ,kN c

kN
); as a result, we have  in terms of 

 as follows: 
1kN 

   1 min , min , , 1k k k kN N A N N c k    .   (2) 

Note that kA  is dependent only on k ; thus, we ob-
tain the discrete-time Markov chain having the following 
TPM: (please see the formula below) 

S

where 1 , 0l l l l    D D D 
       

. 

Let  0 1, , , Np p p pk k k k  denote the state prob- 

ability vector of the bivariate process just after the be- 

ginning of the kth slot, where         ,1 ,, ,k k k
n n np pp  m

and       , Pr , ,  k
n i k kp N S n 

   1k k

i . Then it is immediate  

to have , 1k  p p T . 

2.1. Steady-State Analysis 

1) The System-Length Distribution: Let  

   
0 1, , , lim k

N
k

 p p p p p . Then the steady-state sys- 

tem-length distribution is obtained by solving simultane- 
ously the equations p pT  and  for . This 
can be readily carried out by using mathematical soft- 
ware packages such as MATLAB, Mathematica, or even 
otherwise (see numerical examples in Section 3). Now, 
important performance measures of practical interest 

1pe p
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can be obtained from  as given below. n

2) The Effective Arrival Rate and the Loss Prob- 
ability: The number of arrivals (including those who are 
lost) per slot is given by 

p

0 1

N

n k
n k

k


 

  p D e .              (4) 

(Equation (4) reduces to (1) due to 
0n

N

n  πp ). 
Under the assumption of partial acceptance, the number 
of accepted arrivals per slot (i.e., the effective arrival 
rate), on the other hand, is given by 

 
1

0 1 1

1

0 1

.

N N n

e n k k
n k k N n

N N n

n k
n k

k N n
  

    

 


 

    
 
   
 

  

 

p D D

p D e

e

   (5) 

From (4) and (5), it is immediate to have the loss prob- 
ability (i.e., the probability that a customer is lost) as 
follows: 

loss 1 eP



  .             (6) 

3) Moments of the System Length: Among others, 
the first moments of the numbers of customers in system 
and in service just after a slot boundary, denoted by  
and  respectively, are given by  

L

SL

1

N

nn
L n


  p e              (7) 

and 

1 1

c N

S n
n n c

L n c
  

  p e p en .      (8) 

Along the same lines, higher moments such as the 
variances of the numbers of customers in system and in 
service can be easily obtained. 

Note that S  also represents the number of depar- 
tures (by service completions) per slot, i.e., the departure 
rate, which, of course, should match with the effective 
arrival rate; that is, S e

L

L  . Thus, the loss probability 
can be alternatively obtained from loss 1 SP L   . 

4) The System Waiting-Time Distribution of an 
Accepted Customer: Let  denote the system waiting 
time of an accepted customer, i.e., the number of slots an 
accepted customer spends in system (we do not count, as 
a part of the system waiting time, the slot in which she 
arrives). The probability that an accepted customer 
spends at most  slots in system can be interpreted as 
the long-run fraction of such customers out of all ac- 
cepted customers. That is, 

W

w

     eP W w E A w          (9) 

where  A w  denotes the number of accepted customers 
per slot who are to spend at most  slots in system. 

Note that because the service times are single slot, one 
can foresee whether the system waiting time of an ac- 
cepted customer will exceed  or not. Let 

w

w N  and 
S  denote, respectively, the system length and the phase 
of the UMC just after the beginning of a slot at steady 
state. Then, conditioning on  and , we have N S

  w

 

E A  as follows; 

    i ,n i
0 1

,
N m

n i

E A w n S p 
 

 E A w

 

N ,  (10) 
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After simplifications (i.e., following the same proce-
dure as used in getting the last term of (5)), we have 

  
 

min

mi ,1

1 1

c

n k

n NN

n c

E A w 

 
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



p D e
,

0 1

n

cw N

n k

c w

 
 

n

n k



p D

   (11) 

e

Substituting (11) into (9), we have the steady-state sys-
tem waiting-time distribution of an accepted customer. 
From this, one can get performance measures of interest, 
such as the mean   E W  of the system waiting time 
and its tail probabilities. Also, one can get  alterna-
tively by Little’s formula, . 

