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ABSTRACT 

In this paper we study the problem of locating multiple facilities in convex sets with fuzzy parameters. This problem 
asks to find the location of new facilities in the given convex sets such that the sum of weighted distances between new 
facilities and existing facilities is minimized. We present a linear programming model for this problem with block 
norms, then we use it for problems with fuzzy data. We also do this for rectilinear and infinity norms as special cases of 
block norms. 
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1. Introduction 

Within the wide interaction between operations research 
(OR) and computer science, a major application area 
concerns locational decisions. The locational decisions 
determine how to use the best case possible for achieve- 
ment of activities with respect to existence a tools in our 
purpose direction. This aim is mostly contained of locat-
ing facilities. Multiple facility location problem is a 
well-known problem in operations research and espe-
cially in locational analysis and has been studied in depth, 
for more details see [1,2]. Locating facilities with some 
constraints on the regions which are contained facilities 
or customers is an interesting problem and has been 
studied by different constraints and conditions. Sarkar et 
al. [3] addressed the finite size 1-center placement prob- 
lem on a rectangular plane in the presence of barriers. 
Barriers are regions in which both facility location and 
travel through are prohibited. The feasible region for 
facility placement is subdivided into cells along the lines 
by Larson and Sadiq [4]. Muoz-Pérez et al. [5] developed 
the problem of locating an undesirable facility in a boun- 
ded polygonal region (with forbidden polygonal zones), 
using Euclidean distances, under an objective function 
that generalizes the maximin and maxisum criteria, and 
includes other criteria such as the linear combinations of 
these criterions. Bhattacharya et al. [6], presented a fuzzy 
goal programming model for locating a single facility on 
a plane bounded by a convex polygon under the triple 
criteria maximin, minimax and minisum location. In [7] 
presented a fuzzy goal programming model for locating 
multiple new facilities on a plane bounded by a convex 

polygon under the criteria: 1) minimize the sum of all the 
transportation costs and 2) minimize the maximum dis- 
tances from the facilities to the demand points. It has also 
been proved that the given methodology, always gives a 
nondominated solution. Nayeem and Pal [8] consider a 
facility location problem called p-center on fuzzy net-
works. 

In this paper we present a model for locating multiple 
new facilities in convex sets with respect to multiple ex- 
isting facilities and demand points, then present a linear 
programming model for this problem with block norms. 
We use this results for the problem with fuzzy data. We 
also do this for rectilinear and infinity norms as special 
cases of block norms. Rectilinear distances have been 
taken as the scenario may be thought of in an urban set- 
ting. Study of this problem and its modeling has many 
applications in industry such as locating machines in a 
workshop. 

Let  existing facilities be located at the known dis- 
tinct points 1  in the plane. In a multifacility 
location problem the optimal location of  new facili- 
ties 1

m
, , mP P

n

n
, ,X X  is sought with respect to the set of ex- 

isting facilities. Let  ,j id X P  represents the distance 
between the locations of new facility  and existing 
facility , and 

j
i  ,j k  be the distance between the 

locations of new facilities  and k . 
d X X

j
Let the cost per unit distance between new facility  

and existing facility i  be denoted by 
j

ji  and w jk  
being the corresponding cost per unit distance between 
new facilities  and . The total transportation cost 
associated with new facilities located at 

v

j k

1, , nX X  is 
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given by 

   

 

1
1 <

1 1

, , ,

, .

n jk j
j k n

n m

ji j i
j i

kf X X v d X X

w d X P

 

 











         (1) 

The multifacility location problem can be stated as the 
selection of locations 1 , , nX X    of new facilities such 
that total cost is minimized. For more details in location 
theory see [4,9-12]. 

The block norms are norms which their contours are 
polytopes. For example 1  and  are two block norms. 
The first application of block norms to solve the location 
problems suggested by Ward and Wendell [13,14]. They 
are shown that a block norm can be characterized as fol-
lows: 

l l

1 1

min :
r r

g gB
g g

gx x b 
 

 
  

 
          (2) 

where the points gb  and gb  with 1, ,g r   form 
the extreme points of the polytope corresponding to the 
unit contour. They also presented another characteriza- 
tion based on polar set for block norms. This characteri- 
zation follows: 

 0max : 1, ,gB

0x xb g r           (3) 

where 0
gb  and 0

gb  with 01, ,g r   are extreme 
points of the polar set 

 0 : 1 for all 1, 2, ,gB v b v g r      .  

