
Journal of Modern Physics, 2012, 3, 1882-1890 
http://dx.doi.org/10.4236/jmp.2012.312237 Published Online December 2012 (http://www.SciRP.org/journal/jmp) 

Wavefronts and Light Cones for Kerr Spacetimes 

Francisco Frutos-Alfaro1, Frank Grave2, Thomas Müller2, Daria Adis3 
1Department of Physics, University of Costa Rica, San Pedro, Costa Rica 

2Institute for Visualization und Interactive Systems, University of Stuttgart, Stuttgart, Germany 
3Theoretical Astrophysics, University of Tübingen, Tübingen, Germany 

Email: frutos@fisica.ucr.ac.cr 
 

Received September 26, 2012; revised October 27, 2012; accepted November 5, 2012 

ABSTRACT 

We investigate the light propagation by means of simulations of wavefronts and light cones for Kerr spacetimes. Simu-
lations of this kind give us a new insight to better understand the light propagation in presence of massive rotating black 
holes. A relevant result is that wavefronts are backscattered with winding around the black hole. To generate these 
visualizations, an interactive computer program with a graphical user interface, called JWFront, was written in Java. 
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1. Introduction 

In general relativity and astrophysics, Kerr spacetimes 
are useful to study, for example, stellar compact objects, 
like accretion disks in neutron stars. This metric was 
found by Kerr in 1963 [1], since then this spacetime ap- 
pears in many articles on these topics and it is currently 
one of the most used metric, because this represents a 
spacetime of a massive rotating object. 

Friedrich and Stewart [2,3] based on Arnold’s catas- 
trophe theory [4] developed the theory of wavefronts and 
singularities (caustics) in general relativity. Recently, 
Hasse [5] et al., Low [6], and Ehlers and Newman [7] 
have revived this topic from a mathematical viewpoint. 
The wavefront propagation, caustic and the light cone 
structures for a non rotating object, described with 
Schwarzschild spacetime, was discussed by Perlick [8]. 
Caustics for the Kerr metric were numerically computed 
by Rauch and Blandford [9]. Grave studied the gravita- 
tional collapse and wavefronts for this spacetime [10]. 
More recently, Sereno and De Luca [11] computed these 
caustics using a Taylor expansion of lightlike geodesics. 
A numerical treatment on the structure of Kerr caustics 
was done by Bozza [12]. Qualitative descriptions of wave- 
fronts and caustics for gravitational lensing were pre- 
sented by Blandford and Narayan [13], Schneider et al. 
[14], and Ohanian and Ruffini [15]. Petters et al. [16,17], 
and Frittelli and Petters [18] addressed formally this sub- 
ject. Ellis et al. [19] discussed qualitatively the light cone 
structure for gravitational lensing. 

In this work, wavefronts, caustics and light cones for 
the Kerr spacetime are investigated. The best way to 
tackle it is through computer simulations. Nowadays, 

these simulations are becoming relevant in general rela- 
tivity, because they can help understand complex phe- 
nomena. With the new technologies, these simulations 
can practically be done in real time. Thus, the aim of this 
work is to provide a new perspective about wavefront 
propagations in Kerr spacetimes by means of computer 
simulation. For this purpose, we have designed JWFront 
[20], an interactive Java program using OpenGL (Open 
Graphics Library), to visualize wavefronts and light 
cones for this spacetime. 

In the next section, the Kerr spacetime and its tetrads 
will be briefly introduced and discussed. The equation of 
motion, i.e. the geodesic equation and how it is solved, 
will be discussed in the third section. Definitions for the 
sake of visualizations about the wavefront, caustic and 
light cone structures are presented in the fourth section. 
A succinct discussion about our program JWFront will 
be given in the fifth section. The last section is devoted 
to discuss the results of the visualizations for the Kerr 
spacetime. From these simulations, one can see the evo- 
lution of wavefronts and light cones providing new per- 
spectives for understanding them. 

