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ABSTRACT 

In this paper, the complete convergence and weak law of large numbers are established for  -mixing sequences of 

random variables. Our results extend and improve the Baum and Katz complete convergence theorem and the classical 
weak law of large numbers, etc. from independent sequences of random variables to  -mixing sequences of random 

variables without necessarily adding any extra conditions. 
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 1. Introduction f t , then the sequence 

Let  be a probability space. The random 
variables we deal with are all defined on . Let 

n  be a sequence of random variables. For each 
nonempty set , write S X i S  . Given 
 -algebras  in , let ,  

      2 2, ,Y L , sup corr , ;X Y X L  

 

    

where corr ,
Var Var

EXY EXEY
X Y

X Y


 . Define the 

   sup , ,S Tn   

n
, ofS T N

 ,S T 

-mix-  

ing coefficients by 

        (1.1) 

where (for a given positive integer ) this sup is taken 
over all pairs of nonempty finite subsets  
such that dist . n

 Obviously   1,n n n 0 1  0,    and  
 except in the trivial case where all of the ran- 

dom variables 
 0 1 

iX  are degenerate. 
Definition 1.1. A sequence of random variables 

n  is said to be a  ; 1X n   -mixing sequence of ran- 
dom variables if there exists k N  such that  <1k

 ; 1X n   1

. 
Without loss of generality we may assume that 

n  is such that  (see [1]). Here we 
give two examples of the practical application of 

 1
 - 

mixing. 
Example 1.1. According to the proof of Theorem 2 in 

[2] and Remark 3 in [1], if 

spectral density 
  ; 1if X i   1 1 

 
 has the property that . There- 

fore, instantaneous functions  ; 1if X i   of such a  

sequence provides a class of examples for  -mixing se- 
quences. 

 ; 1nX n   has a bounded positive  Example 1.2. If 

 t  0 m f t M  , i.e.,  for  fspectral density 

 

 ; 1X i i  is a strictly sta- 
tionary Gaussian sequence which has a bounded positive  

every t, then 1 1 1m M     ; 1nX n . Thus,  is 
a  -mixing sequence. 

 -mixing is similar to  -mixing, but both are quite 
different.  k  is defined by (1.1) with index sets re- 
stricted to subsets S of  1,n T and subsets of 
 , , ,n k n k N  . On the other hand,   -mixing se- 
quence assume condition ，but   0k  

k N
-mixing 

sequence assume condition that there exists   such 
that   1k  , from this point of view,  -mixing is 
weaker than  -mixing. 

A number of writers have studied  -mixing se- 
quences of random variables and a series of useful results 
have been established. We refer to [2] for the central 
limit theorem [1,3], for moment inequalities and the 
strong law of large numbers [4-9], for almost sure con- 
vergence, and [10] for maximal inequalities and the in- 
variance principle. When these are compared with the 
corresponding results for sequences of independent ran- 
dom variables, there still remains much to be desired. 

The main purpose of this paper is to study the com- 
plete convergence and weak law of large numbers of par- 
tial sums of  -mixing sequences of random variables 
and try to obtain some new results. We establish the 
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complete convergence theorems and the weak law of 
large numbers. Our results in this paper extend and im- 
prove the corresponding results of Feller [11] and Baum 
and Katz [12]. 

Lemma 1.1. ([10], Theorem 2.1) Suppose K is a posi- 
tive integer, , and . Then there exists a 
positive constant  such that the follow- 
ing statement holds: 

0 r 

1 2q 

 , ,D D K r q

 ; 1iX i If  is a sequence of random variables such 
that  K r  and  and 0iEX  q

iE X  
1

 for all 
, then for every , i  1n 

 
2

2

1 1

,
q

iEX
      

1

=i i
j

i

S X



1

1
max

n n
q q

i i
i n i i

E S D E X
   


    

where . 