By using these characterizations Ward and Wendell 
[13,14] shown that the minimax and minisum single fa- 
cility location problems can be written as a LP problems. 

If a block norm , is applied to measure the dis- 
tances in the plane then we can write a linear program- 
ming for the problem in two ways: 

B

1) For  let 1, ,i n 

   
1 1

,
r r

i gi gi i gi gi gB
g g

.X P X P      

 

       b  

2) For  let 1, ,i n 

  0 0max : 1, , .i i i gB
z X P X P b g r       

By substituting these in models we have a linear pro- 
gramming. In this paper we assume that distance is 
measured by block norm and as a special case rectilinear 
norm in two dimensional space. When  ,j j jX x y  
and , then objective function is as below:  ,i iP px py i

 1
1

1 1

, ,

.

n jk j

If we use the rectilinear norm for measuring distances 
between points we have: 

 ,j k j k jd X X x x y y    k          (5) 

 , .j i j i j id X P x px y py            (6) 

On substituting (5) and (6) into (1) and rearranging 
terms, we obtain 

    1 1 1 2 1, , , , , ,n n nf X X f x x f y y     (7) 

where 

   

 

1 1
1

1 1

, , ,

,

n jk j
j k n

n m

k

ji j i
j i

f x x v d x x

w d x px

  

 











          (8) 

And  

   

 

2 1
1

1 1

, , ,

,

n jk j
j k n

n m

k

ji j i
j i

f y y v d y y

w d y py

  

 











          (9) 

The expressions 1f  and 2f  give the total cost in- 
curred due to “travel” in the x  and  directions, re- 
spectively. 

y

From (7), it follows that 

   
 

1 1 1

2 1

min , , min , ,

min , , .

n n

n

f X X f x x

f y y





 


 

We minimize 1f  with constraints that new facilities 
be in convex sets, by transforming it to an equivalent LP 
problem will provide optimum x  coordinate of the new 
facilities. An exactly analogous procedure is used to 
minimize 2f . 

In Section 2 we introduce a model for locating multi- 
ple facilities in convex sets. In Section 3 we give a prac- 
tical exampl. A method for fuzzy linear programming 
problems and locating for fuzzy data are introduced in 
Section 4. Conclusion is achieved in the last section. 

2. Locating Multiple Facilities in Convex 
Sets 

Suppose that we have a set of m machines in a workshop 
for which their captured spaces are intervals. Assume 
that  , , 1, ,j jpx py j m   corresponding to the coor- 
dinates of machines. Also, suppose that we divide the 
remaining region of the workshop to K convex regions 
(here we consider convex regions as rectangle ones) 
which are given as follows.  

k B
j k n

n m

ji j i B
j i

f X X v X X

w X P

  

 

 

 







        (4)   , ,j j j jS x y a x b c y d     j  for 1, ,j K  . 

Now, we want to find  points in these  regions n K
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to locate new machines    1 1 1, , , ,n n nX x y X x y   
such that the sum of movement costs between each two 
new facilities and also new facilities and machines is 
minimized. We assume the movement cost between new 
facilities and machines to be proportional to the distance 
between them with a weight. Let jk  be the weight of 
movement between facilities j and k, and 

v

ji  be the 
weight of movement between facility j and machine k. 
Then we have the following problem. 

w

   

 
1 1 1

1 1 1

,

, ,

, , 1, , ,

, 1, , .

n m

 

min ,

. . , 1,

, 1, ,

jk j
j k n

jk j k
j k n j

i j i

i j i

k ji j i
j i

n m

ji j i
i

Z v d x

v d y y

S t a x b i

c y d i

  

  

 

  

  

 

x w d x px

w d y py

K j n

K j n

 