2. Kerr Spacetimes 

2.1. Kerr Metric 

The Kerr metric is an exact solution of the vacuum Ein- 
stein field equation and represents the spacetime of a 
massive rotating black hole. In this spacetime, the rotat- 
ing body would exhibit an inertial frame dragging 
(Lense-Thirring effect), i.e., a particle moving close to it 
would corotate. This is not because of any force or torque 
applied on the particle, but rather because of the space-
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time curvature associated with this black hole. This re-
gion is called the ergosphere. At large distances this 
spacetime is flat (asymptotically flat). In Boyer-Linquist 
coordinates the metric has the following form [21,22]: 
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S  is the Schwarzschild radius in geometrical units 
(c = G = 1), M is the mass of the black hole, a J M  
(angular momentum per unit mass, ), and μνa  M g  
are the metric components, which can be read off easily 
from (1). The Kerr spacetime contains the Minkowski 
flat metric, the Schwarzschild metric, and the Lense- 
Thirring spacetime. If , i.e. neglecting the sec-
ond order in powers of a, one gets the Lense-Thirring 
metric, which represents the metric of a massive slow- 
rotating body. We get the Schwarzschild metric if 

2 0a 

0a  , 
which represents the metric of a massive non-rotating 
body. 

2.2. Local Frames: Tetrad Formalism 

The tetrad formalism is very useful in general relativity. 
It defines a mathematical element called tetrad or vier- 
bein, which is used to connect the curved coordinate sys- 
tems with the local flat Lorentz coordinates. These tet- 
rads must fulfill the equation 

 μ νη      ,
α β

αβ μ νg e e

 
α

                 (2) 

where μe   μ νηis a chosen vierbein element,  stands 

for the Minkowski metric (diag(–1, 1, 1, 1)). 
For the Kerr spacetime, there are at least two possibili- 

ties to choose these tetrads. The first one is called the lo- 
cally static frame (LSF). In this frame, the observer is 
static. This kind of observer cannot be located in the er- 
gosphere, because they would move with superluminal 
velocity in this region to counteract the Lense-Thirring 
effect. The local tetrads for this static observer have fol- 
lowing components: 
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 are understood as unit 
vector directions. 

The second one is called locally nonrotating frame [23] 
(LNRF), in which the observer is stationary. An observer 
in this kind of frames could be in the ergosphere. The 
local tetrads for this stationary observer have following 
components: 
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where     . These tetrad defini- 
tions are useful to find the trajectories of light rays mov- 
ing in a Kerr spacetime. 

3. The Geodesic Equation and Its Solution 

3.1. Geodesic Equation 

In general relativity, the trajectory of particles or light 
rays can be determined by the geodesic equation. Gener- 
ally, this equation can only be solved using numerical 
methods. This equation has the following form [21,22]: 
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where      is an affine parameter, a 
parameter such that d dx   has constant magnitude 
(affine parametrization). The components 

 , called 
the Christoffel symbols, are given by 
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 

These symbols for the Kerr metric can be computed by 
means of symbolic programs. A program using the free 
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symbolic software REDUCE [24] was written to obtain 
them. In the Appendix, the non-null Christoffel symbols 
are listed. Introducing these Christoffel symbols into 
Equation (5), one has four ordinary second order differ- 
ential equations given by: 
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For light rays, there is also another equation they have 
to fulfill, the null geodesic equation (lightlike geodesics): 
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The four-dimensional trajectories of light rays can be 
found by solving the Equations (6) with the constraint 
Equation (7). Now, we need initial conditions in order to 
solve these equations numerically. 