Lemma 1.2. Let n  be a  ;X n  
0x 

1n 

-mixing se- 
quence of random variables. Then for any , there 
exists a positive constant c such that for all , 

   

 

2

1

1

1 (max )

max .

n

k n k

k
k n

P X x

cP X x

  

 

 

 


1

k kP X x
 

Proof. Let  k kA X x   and 

 
1=1

1 1 max
n

n k k
k nk

P A P X x
 

      
 


> 0

. Without loss of  

generality, assume that n . By the Cauchy-Schwarz 
inequality and Lemma 1.2, 
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1 ,
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k
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i.e., 

   

 

2

1 1

1

1 max

max .

n

k k
k n k

k
k n

P X x P X x

cP X x

  

 

  

 


 

2. Complete Convergence 

   a x b x  denote In the following, let 
    1,a x b x x  a b  na b

> 0

n na cb

, and n n  n  de- 
note that there exists a constant c  such that 

 n na cb  for sufficiently large n, logx mean    

  ln max ,ex
1

= i
j

n

nS X

 . , and 

 Definition 2.1. A measurable function   
is said to be a slowly varying function at  if for any  

0 0l x x 


> 0c
 
 

, lim 1
x

l cx

l x
. 

Lemma 2.1 ([13], Lemma 1). Let  be a slowly 
varying function at 

 l x
 . Then 

 
 

i) 
12 2

lim sup 1
2k k kk

x

l x

l  

. 

 lim ,
x

x l x


  lim 0,

x
x l x


 0  for any ii)   

0r  0

. 

iii) For any  and  
1c c ,r

, there exist positive 
constants  and 2  (depending only on  , and the 
function  l ·

     1 2
1

2 2 2 2 2 2 .
k

kr k jr j kr k

j

c l l c l

) such that for any positive number k, 

  


 

< 0r 0

 

iv) For any  and  
1d d ,r

, there exist positive 
constants  and 2  (depending only on  , and the 
function  l ·

     1 22 2 2 2 2 2kr k jr j kr k

j k

d l l d l

) such that for any positive number k, 

. 




   

 ; 1X n n  be a Theorem 2.1. Let  -mixing se- 
quence of identically distributed random variables. Sup- 
pose that   0l x   is a slowly varying function at  , 
and also assume that for each , the function 0a  l x

 0, a 0 2p
 

is bounded on the interval . Suppose  
1p

 
and  1; and if    then suppose also that 

1 0EX  . Then 

  1

1 1

p
E X l X

             (2.1) 

and 
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    ,S n  

1,p

2

11

max

0

p
j

j nn

n l n P






 

 

    (2.2) 

are equivalent. 
For  

 l x

1

 we also have the following theorem un- 
der adding the condition that  is a monotone non- 
decreasing function. 

Theorem 2.2. Let n  be a  ;X n  

  0l x  

-mixing se- 
quence of identically distributed random variables. Let 

 is a slowly varying function at  and mono- 
tone non-decreasing function. Suppose 1 2 

1
; and if 

  0 then suppose also that . Then 1EX

  1 1

1 1E X l X
           (2.3) 

and 

  1

11

max j
j nn

n l n P S n




 
  , 0     

  logl x x

1

 (2.4) 

are equivalent. 
Taking  and  respectively in 

Theorems 2.1 and 2.2 we can immediately obtain the 
following corollaries. 

  1l x 

Corollary 2.1. Let n  be a  ;X n   -mixing se- 
quence of identically distributed random variables. Sup- 
pose  and 0 2p  1p  ; and if 1 

0
 then sup- 

pose also that . Then 1EX 

1E X
p    

and 

  ,S n   

1

2

11

max

0

p
j

j nn

n P






 

 

  

are equivalent. 
Corollary 2.2. Let n  be a  ;X n   -mixing se- 

quence of identically distributed random variables. Sup- 
pose  and 0 2p  1p  ; and if 1 

0
 then sup- 

pose also that . Then 1EX 

 1 1log X  p
E X  

and 

  ,S n   

; 1X n 

2

11

log max

0

p
j

j nn

n nP






 

 

  

are equivalent. 
Remark 2.1. When  n  i.i.d., Corollary 2.5 

becomes the Baum and Katz [12] complete convergence 
theorem. So Theorems 2.1 and 2.2 extend and improve 
the Baum and Katz complete convergence theorem from 
the i.i.d. case to  -mixing sequences. 

Remark 2.2. Letting  take various forms in 
Theorems 2.1 and 2.2, we can get a variety of pairs of 
equivalent statements, one involving a moment condition  

 l x

and the other involving a complete convergence condi- 
tion. 