 

 





 


 

 

 (10) 

In this paper we consider the special case that only one 
machine is assigned to each region and for each machine, 
only one region contains it. In fact, this part of problem 
reduces to an assignment problem. So we define binary 
variables ij  which are equal to 1 if machine  is as- 
signed to region  and are equal to 0 otherwise, and re- 
place the constraints of the problem with the following. 

j

 

1, , , 1, ,

1, , , 1, ,

1, , , 1, ,

1, , , 1, ,

1, 1, , , 0,1ij ij

K j n

i K j n

i K j n

i K j n

i K  

 

 

 

 

  

 

 

 

 

 

B

i

 
 
 
 

1 1

1 ,

1 ,

1 ,

1 ,

1, 1, , ;

j i ij

j i ij

j i ij

j i ij

K n

ij
i j

x b M i

x a M

y d M

y c M

j n









 

  

  

  

  

  

 

where M is an upper bound for variables. This constraints 
ensure that only one machine is assigned to each region 
and for each machine, only one region contains it. 

2.1. The Problem with Block Norms  

Suppose the distances are measured by a block norm , 
then we can write the problem as follows. 

 
 
 
 

1 1

min

. . 1 ,

1 ,

1 ,

1 ,

1, 1, , ;

jk j B
j k n

j i ij

j i ij

j i ij

j i ij

K n

ij ij
i j

Z v X

S t x b M i

x a M

y d M

y c M

j n









 

  

 

 

  

  

  

  

  

1 1 1

1, , , = 1, ,

1, , , = 1, ,

1, , , = 1, ,

1, , , = 1, ,

1, 1, , ,

n m

k ji j iB
j i

ij

X w X P

K j n

i K j n

i K j n

i K j n

i K 

 

 









  

 

 

 

 

 

   0,1 .

 (11) 

So by definition of block norms and using transforma- 
tions for the problem by variables ,gjk gjk   , we have 

 

 

 

 

 
 
 

1 1

1 1 1

1

1

min

. . ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

r

jk gjk gjk
j k n g

n m r

ji gji gji
j i g

r

j k gjk gjk g
g

r

j i gji gji g
g

j i ij

j i ij

j i ij

Z v

w

S t X X b

X P b

x b M i K j n

x a M i K j n

y d M i K j n

y

 

 

 

 







 

   

 

  

 



 



 

 

  

  

    

    

    

 







 

 

 

 

 
1 1

1 , 1, , , 1, ,

1, 1, , ; 1, 1, , ,

0,1 , , , , 0

j i ij

K n

ij ij
i j

ij gjk gjk gji gji

c M i K j n

j n i K



 

    
 

   

    

   

 

 

 

 

   (12) 

which is a linear programming model. 

2.2. The Problem with Rectilinear Norm 

With rectilinear norm, model (10) is convertible to the 
following model: 

 
 
 
 

1 1 1

1 1 1

1

min

. . 1 , 1, , , 1, ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

n m

jk j k ji j i
j k n j i

n m

jk j k ji j i
j k n j i

j i ij

j i ij

j i ij

j i ij

K

i

Z v x x w x px

v y y w y py

S t x b M i K j n

x a M i K j n

y d M i K j n

y c M i K j n











    

    



   

   

    

    

    

    

 

 



 

 

 

 

 
1

1, 1, , ; 1, 1, , , 0,1 .
n

ij ij ij
j

j n i K 


     

 (13) 

Note that the objective function of model (13) is 
nonlinear. However we can linearize it as follows. Let  

j k jk jkx x p q   , j k jky y p q    jk , 

j i ji jix px r s    and j k jiy py r s    j

m

i  

for 1, , , 1, , , 1, ,i K j n k     . 
If 

0, 0, 0jk jk jk jkp q p q    

then j k jk jkx x p q   . So by using this transformation 
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in model (13), we have: 

  

   

 
 

