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ABSTRACT 

This paper considered an autoregressive time series where the slope contains random components with non-negative 
values. The authors determine the stationary condition of the series to estimate its parameters by the quasi-maximum 
likelihood method. The authors also simulate and estimate the coefficients of the simulation chain. In this paper, we 
consider modeling and forecasting gold chain on the free market in Hanoi, Vietnam. 
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 log max log ,01. Introduction x x  . 

It is well-known that many time series in finance such as 
stock returns exhibit leptokurtosis, time-varying volati- 
lity and volatility clusters. The generalized autoregres- 
sive conditional heteroscedasticity (GARCH) and the ran- 
dom coefficient autoregressive (RCA) model have been 
caturing three characteristics of financial returns. 

The RCA models have been studied by several authors 
[1-3]. Most of their theoreic properties are well-known, 
including conditions for the existence and the uniqueness 
of a stationary solution, or for the existence of moments 
for the stationary distribution. In this paper, we address 
the stationary conditions for the RCA model, the exis- 
tence and the uniqueness of a stationary solution and 
parameter estimation problem for the RCA model with 
the coefficient have a non-negative random elements. 

2. Stationary Conditions of the Series 

Consider time series  satisfying  tY
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From (7), we have   1P Y    . 
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Use condition (2) and , we obtain: 
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Lemma 3. Assume (2) and (5) are satisfied with 
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Theorem 1: Suppose that (1), (4) and (5) satisfied 
with the almost sure convergence of  
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 kY  is a stationary series and  kY
, ,t te b t k

 is 
independent of . 

3. Estimation of Model Parameters 

Suppose that 
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4. Simulation 

In this section, we simulate series (1) with different val- 
ues of b e   

 2 2, ,

. These simulations show station- 
ary and non-stationary series cases.  

We simulate series (1) with different values of 

b e

 

Figure 1. Simulation for series Yt defined by (1) with 
. 1.09; 0.1; 0.1b eσ σ    

 

 

Figure 2. Simulation for series Yt defined by (1) with 
. .9; 0.1; 0.1b eσ σ    

 

 

Figure 3. Simulation for series Yt defined by (1) with 
.93; 0.1; 0.1b eσ σ   .  

 

   

1.07

 and in each case we can check the sta- 
tionary conditions of the series (1) by Lemma 1. In Fig- 
ure 1, we see that the series is not stationary with the 
negagtive slope    and in Figures 2 and 3 we 
simulate the not stationary series with positive slope 

0.9   and  0.93 

0.7

. Figure 4 presents a stationary but 
clustering series, Figures 5-7 present stationary series with 
parameters are 

Figure 4. Simulation for series Yt defined by (1) with 
  , 0   and 0.7  . 1.07; 0.1; 0.1b eσ σ   .  
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Figure 8. Return series of Gold price rt. Figure 5. Simulation for series Yt defined by (1) with 
.7;  0.1; 0.1b eσ σ     . 

 

 

 

Figure 9. Simulation for series Yt defined by (1) with 

 ˆ 0.0004,0.0002,0.0069θ  . 
Figure 6. Simulation for series Yt defined by (1) with 

. ;    0.1; 0.1b eσ σ 
Figure 9 below is a simulation of the process (1) with 

parameters 
  ˆ 0.0004,0.0002,0.0069  . 

 

6. Conclusion 

This paper has solved some problems relating to a kind 
of first order time series with coefficient regression af- 
fected by non-negative random elements. In subsequent 
studies, the author will consider the asymptotic estimates 
of the parameters. 
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