3.2. Initial Conditions 

The initial spacetime event 0 0 0 0 0x t x y z   for all 
geodesics of the bundle defining the wavefront (see be- 
low) has to be given in order to solve numerically Equa- 
tions (6) with the constraint Equation (7). For each geo- 
desic of the bundle, the four-velocity at the initial point, 
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determines the direction for each geodesic and they are 
calculated as follows: the tridimensional (3D) initial vec-

tor,  
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for each geodesic in local flat spacetime is given input. 
Using the null geodesic condition for this local metric, 
the initial time derivative 

0
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we have all components in local flat spacetime 


0
d dx   . Finally, the four-velocity in non-flat space-
time is determined by transforming from the local flat 
spacetime to the non-flat spacetime using the tetrads 
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With the purpose of simulating wavefronts and light 
cones in mind, one has to choose between the two kinds 
of observers (see Section 2).  

Now, we have all elements to numerically solve the 
four ordinary equations with these initial conditions. For 
this goal, a fourth order Runge-Kutta procedure is used.  

4. Wavefronts, Caustics and Light Cones 

4.1. Wavefronts 

Formally speaking, the wavefronts are defined as follows: 
A wavefront is generated by a bundle of light rays or- 
thogonal to a spacelike 2-surface in a four-dimensional 
Lorentzian manifold [5]. 

To simulate it, the wavefront is defined as the surface 
A generated by all points of the null geodesic bundle at a 
given time: 
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Qualitatively speaking, the wavefronts that spread out 
in all directions from the source are spherical at the very 
beginning and if they are approaching a deflector, they 
get distorted and their sheets develop generally singulari- 
ties: cusp ridges, self intersections and caustics. 

In gravitational lens theory, it is considered that light 
ray deflection occurs only at the place where the deflec- 
tor is located (thin lens approximation). This approxima- 
tion is very useful in many calculations, specially, if we 
are dealing with strong lensing. Under this consideration, 
wavefronts propagate spherically without any perturba- 
tion until the deflector, then wavefronts are distorted by 
the deflector. The general case is completely different, 
because wavefronts get already perturbed before they 
approach the deflector and can wind around the black 
hole (see Figure 1). An observer which is behind the 
deflector will see different sheets of the same wavefront 
co ing from different directions. Then, the observer will  m    
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Figure 1. Differences in the evolution of wavefront in presence of a black hole (top) and a gravitational lens (bottom). 
 
think that there are multiple images of the same source. 

4.2. Caustics 

A caustic of a wavefront is formally defined as the set of 
all points where the wavefront fails to be an (immersed) 
submanifold [5]. 

Roughly speaking, a caustic is the envelope of reflected 
or refracted light rays by a curved surface or object. A 
caustic can be a point, a line or a surface. For instance, 
for the Schwarzschild black hole the caustic is a line 
along of the line of sight, and for the point mass lens or 
non-rotating black hole the caustic is a point in the line of 
sight. Interesting caustic shapes can be found in gravita- 
tional lens theory, for example, for some elliptical lens 

models, it is common to find diamond shape caustics. 
Another important point to mention about caustics is that 
if an observer would be on a caustic, he would detect a 
high light intensity (mathematically speaking, it would 
be infinity). 

4.3. Light Cones 

The light cone is defined as the surface generated by all 
points  , , ,t x y z , that fulfill the geodesic equation with 
the null geodesic condition for a fixed starting event 

 , , ,0 0 0 0 0x t x y z  . To visualize the light cones, one has 
to suppress one space dimension, using for instance the 
coordinates    , , , , ,t x y t x z , ,t y z or  . Light cones can 
also be used to visualize caustic structures [13], because 
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time slices or cuts in the light cones represent the devel- 
opment of the wavefront. The same differences that ap- 
peared in the structures of wavefronts are also expected 
in light cones. 

In the present work, we will mainly concentrate on 
visualizations of wavefronts and light cones. For more 
mathematical details about wavefronts, caustics and light 
cones, the interested reader may consult the references at 
the end. Details of the simulations will be shown in the 
sixth section. 