1 1 1

1 1 1

min

. . 0, 0,

,

1 , 1, , , = 1, ,

1 ,

n m

jk jk jk ji ji ji
j k n j i

n m

jk jk jk ji ji ji
j k n j i

j k jk jk j k jk jk

j ji ji i j ji ji i

j i ij

j i ij

Z v p q w r s

v p q w r s

S t x x p q y y p q

x r s px y r s py

x b M i K j n

x a M i





    

    

   

      

        

      

   

   

 

 

 

 
 

 
1 1

1, , , = 1, ,

1 , 1, , , = 1, ,

1 , 1, , , = 1, ,

1, 1, , ; 1, 1, , ,

0,1 , , , , , , , , 0.

j i ij

j i ij

K n

ij ij
i j

ij jk jk jk jk ji ji ji ji

K j n

y d M i K j n

y c M i K j n

j n i K

p q p q r s r s





 


 

   

   

   

    

 

 

 

 

 



  (14) 

Note that we have deleted the sets of multiplicative 
constraints, , 0jk jkp q  0jk jkp q   , 0jk jkr s   and 

. Since in solving model (14) by linear pro- 
gramming the theory of linear programming guarantees 
that some basic feasible solution, will be a minimum 
feasible solution. For any basic feasible solution, if 

0jk jkr s  

jk  
is in the basic feasible solution, 

p

jk  will not be and vice 
versa. Since variables not in the basic feasible solution, 
are zero, the multiplicative constraints will therefore be 
satisfied for every basic feasible solution. To see why 
both 

q

jk  and p jk  would not be in the same basic fea- 
sible solution , suppose that the first two sets of equality 
constraints of model (14) are written in matrix form; then 
the column of the matrix corresponding to 

q

jk  is −1 
times the column corresponding to 

p

jk , so that the two 
columns are linearly dependent. Likewise, the two col- 
umns corresponding to 

q

ji  and r jis  are linearly de- 
pendent but a basis consists of linearly independent 
vectors. If both jk  and p jk  were in the same basic 
feasible solution, the corresponding columns making up 
the basis would be linearly dependent which can not be. 

q

3. Examples 

In this section we give some examples for the mentioned 
models. We solve them by LINGO software. 

Example 1. Consider the problem of locating a new 
machine in an existing layout consisting of five machines 

1 5 . The coordinate of machines are presented in 
the Table 1. Also consider the four possible regions 

1 4 , in order to locate two new machines in Table 
2. The problem is to obtain an optimal location for the 
new machines in the region , so that the 
sum of the rectilinear distances of the new machines 
from the other machines is minimized. 

, ,P 

, ,S 

Using model (14) we obtain  1 34,5X S   ,  
 2 3,4 2X S  

*Z
 and the optimal value of objective 

function is . 30=
Example 2. Consider six important industrial regions 

in a city which receive compulsory services from two fire 
stations. These industrial regions are shown in Table 3. 
Also three sites are considered for building fire stations 
according to Table 4. The problem is to determine two 
sites considering of three sites for building two fire sta- 
tions so that the sum of the distances of the fire stations 
from the six industrial regions is minimized. Let the dis- 
tances are measured by a block norm which its extreme 
points are 

     

 
   
   

1 2 3

4

1 2

3 4

0,1 , 3 2,1 2 , 1,0 ,

3 2, 1 2 ,

0, 1 , 3 2, 1 2 ,

1,0 and 3 2,1 2 .

b b b

b

b b

b b

 

 

  

 

    

   

 

Using model (12) we obtain the optimal solution  

   1 1 2, 12,18x y S    ,    2 2 3, 32,18x y S     and  

 
Table 1. The coordinate of machines. 

 1P  2P  3P  4P  5P  

x 4 2 2 4 6 

y 4 2 5 1 5 

 
Table 2. The interval coordinates of regions. 

 Lx  Ux  Ly  Uy  

1S  1 2 6 7 

2S  2 3 3 4 

3S  4 5 5 7 

4S  5 6 2 3 

 
Table 3. The coordinates of industrial regions. 

 A B C D E F 

x 20 25 13 25 4 18 

y 15 25 32 14 21 8 

 
Table 4. The interval coordinates of sites. P

4

S

, 1,2,3,jS j 

 Lx  Ux  Ly  Uy  

1S  4 6 8 10 

2S  10 12 18 23 

3S  32 33 18 20 
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138.3539Z   . The weights of regions and sites are the 
same. 

