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ABSTRACT 

In this paper we investigate optimal control problems governed by a advection-diffusion-reaction equation. We present 
a method for deriving conditions in the form of Pontryagin’s principle. The main tools used are the Ekeland’s varia- 
tional principle combined with penalization and spike variation techniques. 
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1. Introduction 

Consider the following controlled advection convection 
diffusion equations: 
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where  is a convex bounded domain with 
a smooth boundary , the diffusity 
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assigned functions. Here :f U R  , with U  be-
ing a separable metric space. Function  u · , called a 
control, is taken from the set 

  : is measuraU w U w  · ble . 
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Under some mild conditions, for any , (1.1) 
admits a unique weak solution  which 
is called the state(corresponding to the control 

 u ·
  ·; ,u · y y·

 u · ). 
The performance of the control is measured by the cost 
functional 

      0 , , d .J u f x y x u x


 · x       (1.2) 

for some given map 0 :f U R  . Our optimal con-

trol problem can be stated as follows. 
Problem (C). Find a  u · U  such that 
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u U

J u J u



·
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And the state constraint of form: 

  .F y Q                      (1.4) 

In this paper, we make the following assumptions. 
(H1) Set ,nR n 2    is a convex bounded domain 

with a smooth boundary  . 
(H2) Set  is a separable metric space. U
(H3) The function :f U R   has the following 

properties:  ·;f u  is measurable on  , and  ,f x ·  
continuous on U  and for any , a constant  0R

0RM  , such that    , , ,Rf x u M x u U   .  

(H4) Function  0 , ,f x y v  is measurable in x and 
continuous in  ,y v R U 

0
 for almost all . More-

over, for any , there exists a  such that 
x

R  0RK 
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     (1.5) 

(H5) X  is a Banach space with strictly convex dual 
X  ,  p1,

0:F W  
Q X

X  is continuously Fréchet differ- 
entiable, and  is closed and convex set. 

(H6)   rF y D Q   has finite condimensionality in 
X  for some , where 0r   :r X

Definition 1.1 (see [1]) Let 
D z X z r   . 
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X  is a Banach space and 

0X  is a subspace of X . We say that 0X  is finite 
codimensional in X  if there exists 1 2, , , nx x x X  
such that 
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A subset  of S X  is said to be finite codimensional 
in X  if for some 0x S ,   0span S x  the closed  

subspace spanned by  0x x x S  is a finite codimen-  

sional subspace of X  and coS  the closed convex hull 
of  has a nonempty interior in this subspace.  0S x

Lemma 1.2. Let (H1) - (H3) hold. Then, for any 
, (1.1) admits a unique weak solution  u · U

     1,
0

py W L  · . 

Furthermore, there exists a constant , inde-
pendent of 

0K 
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0

, pW L
u yU  

 


· · K
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The weak solution  of the state Equa- 
tion (1.1) is determined by 

 1
0y V H  

   , , ,a y v f v v V    

using the bilinear form  given by :a V V R 

 , d d d ,a y v y v x yv x yv x v V  
  

           

Existence and uniqueness of the solution to (1.1) fol-
low from the above hypotheses on the problem data (see 
[2]). Let adA  be the set of all pairs     ,y u· ·  satis-
fying (1.1) and (1.4) is called an admissible set. Any 
 , ady u  A  is called an admissible pair. The pair  

    · · , ady u A , moveover satisfies     J u J· u  

for all  , ady u A  is called an optimal pair. If it exists, 
refer to y  and u  as an optimal state and control, re- 
spectively. 

Now, let  , y u  be an optimal pair of Problem (C).  

Let be the unique solution of      1,
0·; pz z u W · 

the following problem: 
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And define the reachable set of variational system 
(1.7) 

     ·; .R z u u U · ·                 (1.8) 

Now, let us state the first order necessary conditions of 
an optimal control to Problem (C) as follows. 

Theorem 1.3. (Pontryagin’s maximum principle) Let 
(H1) - (H6) hold. Let     ,y u· ·   be an optimal pair of 
Problem (C). Then there exists a triplet 
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(1.9), (1.10), and (1.11) are called the transversality con-
dition, the adjoint system(along the given optimal pair), 

trol problems 
fo

iple of optimal control of Problem (C). 

aximum 

and the maximum condition, respectively. 
Many authors (Dede [3], Yan [4], Becker [5], Stefano 

[6], Collis [7]) have already considered con
r convection-diffusion equations from theoretical or 

numerical point of view. In the work mentioned above, 
the control set is convex. However, in many practical 
cases, the control set can not convex. This stimulates us 
to study Problem (C). To get Pontryagin’s Principle, we 
use a method based on penalization of state constraints, 
and Ekeland’s principle combined with diffuse perturba-
tions [8]. 

In the next section, we will prove Pontryagin’s maxi-
mum princ

2. Proof of the Maximum Principle 

This section is devoted to the proof of the m
principle. 

Proof of Theorem 1.3. Firstly, let 

         ,d u u x u · · · u · , 

where D  is the Lebesgue measure of  We can 
easily prove that 

D   .
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ume that 

rrespon
penden
may ass   0J u  . For any 0,   define 
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, this function in

control.  
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metric space  ,U d . Also,  have we  
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          (2.2) 

Hence, by Ekeland’s variational prin
a 

ciple, we can find 
u U  , such that 
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By (2.1) and chapter 4 of [8], (2.8) becomes 

 0, 0, , ,z F y z                  (2.10) 

2 20, 1.
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On the other hand, by the definition of the subdifferen-
tial, we have 
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, from the first relation in (2.3) and by some cal-
culations, we have 

Next

 1,
0

0 , as 0.pW
y y 


        (2.13) 

Cons

 

equently, 

   
  1,

00
0F

pW
y F y

 
  lim     (2.1


4) 

From (2.5) and (2.6), we have 
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From (2.10), (2.12) and (2.15), we have 
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ith 0 as 0.    Because   rF y D W   has 
finite condimensionality in X , we can extract some 
subsequence, still denoted by itself, such that 
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3. Conclusion 

We have already attained Pontryagin’s Maximum Princi- 
ple for the advection-diffusion-reaction equation. It seems 
to us that this method can be used in treating many other 
relevant problems. 
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