L
 EeL   W

 1 p p

2.2. Transient Analysis 

Note that  is obtained from , 
where , the initial probability vector, is assumed to 
be given. Putting  in place of n  of (4) through 
(11) derived for the steady state, one can immediately 
obtain the corresponding transient results: the expected 
numbers of total, accepted, and lost arrivals during the 

th slot, the moments of the numbers of customers in 
system as well as in service just after the beginning of the 
same slot, and the system waiting-time distribution of 
customers that are accepted during that slot. 

 kp
 1

  , 1k 

p

1k kT
p

 k
np

k
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Remark 1: Transient analyses of queueing models are, 
in general, much more demanding than their stationary 
counterparts, because the formers need to take an addi- 
tional variable (time) into consideration. See, e.g., 
Sohraby and Zhang [6] for a transient analysis of the 
queue of a similar kind with infinite capacity. This is not 
the case for the finite-capacity case, which can be ana- 
lyzed in a remarkably simple and unified manner as pre- 
sented in this paper. 

3. Numerical Examples 

For numerical work, we use the same D-BMAP arrival as 
the one given in Example 2 of Blondia and Casals [4]. In 
this example, they approximate the superposition of 3 
video sources by the superposition of 30 independent 
identical on/off sources. The latter is then characterized 
by the D-BMAP, where the phase of the UMC corre-
sponds to the number of active sources. (See Blondia and 
Casals [4] for the representation of this D-BMAP.)  

For various system capacities  
with different numbers of servers , Table 1 
gives the steady-state loss probabilities. From this, one 
can see how fast the loss probability decreases as the 
system capacity N increases and as the number of servers 
c increases. 

4,6,8,10,12N 
 1, 2,3









c

Table 2, with fixed capacity  and the numbers 
of servers , gives the steady-state probabili- 
ties that the system waiting time of an accepted customer 
exceeds given threshold values  . Such tail 
probabilities are one of the important performance mea- 
sures of practical interest (particularly, in telecommuni- 
cation area) that represent the quality of service. 

10N 

1,2,3

1,2,3c 

, 4,5

For , and  (i.e., the 
system is initially full of customers) with fixed capacity 

 and the numbers of servers , Figure 
1 displays how fast the expected system length of each 

 1 ,0 1n n N   p 0  1
N  πp

1,2,3c 10N 

system just after the beginning of the kth slot  
 1, 2, , 20k    converges to its corresponding steady- 
state quantity. Other measures of practical interest can be 
obtained along the same lines. 

Remark 2: For each system with the number of ser-  
vers  1, 2,3c  , we observe that the loss probability 
tends to converge to zero pretty quickly with a moderate 
increase in the system capacity (see Table 1); in addition, 
we observe that the tail probability of each waiting-time 
distribution decays pretty quickly as well (see Table 2). 
This seems to be mainly due to the extreme regularity of 
the (constant) service times and the multiple numbers of 
servers, both of which, individually as well as jointly, 
absorb burstiness of the arrival process considerably. 
Consequently, in such cases, one can effectively reduce 
the loss probability, the tail probability of waiting-time 
distribution, or both with a slight increase in the system 
capacity or the number of severs. Besides, in such cases 
as the loss probabilities are practically zero, a finite-  
capacity model can serve as an excellent approximation 
for the corresponding infinite-capacity counterpart. Then 
one can avoid sophisticated analyses for the infinite- 
 

 

Figure 1. Transient mean system lengths. 
 

Table 1. Steady-state loss probabilities. 

Sys. capacity 
Number of servers 

4N   6N   8N   10N   12N   

1c   7.388627E−03 6.05570E−04 6.98359E−05 1.09435E−05 2.21558E−06 

2c   3.682965E−03 6.69900E−05 8.55853E−07 1.01555E−08 1.35632E−10 

3c   3.611292E−03 5.86295E−05 5.58459E−07 3.60230E−09 3.01454E−11 

 
Table 2. Steady-state tail probabilities of the system waiting time. 

Number of servers  1P W    2P W    3P W    4P W    5P W   

1c   0.262522 0.062382 0.015792 0.004463 0.001390 

2c   0.021443 0.000175 1.23E−06 2.64E−10 0 

3c   0.001665 2.98E−07 4.31E−12 0 0 
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capacity model and get both steady-state and transient 
solutions in a remarkably simple and unified manner as 
presented in this paper. 

We hope that the elementary Markov-chain based 
analysis we present in this paper for the finite-capacity 
D-BMAP/D/c/N queue would turn out to be beneficial to 
both theoreticians and practitioners who would like sim- 
ple and straightforward practical solutions to their com- 
plex queueing systems. 
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