4. Fuzzy Linear Programming 

The concept of decision making in fuzzy environment 
was first proposed by Bellman and Zadeh [1]. Subse- 
quently, Tanaka et al. [15] made use of this concept in 
mathematical programming (see also [16]). A Fuzzy Li- 
near Programming (FLP) is concerned with the optimiza- 
tion (minimization or maximization) of a fuzzy linear 
function while satisfying a set of linear equality and/or 
inequality fuzzy constraints. Fuzzy linear programming 
problem with fuzzy coefficients was proposed by Ne- 
goita [17]. A formulation of fuzzy linear programming 
with fuzzy constraints and a solution method were given 
by Tanaka and Asai [18]. Maleki et al. [19] introduced a 
linear programming problem with fuzzy variables and 
proposed a method for solving it. Fang and Hu [20] con- 
sider linear programming with fuzzy constraint coeffi- 
cients (see also [21]). Gasimov and Yenilmez [22] dis- 
cuss solution of fuzzy linear programming problems us- 
ing linear membership functions (see also [23]). Maleki 
[24] used a certain ranking function to solve fuzzy linear 
programming problems. He also introduced a new me- 
thod for solving linear programming problems with va- 
gueness in constraints using a linear ranking function. 
Mishmast et al. [25] introduced the lexicographic rank- 
ing function to order fuzzy numbers and solved fuzzy 
number linear programming problems by lexicographic 
ranking function. In this paper FLP with Right Hand So- 
lution (R.H.S) is considered. 

An ordered pair of functions 

    , ,0T U r U r r 1, 

is called a fuzzy number if and only if it satisfied in the 
following requirements. 

1)  U r  is a bounded left continues non decreasing 
function over  0,1 . 

2)  U r  is a bounded left continues non increasing 
function over  0,1 . 

3)  U r  and  U r  are right continues in 0. 

4)     ,0 1U r U r r    where  

   U r wr c w    

and  

    ,0 1U r wr c w r       , 

which ,     , , Core andc w R c T w W T   
 , w

0
T c  is called Symmetric Triangular Fuzzy Num- 
ber (STFN). Let ST be the set of all STFN. 

A crisp number is simply represented by  

    ,0 1U r U r r    . 

The proofs of all the theorems in this section are given 
in [1]. 

4.1. Theorem 

If    1 1 2 2, , ,T c w U c w   be STFNs,  
and A be a matrix then, 

,k R X ST 

1) T U  if and only if  1 2 1andc c w w  2

2)  1 2 1 2,T U c c w w     

3)  1,kT kc k w  

4)     Core ;AX A X A W X   , which ijij
A a . 

4.2. Definition 

Let    1 1 2 2, , ,T c w U c w   be STFNs, we say  
if and only if 

<T U

1)  or 1 <c c
c c

2

1 2 1and w w2) 2 
T U

 
and   if and only if  or T . <T U U

Now consider fuzzy LP as follows 

min . . , , 0CX S t AX b X ST X               (15) 

which m nA R  ,  and b  is an triangular fuzzy 
vector. We reduce problem (15), to two following prob-
lems. 

nc R 

 min . . Core , 0CX S t AX b X           (16) 

and 

 min . . , 0C Y S t A Y W b Y   (17) 

where ,ij iij i
A a C c  . 

4.3. Theorem 

X  is a feasible solution problem (15) if and only if 
 CoreX X   is a feasible solution of problem (16) and 

 Y W X  is feasible solution of problem (17). 

4.4. Theorem 

X   is an optimal solution of problem (15) if and only if 
 CoreX X    is an optimal solution of problem (16) 

and  Y W X    is an optimal solution of problem 
(17). 