Proof of Theorem 2.1.   2.1 2.2

 
 | |i

n
i i i X n

Y Y X I

. Let 

, 


 

 



  1,2,, ,
i

n
i i i X n

Y Y X I i n
    . Firstly, we prove that 

1 1

max 0, .
j

i
j n i

n EY n

  

        (2.5) 

By Lemma 2.1 and (2.1), it is easy to show that 

1 , for any 0.
p

E X
    

1

       (2.6) 

i) For   , we have 1 1p   1 0EX, and  .  

Let 
1

0 min , 1
p

p


    

 
 in (2.6), by 

1 ,1 0
p

E X p
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   in (2.6), then  

1
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 and 1 0     . Hence 
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Noting   , let 
1
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1 0p

 in (2.6). By  

     and 1

p
E X

   , we get 
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By  and the Kronecker lemma,  
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Hence (2.5) holds. So to prove (2.2) it suffices to 
prove that 
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By Lemmas 2.1 (i), (iii), (2.1), and for each , the 
function  is bounded on the interval , 

   

   

   

     

    

    

    

  

1

2

11

1
1

1

1

0 2 2

1
1

1

1

1 1

1

1

1 1

2 2 2

2 2 2

2 2 2

2 2 2

j j

n
p

i
in

p

n

p

j n

j p j j

j

pj j k

j k j

k
pj j k

k j

pk k k

k

p

n l n P X

n l n P X n

n l n P

l P

l P

l P

l P

E X l X

 

 



 

 

 


















  






 

 



 





1

1
1

1
1

1
1

2

2

2

2

j

k

k

k

n

X n

X

X

X

X

 















 
 

 

 



  

  

 







 



 











 .

0a 

 

 

i.e., (2.7) holds. 
By the Markov inequality, Lemma 1.2, Lemmas 2.1 (i), 

(iv), (2.1), and for each , the function  l x
 0,a

 

 is 
bounded on the interval , 
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Hence, (2.8) holds. 
Now we prove that (2.2)  (2.1). Obviously (2.2) 

implies 
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Therefore, for sufficiently large n, 
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which, in conjunction with Lemma 1.2, gives 
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Putting this one into (2.9), we get furthermore 
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Thus, by Lemmas 2.1 (i), (iii), 
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This completes the proof of Theorem 2.1. 
Proof of Theorem 2.2. (2.3)  (2.4). Let  

 
 i

n
i i i X n

Y Y X I 
  , 1, 2, ,i n 

  0l x 

, the method of proof  

of Theorem 2.2 is similar to method used to prove the 
above Theorem 2.1. Only the method of prove of (2.5) is 
not the same. In what follows, we prove that (2.5) holds. 
Since  is a monotone non-decreasing function, 
we have 

 

     

   

1

1 1

1 1 1

1 1

1 1

1 1

1 11

X
X X I

X l X

X l X

 

 

 











1| | 11

1

1

1
.

1
XI

l X

l

   

Hence, by (2.3)， 
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from the Kronecker lemma and 
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Hence (2.5) holds. The rest of the proof is similar to 
the corresponding part of the proof of Theorem 2.1, so 
we omit it. 

3. Weak Law of Large Numbers 

Theorem 3.1. Suppose 1 2p   ; 1X n . Let n  be a 
 -mixing sequence of identically distributed random 
variables satisfying 

 1lim 0.p

n
nP X n
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Then 
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    (3.2) 

Remark 3.1. When  and n  i.i.d., 
then Theorem 3.1 is the weak law of large numbers 
(WLLN) due to Feller [11]. So, Theorem 3.1 extends the 
sufficient part of the Feller’s WLLN from the i.i.d. case 
to a  -mixing setting. 
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Thus, to prove (3.2) it suffices to verify that 
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By (3.1) and the Toeplitz lemma, 
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i.e. (3.3) holds. 

4. Examples 

In this section, we give two examples to show our Theo- 
rems. 

Example 4.1. Let n  be a  ;X n   -mixing se- 
quence of identically distributed random variables. Sup- 
pose  and 0 2p  1p  ; and if 1 

0 = log , >0r x r

1

 then sup- 
pose also that . Assume that  

and 

1EX   l x

X  has a distribution with 
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1
~ , +1

log
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x x
x     . 

Is easy to verify that l x  satisfies the conditions of 
Theorems 2.1 and 2.2, and 
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Thus, by Theorems 2.1 and 2.2, 
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Example 4.2. Suppose 1 2p   ; 1X n . Let n  be a 
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-mixing sequence of identically distributed random 
variables. Assume that X  has a distribution with 
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