5. JWFront 

An interactive frontend or GUI (graphical user interface) 
to visualize wavefronts and light cones in general relativ-
ity, called JWFront, was written in Java [20]. Basically, 
on this GUI, the user have to enter the initial position 
values and choose the values for mass and angular mo-
mentum per unit mass (M and a). Later, the user can 
choose what to see. Among the applications, the user can 
get from our program, are: 

 Wavefront animations in 2D and 3D,  
 Light cone visualizations. 

The light cones are visualized using the coordinate 
systems  , ,t x y  or  , ,t z x

 

. All data obtained from 
solving the equations is processed in the program by 
means of Java and OpenGL subroutines in order to simu- 
late wavefronts and light cones.  

Moreover, this Java program can be easily modified to 
simulate wavefronts and light cones for other spacetime. 
The user just has to provide the Christoffel symbols into 
the program. 

The interested reader may send us a message request- 
ing for the program or for more information about it. 

6. Simulation with JWFront 

Now, let us discuss some examples of the simulations 
obtained by JWFront (see Figures 2-4). Figures 2-4 are 
visualizations for the Kerr spacetime with M = 1 and a = 
0.9. 

 

 

Figure 2. Two-dimensional wavefront sequence for the Kerr metric (M = 1, a = 0.9). The sequence begins on the top left frame. 
The wavefront is moving from the right to the left in the xy plane. 
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Figure 3. Three-dimensional wavefront sequence for the Kerr metric (M = 1, a = 0.9). The sequence begins on the top left frame. 
 

The 2D visualization of a wavefront (light pulse) 
moving from right to left is shown in Figure 2. In these 
frames, the inner horizon is displayed as a small filled 
circle, the ergo-region as a bigger circle. Because of the 
rapidly rotation of the black hole, the wavefront is not 
symmetric in this plane. The black hole rotates counter- 
clockwise, and so that the upper part of the wavefront 
reaches the y axis earlier than the lower part. Further- 
more, because the wavefront infinitely winds around the 
black hole from left to right and right to left, the observer 
will not see a continuously visible Einstein ring as in the 
case of a nonrotating black hole. An observer located in 
the intersection point of the wavefront with itself can see 
the initial light pulse coming from two direction in this 
plane. 

In Figure 3, the 3D visualizations of a wavefront are 
shown. In this Figure, the wavefront consists of 1/8 of a 
sphere defined by the initial local directions. Certain 
steps of the wavefront motion are included in every 
frame. We can see that the wavefront, starting from be- 
low the z axis, reaches positive z values, because of the 

above winding effect. As explained with the last figures, 
every point of the spacetime (excluding those inside of 
the black hole) is reached by this wavefront. The visu- 
alizations of the light cones are shown in Figure 4 ((t, x, 
y) coordinates). The structures observed in these frames 
are similar to the corresponding structures of Figure 2. 

7. Conclusion 

The simulations produced by JWFront helps understand 
the light propagation in strong gravitational fields with 
rotation, such as in Kerr spacetimes. An interesting fea- 
ture of wavefronts propagation appeared: the wavefronts 
are backscattered and wind around the black hole. Thus, 
an observer on the line of sight with the deflector and the 
source would see multiple images, and if the black hole 
does not rotate, the observer would see at least one Ein- 
stein ring, if he or she is aligned with the black hole. For 
Schwarzschild metric this winding effect is symmetric 
whereas for the Kerr one it is not, this is due to black 
hole rotation. JWFront can also displayed the visualiza-   
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Figure 4. Light cone evolution for the Kerr metric (M = 1, a = 0.9). The sequence begins on the top left frame. The light cone 
evolves from the initial point on the xyt space. 
 
tions of light cones in these spacetimes. The results of the 
wavefront visualizations showed that the same structures 
can also be seen with light cone simulations as expected. 
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Appendix: Christoffel Symbols 

The non-zero Christoffel symbols for the Kerr metric are 
given by  
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These Christoffel symbols coincide with the ones ob- 
tained by Smerák [25]. 
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