4.5. Locating Multiple Facilities in Convex Sets 
with Fuzzy Data 

Suppose that we have a set of  machines in a work- 
shop for which the captured spaces are as intervals. As- 
sume that 

m

 , , 1,px py j   , mj j  corresponding to their 
coordinates , (the sign is used for fuzzy numbers). Also, 
suppose that we divide the remaining region of the 
workshop to K  convex regions (here we consider con- 
vex regions as rectangle ones) which are given as fol- 
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lows: 

  , , for 1j j j j jS x y a x b c y d j           , , K  

For the fuzzy block norm case we have the following 
model. 

1

1 1

min

. . , 1, , , 1, ,

, 1, , , 1, , .

jk j k B
j k n

n m

ji j i B
j i

i j i

i j i

Z v X X

w X P

S t a x b i K j n

c y d i K j n

  

 

 

 

   

   





 

 

    
    

     (18) 

where , ,j j ja b c  K


 and  are triangular  for 1, ,jd j  

symmetric fuzzy numbers. It is obvious that  ,x y  also 
is fuzzy numbers. Now, we want to find a point in one of 
the  regions for a new machines such that the objec- 
tive function of our considered problem in fuzzy case is 
minimized. 

K

Hosseinzadeh et al. [26] consider the single facility 
case and present a linear programming for it. 

Equivalently, according model (14) in Section 2 we 
have the following model for fuzzy numbers: 

 

   

 

 

 
 

1 1 1 1 1

1

1

min

. . ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

1

r n m r

jk gjk gjk ji gji gji
j k n g j i g

r

j k gjk gjk g
g

r

j i gji gji g
g

j i ij

j i ij

j i

Z v w

S t X X b

X P b

x b M i K j n

x a M i K j n

y d M

   

 

 





   

      

 



 



   

  

  

    

    

 

  





   

  

  

   

   

   
 

 
1 1

, 1, , , 1, ,

1 , 1, , , 1, ,

1, 1, , ; 1, 1, , , 0,1 , , , , 0.

ij

j i ij

K n

ij ij ij gjk gjk gji gji
i j

i K j n

y c M i K j n

j n i K





        

 

  

    

      

 

   

     

              (19) 

 
The problem (19) can be converted to standard form as follows. 

 

   

 

 

 
 

1 1 1 1 1

1

1

min

. . ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

r n m r

jk gjk gjk ji gji gji
j k n g j i g

r

j k gjk gjk g
g

r

j i gji gji g
g

j ij i ij

j ij i ij

Z v w

S t X X b

X P b

x u b M i K j n

x u a M i K j n

   

 

 





   

      

 



 



   

  

  

     

     

  





   

  

  

    

    

 
 

 
1 1

1 , 1, , , 1, ,

1 , 1, , , 1, ,

1, 1, , ; 1, 1, , , 0,1 , , , , 0.

j ij i ij

j ij i ij

K n

ij ij ij gjk gjk gji gji
i j

y v d M i K j n

y v c M i K j n

j n i K





         

 

     

     

      

    

    

    

                      (20) 

 
In order to obtain the optimal solution of problem (20), we solve two problems in below: 
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   

     

 
 

1 1 1 1 1

1 1

min

. . , Core

Core( ) 1 , 1, , , 1, ,

Core( ) 1 , 1, , , 1, ,

r n m r

jk gjk gjk ji gji gji
j k n g j i g

r r

j k gjk gjk g j gji gji gi
g g

j ij i ij

j ij i ij

j

Z v w

S t X X b X P b

x u b M i K j n

x u a M i K j n

y v

   

   





   

      

   

 

   

     

     

     



  

 

 

 

 
 

 
1 1

Core( ) 1 , 1, , , 1, ,

Core( ) 1 , 1, , , 1, ,

1 1, , ; 1 1, , , 0,1 , , , , 0, , , ,

ij i ij

j ij i ij

K n

ij ij ij gjk gjk gji gji ij ij ij ij
i j

d M i K j n

y v c M i K j n

j n i K u u v v





         

 

    

     

        

 

 

 ， ， 0

0

           (21) 

and 

   

     
   
   
 

1 1 1 1 1

1 1

min

. . 0, 0

1 , 1, , , 1, ,

1 , 1, , , 1, ,

1

r n m r

jk gjk gjk ji gji gji
j k n g j i g

r r

j k gjk gjk g j i gji gji g
g g

j ij ij i

j ij ij i

j ij ij

Z v w

S t X X b X W P b

x u M W b i K j n

x u M W a i K j n

y v M

   

   







   

      

   

 

   

       

     

     

  

  

 
 

 

 
   

 
1 1

, 1, , , 1, ,

1 , 1, , , 1, ,

1 1, , ; 1 1, , , 0,1 , , , , 0, , , ,

i

j ij ij i

K n

ij ij ij gjk gjk gji gji ij ij ij ij
i j

W d i K j n

y v M W c i K j n

j n i K u u v v



         

 

  

     

        

 

 

 ， ，

            (22) 

Note that Theorem 4.4 is hold when the optimal values 
of the variables ij  in models (21) and (22) are the same. 

In the case norm is rectelinear we have the following 
nonlinear model: 

1 1 1 1 1 1

min

. . , 1, , , 1, , ,

, 1, , , 1, , .

n m n m

jk j k ji j i jk j k ji j i
j k n j i j k n j i

i j i

i j i

Z v x x w x px v y y w y py

S t a x b i K j n

c y d i K j n

         

       

   

   

          

    
    

                  (23) 

Equivalently, according model (12) in Section 2 we have the below model for fuzzy numbers: 

      

 

1 1 1 1 1 1

min

. . 0, 0

,

1 ,

n m n m

jk jk jk ji ji ji jk jk jk ji ji ji
j k n j i j k n j i

j k jk jk j k jk jk

j ji ji i j ji ji i

j i ij

Z v p q w r s v p q w r s

S t x x p q y y p q

x r s px y r s py

x b M i

         

        

        

      

  

          

       
       

 

 
 
 

 
1 1

1, , , 1, ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

1 1, , ; 1 1, , , 0,1 , , , , , , , ,

j i ij

j i ij

j i ij

K n

ij ij ij jk jk ij ij ji ji ij ij
i j

K j n

x a M i K j n

y d M i K j n

y c M i K j n

j n i K n p q p q r s r s







  
 

 

    

    

    

        

 

   
   

   

        ， ， 0.



             (24) 
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The problem (24) can be converted to standard form as: 

       
1 1 1 1 1 1

min

. . 0, 0

,

1

n m n m

jk jk jk ji ji ji jk jk jk ji ji ji
j k n j i j k n j i

j k jk jk j k jk jk

j ji ji i j ji ji i

j ij i

Z v p q w r s v p q w r s

S t x x p q y y p q

x r s px y r s py

x u b M 

         

        

        

      

   

          

       
       

    
 
 
 

 
1 1

, 1, , , 1, ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

1 , 1, , , 1, ,

1 1, , ; 1 1, , , 0,1

, , , 0;

ij

j ij i ij

j ij i ij

j ij i ij

K n

ij ij ij
i j

ij ij ij ij

i K j n

x u a M i K j n

x v d M i K j n

x v c M i K j n

j n i K

p q p q r







  
 

 

     

     

     

    

  

 

 
    

    

    

 

    

， ，

, , , 0; , , , 0.ij ij ij ij ij ij ij ijs r s u u v v           





        (25) 

In order to obtain the optimal solution of problem (25), we solve two problems in below: 

      

   
   

1 1 1 1 1 1

min

. . 0, 0

core , core

core 1 , 1, , , 1, ,
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and 
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Again the theorem 4.4 is hold when the optimal values of the variables ij  in models (26) and (27) are the 
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same. 

5. Summary and Conclusion 

In this paper we presented a linear model for finding op- 
timal locations for multiple facilities with respect to the 
other facilities and then use it for fuzzy data. Here we use 
block norm and rectilinear norm as a special case, for 
finding the optimal locations. Also in order to avoid con- 
gestion, we suppose that an eligible site must be as in- 
terval. Finally, in order to locate new facilities in convex 
sets, we suggest a model by which the weighted distance 
between new facilities and all the other existing facilities 
and the new ones is minimized. 
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